BOLLETTINO UNIONE MATEMATICA ITALIANA

MARIO VILLA

Sulle varietà iperalgebriche semplicemente infinite

Bollettino dell'Unione Matematica Italiana, Serie 1, Vol. 14 (1935), n.3, p. 160–165.

Unione Matematica Italiana

```
<http:
```

//www.bdim.eu/item?id=BUMI_1935_1_14_3_160_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Sulle varietà iperalgebriche semplicemente infinite.

Nota di Mario Villa (a Milano).

- Sunto. L'Autore esamina, dapprima, la corrispondenza congiunta e la varietà algebrica minima C5 di una varietà iperalgebrica V_k. Studia poi, principalmente. le V₁ che chiama a valenza (le altre V₄ sono parti di queste) e arriva alla proprietà fondamentale: una V₄ a valenza è l'intersezione completa (a meno di un numero finito di punti) di C₄ con una ipersuperficie iperalgebrica. Applica inoltre questo teorema alle curve algebriche.
- 1. Considerando le varietà iperalgebriche V_k , a k parametri reali, non algebriche, dal punto di vista della geometria cremoniana (ordinaria e complessa) (¹), sono fondamentali le nozioni di varietà algebrica C_δ (a δ parametri complessi) minima contenente V_k ($\delta \leq k$) e di corrispondenza l' congiunta a V_k (²). C_δ (²) Γ (¹) sono covarianti di V_k . Di conseguenza: i caratteri cremo-
- (i) Alla geometria cremoniana delle V_{2r-4} di S_r sono dedicati i lavori: V_{1LLA} , Connessi algebrici, iperalgebrici e varietà iperalgebriche di dimensione massima. « Mem. Acc. d'Italia », vol. 6, p. 151, 1934 (questo lavoro verra richiamato con Li); VILLA, Sulla teoria delle ipersuperficie iperalgebriche. « Rend. dei Lincei », vol. 20, serie 6^a , p. 9, 1934.
- (2) Queste nozioni sono state introdotte da C. Segre, ma utilizzate da questo A. solo dal punto di vista proiettivo. (C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, « Math. Ann. », vol. 40, p. 440, 1892).
- (3) Premetto la definizione: V_k si dirà irriducibile quand'è irriducibile la varietà (algebrica) reale immagine, nelle ben note rappresentazioni reali degli enti complessi. Varietà iperalgebrica riducibile è l'insieme di un numero finito di varietà iperalgebriche irriducibili. Si può ora, con precisione, definire la varietà minima C_δ : la C_δ di una V_k irriducibile è la varietà algebrica irriducibile, di dimensione minima, contenente V_k . Se V_k giace infatti in una C_δ irriducibile, e non in una varietà algebrica $C_{\delta-1}$ (di dimensione complessa $\delta-1$), di varietà algebriche irriducibili C_δ , contenenti V_k , ve n'è una sola: se ve ne fossero due, nella $C_{\delta-1}$ intersezione giacerebbe V_k .
- (4) Sopra C_δ la V_k individua una corrispondenza iperalgebrica involutoria, prodotto di una corrispondenza algebrica e del coniugio, nella quale ad un punto corrisponde una varietà algebrica $M_{k-\delta}$ (a $k-\delta$ parametri complessi), il cui luogo dei punti uniti è V_k . Preferisco chiamare congiunta a V_k questa corrispondenza Γ , anzichè, come fa Segre, quella armonica al coniugio.

niani di C_8 e Γ sono caratteri cremoviani di V_k . Ad es., per una varietà iperalgebrica V_1 semplicemente infinita (varietà ad un parametro reale: filo), sono caratteri cremoniani di V_1 il genere della curva C_1 , che chiamo rango di V_1 , i moduli di C_1 , che chiamo moduli di V_1 , l'indice n di Γ : indice di V_1 (1), ecc.

Considerando le V_k dal punto di vista della geometria birazionale, si presentano fatti ben diversi. Per fissar le idee, limitiamoci alle V_1 . Se le ourve C_1 di due V_1 sono birazionalmente equivalenti, e le V_1 sono corrispondenti, la Γ dell'una si trasforma nella Γ dell'altra. Ma la birazionalità delle V_1 non trae quella delle C_1 .

Siano infatti V_1 , V_1' due fili, irriducibili, birazionalmente equivalenti, C_1 e C_1' le curve minime relative. Sulla superficie θ delle coppie di punti di C_1 , C_1' , le coppie di punti corrispondenti di V_1 , V_1' danno luogo ad un filo ψ irriducibile. La curva algebrica minima φ contenente ψ , avendo infiniti punti comuni con θ , giace su θ , e rappresenta quindi una corrispondenza algebrica fra C_1 , C_1' , la quale però non è necessariamente birazionale.

Prescindendo da siffatte questioni, è chiaro che la natura di V_k sarà svelata appieno da un esame approfondito di Γ . Si tratta, dapprima, di esaminare il sistema algebrico che sopra C_δ è formato dalle $M_{k-\delta}$ corrispondenti in Γ ai punti di C_δ (2).

- 2. Limitiamoci alle V_1 (irriducibili) (3), nell'ipotesi che i gruppi di punti M_0 stiano in una serie lineare. La l' è allora a valenza (4), e il filo V_1 si dira pure a valenza (5). La serie lineare g_n^s
- (i) Se n=1, l'insieme dei moduli di C_1 è coniugato di sè stesso. Il filo V_1 è birazionalmente equivalente all'insieme V_1 ' dei punti reali di una curva algebrica reale (nel senso che è trasformata in sè dal coniugio). La corrispondenza congiunta a V_1 ' è il coniugio. (Klein, Ueber Riemann's Theorie der algebraischen Functionen und ihrer Integrale, Leipzig, 1882; C. Segre, op. cit., p. 441).
- (2) In L, la Γ (connesso) relativa ad una V_{2r-1} di S_r (ipersuperficie iperalgebrica) è studiata in modo esauriente, considerando il sistema lineare minimo in cui giacciono le M_{r-1} .
- (3) Supporrò i gruppi M_0 privi di punti fissi, chè tali punti si staccherebbero dal filo.
- (4) Dico Γ a valenza perchè è a valenza la corrispondenza algebrica Γ^* , chiamata congiunta da Segre (op. cit., p. 440), che moltiplicata pel coniugio dà Γ .
- (5) Esistono anche fili non a valenza. Per es.: i fili d'indice 1 giacenti su curve C_1 non razionali. Infatti i punti M_0 di C_1 , non essendo C_1 razionale, non formano una g_1^4 .

(dove n è l'indice di V_1), di dimensione (complessa) minima s, contenente i gruppi M_0 , si dirà la serie associata a V_1 (1). Dico che:

In g_n^s esiste un'antipolarità ω (non degenere, dotata di elementi uniti) nella quale alla serie g_n^{s-1} , staccata da g_n^s da un punto generico P, corrisponde il gruppo omologo di P in Γ .

 V_1 è a valenza. La corrispondenza algebrica Γ^* è a valenza. Γ^* è quindi rappresentata da una sola equazione

$$f(x_i, y_i) = 0 \ (^2).$$

Siccome l* è armonica al coniugio, la f è una funzione a coefficienti coniugati (³). L'equazione di l' si ottiene dalla precedente ponendo $y_i = \bar{z}_i$ (¹), ed è pereiò

$$\sum_{i} a_i u_i \bar{u}_i' = 0,$$

le u_i essendo forme algebriche nelle x_i , di grado n, linearmente indipendenti, la $\bar{u_i}'$ ottenendosi da u_i ponendo per ogni termine $kx_1^zx_2^\beta\dots$ il termine $\bar{k}\bar{z}_1^\alpha\bar{z}_2^\beta\dots$, e le a costanti reali (5). La g_n^s è staccata su C_1 dal sistema lineare

$$\sum_{i} \lambda_{i} u_{i} = 0.$$

e la o è

$$\sum_{i} \frac{1}{a_i} \lambda_i \bar{\lambda_i'} = 0.$$

La ω si dirà antipolarità subordinata da V_1 . Da g_n^s e ω si ritorna a Γ : facendo corrispondere al punto generico P il gruppo omologo in ω della serie che P stacca da g_n^s .

Le nozioni di filo a valenza, di serie associata, sono cremoniane.

Quindi: i caratteri cremoniani di g_n^s e ω sono caratteri cremoniani di V_1 . La dimensione s di g_n^s è un nuovo invariante cremoniano di V_1 , che chiamo genere algebrico di V_1 ($s \leq n$). Un altro invariante cremoniano di V_1 è la specie v di ω (cioè la dimensione complessa v delle serie, subordinate di g_n^s , di dimensione massima,

- (') I fili delle curve razionali sono tutti a valenza. La serie associata ad un filo rettilineo altro non è che l'involuzione associata (VILLA, *Intorno ai fili rettilinei*, « Boll. dell' Un. Mat. Ital. », 1933).
- (2) SEVERI, Trattato di Geometria algebrica, vol. 1°, parte 1ª, Zanichelli, Bologna, p. 199, 1926.
 - (3) L, p. 165.
- (4) Denotiamo con χ la funzione che s'ottiene da una funzione χ ponendo per ogni coefficiente e per ogni variabile il numero complesso coniugato.
 - (5) L, pp. 166, 167.

i cui gruppi sono tutti uniti in ω), che chiamo specie di V_1 $\left(0 \le v \le \frac{s}{2} \text{ per s pari}, \ 0 \le v \le \frac{s+1}{2} \text{ per s dispari}\right)$.

Abbiamo visto che un filo è il luogo dei punti uniti di Γ , ma pei fili a valenza possiamo anche dire: V_1 è il luogo dei punti comuni ai gruppi di g_n^s e ai punti fissi delle serie corrispondenti in ω .

3. Un filo V_1 (irriducibile) è a valenza quando, e solo quando, è l'intersezione completa (a meno di un numero finito di punti) della curva C_1 (irriducibile) su cui giace con una ipersuperficie iperalgebrica (irriducibile) del suo spazio.

La condizione è sufficiente. Supponiamo V_1 piano (il ragionamento vale immutato per V_1 iperspaziale). La ipersuperficie iperalgebrica irriducibile sara quindi una V_3 . Per ipotesi, V_3 sega C_1 in un filo V_1^* , che si spezza in V_1 e in un numero finito (anche nullo) di punti H. Gli H sono quindi i punti fissi dei gruppi M_0 , relativi a V_1^* (n. 1). I gruppi M_0 , relativi a V_1 , si ottengono quindi dagli M_0 precedenti, privandoli dei punti H.

Bastera dunque dimostrare che i gruppi M_0 , relativi a V_1 *, stanno in una serie lineare. Facciamo corrispondere al punto generico di C_1 il gruppo di punti α in cui la curva corrispondente γ , nel connesso congiunto a V_3 , taglia C_1 . Nasce su C_1 una corrispondenza iperalgebrica involutoria, che ha V_1 * per luogo dei punti uniti, e coincide quindi con la corrispondenza congiunta a V_1 *. Gli M_0 relativi a V_1 * coincidono con gli α , e giacciono quindi in una serie lineare, giacendo in un sistema lineare le curve γ .

Dimostriamo che la condizione è necessaria. V_1 è a valenza (e lo supporremo ancora piano). Consideriamo nel piano di V_1 un sistema lineare di curve Σ , che stacchi, fuori di un gruppo H di punti fissi, la serie associata g_n^s a V_1 , in guisa che Σ sia ancora di dimensione s. L'antipolarità ω in g_n^s determina un'antipolarità Ω in Σ . La V_3 , irriducibile, individuata da Σ e Ω (1), sega C_1 in V_1 e nei punti H.

4. Siccome un filo giace sempre in una ipersuperficie iperalgebrica, e l'intersezione di una curva con una ipersuperficie iperalgebrica è, in generale, un filo, si conclude:

Un filo non a valenza è l'intersezione parziale della curva C_1

L, p. 170. Non si tratta d'una varietà di minor dimensione, essendo Σ generico.

su cui giace con una ipersuperficie iperalgebrica del suo spazio. Con altre parole:

Un filo non a valenza si può sempre pensare come parte di un

filo riducibile a valenza.

5. Il legame fra le serie lineari di una curva algebrica e i suoi fili a valenza è espressivo ed importante, anche per le applicazioni che presenta per le stesse curve algebriche.

Si arriva, per es., ad una proprietà essenzialmente iperalgeorica e caratteristica per le curve algebriche razionali. Essa è la se-

guente:

Condizione necessaria e sufficiente affinchè una curva algebrica (irriducibile) sia razionale è che esista una ipersuperficie iperalgebrica (irriducibile) del suo spazio che la seghi in un filo d'indice 1 e eventualmente in altri punti in numero finito).

La condizione è sufficiente. Infatti: il filo d'indice 1, essendo l'intersezione completa (a meno di un numero finito di punti) della curva C_1 con una ipersuperficie iperalgebrica, pel teorema del n. 3, è a valenza. I punti di C_1 formano quindi una g_1^1 , sicchè C_1 è razionale.

La condizione è necessaria. Infatti: un filo d'indice 1 della curva C_1 , essendo C_1 razionale, è a valenza, ed è quindi, pel teorema del n. 3, l'intersezione completa (a meno di un numero finito di punti) di C_1 con una ipersuperficie iperalgebrica (irriducibile) (1).

6. Un modello molto semplice e utile di un filo V_1 a valenza si costruisce ricorrendo all'immagine proiettiva di g_n^s (e a ω) (2).

Per semplicità, V_1 sia piano e la g_n^s sia semplice. Ponendo una proiettività (non degenere) fra i gruppi di g_n^s e gli iperpiani di uno spazio S_s (sicchè ai gruppi di g_n^s , che passano per un generico punto P di C_1 , corrispondono gl'iperpiani di S_s , che passano per un punto Q_1 , considerando l'iperquadrica (non specializzata) fondamentale dell'antipolarità di S_s in cui si rispecchia la ω , si arriva al risultato:

(²) Si tratta di modelli analoghi ai Φ delle V_3 piane considerati nella mia Nota lincea già citata.

⁽¹) Un filo d'indice 1 di una curva razionale C_4 , si costruisce nel modo seguente. Sia, per semplicità, C_4 piana. Consideriamo un fascio Σ di curve che seghi C_4 , fuori dei punti fissi H, in una g_4^4 . Le curve che in Σ formano una catena semplice compongono una V_3 di genere algebrico 1 (L, p. 184), la quale sega C_4 in un filo d'indice 1 (e nei punti H).

Un filo iperalgebrico piano V_1 a valenza, di genere s, di specie ν , d'indice n, è birazionalmente equivalente ad un filo (V_1) di S_s che è l'intersezione completa di una curva C, d'ordine n, irriducibile, birazionalmente equivalente alla C_1 , con un'iperquadrica I (non specializzata) di specie ν .

La serie associata a (V_1) è quella segata su C dagli iperpiani di S_s , e l'antipolarità subordinata è quella determinata dall'antipolarità relativa ad I.

La geometria cremoniana dei fili a valenza V_1 equivale a quella proiettiva dei modelli (V_1) (1).

⁽i) Data sopra una curva irriducibile una serie lineare e in questa un'antipolarità, può avvenire che non esista un filo a valenza corrispondente. Il problema — che possiamo chiamare d'esistenza dei fili a valenza — in virtà dei modelli (V_4) , equivale a quello di stabilire quando l'intersezione di una curva e di un'iperquadrica (che non si appartengono) è effettivamente un filo, chè tale intersezione può anche comporsi d'un numero finito di punti, o mancare.