Bollettino Unione Matematica Italiana

P. J. McCarthy

Note on quasi-orthogonal polynomials.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 16 (1961), n.4, p. 445-448.

Zanichelli
http://www.bdim.eu/item?id=BUMI_1961_3_16_4_445_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI \& UMI
http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Zanichelli, 1961.

Note on quasi-orthogonal polynomials.

Nota di P. J. Mc Carthy (a Lawrence, U.S. A.) (*)

Sammary. - A characterization is given of those sequences of quasi-orthogonal polynomials which form also Appell sets.

A sequence of polynomials

$$
\begin{equation*}
q_{n}(x)(n=0,1,2, \ldots), \operatorname{deg} q_{n}(x)=n \tag{Q}
\end{equation*}
$$

is said to be quasi-orthogonal if there is an interval (a, b) and a non-decreasing function $\alpha(x)$ such that

$$
\int_{a}^{b} x^{m} q_{n}(x) d x(x)\left\{\begin{array}{l}
=0 \text { if } 0 \leq m \leq n-2 \\
\neq 0 \text { if } 0 \leq m=n-1 \\
\neq 0 \text { if } 0=m=n .
\end{array}\right.
$$

These polynomials have been studied by Chitara [2] (see the references given there) and by Dickinson [3].

Recently, Carlitz has given in [1] a charactertzation of those sequences of orthogonal polynomials

$$
\begin{equation*}
p_{n}\left(x(n=0,1,2, \ldots), \operatorname{deg} p_{n}(x)=n\right. \tag{P}
\end{equation*}
$$

for which $p_{n}^{\prime}{ }_{(}(x)=n p_{n-1}(x)$ for $n \geq 1$. In this note we shall do the same for sequences (Q) of quasi-orthogonal polynomials.

In [3], Dickinson has shown that if (Q) is a sequence of quasi-orthogonal polynomials, with respect to the interval (a, b) and the non-decreasing function $\alpha(x)$, then there is a sequence of pilynomials (P), orthogonal with respect to (a, b) and $x(x)$, such that

$$
\begin{equation*}
p_{n}(x)=\sum_{i=0}^{n} T, q_{i}(x) \quad(n \geq 0) \tag{1}
\end{equation*}
$$

where $T_{n} \neq 0$ for $n \geq 0$. We may assume that each $q_{i}(x)$ is monic (in particular, $q_{0}(x)=1$) and that $T_{0}=1$. It was also shown by
(*) Pervenuta alla Segreteria dell' U. M. I. il 6 novembre 1961.

Dickinson in [3] that there are constants $b_{n}, c_{n}, d_{n^{\prime}}(n=0,1,2, \ldots)$ such that

$$
\begin{equation*}
q_{n+1}(x)=\left(x+b_{n}\right) q_{n}(x)-c_{n} q_{n-1}(x)+d_{n} \sum_{i=0}^{n-2} T_{i} q_{2}(x) \tag{2}
\end{equation*}
$$

for all n, with $d_{0}=d_{1}=0$.
Now suppose that (Q) is a sequence of quasi-orthogonal polynomials and that

$$
\begin{equation*}
q_{n}^{\prime}(x)=n q_{n-1}(x) \quad,(n \geq 1) \tag{3}
\end{equation*}
$$

From (2) and (3)

$$
\begin{aligned}
(n+1) q_{n}(x)=q_{n}(x) & +n\left(x+b_{n}\right) q_{n-1}(x)-(n-1) c_{n} q_{n-2}(x) \\
& +d_{n} \sum_{i=1}^{n-2} \imath T_{1} q_{1-1}(x)
\end{aligned}
$$

or

$$
\begin{align*}
q_{n}(x)= & \left(x+b_{n}\right) q_{n-1}(x)-\frac{n-1}{n} c_{n} q_{n-2}(x) \tag{4}\\
& +\frac{d_{n}}{n} \sum_{v=0}^{n-3}(i+1) T_{t+1} q_{i}(x) .
\end{align*}
$$

If we replace n by $n-1$ in (2) and compare the result with (4), we see that we must have

$$
d_{n}(i+1) T_{i+1}=n d_{n-1} T_{i} \quad(i=0,1, \ldots, n-3)
$$

For this we must have, of course, $n \geq 3$, This being so, we have

$$
\begin{equation*}
d_{n}=n T_{1}^{-1} d_{n-1} \text { and } d_{n}=n \frac{T_{n-2}}{(n-2) T_{n-2}} d_{n-1} \tag{5}
\end{equation*}
$$

If, for a given $k \geq 2, d_{k}=0$, it follows from (5) that $d_{k}=0$ for all k. In this case (2) becomes the three-tern recurrence relation

$$
\begin{equation*}
q_{n+1}(x)=\left(x+b_{n}\right) q_{n}(x)-c_{n} q_{n-1}(x) \tag{6}
\end{equation*}
$$

However, Carlitz has shown in [1] that if the sequence (Q) satisfies (3) end (6), then (Q) is esseotially the sepuence of Hermite polynomials. Thus, in this case, (Q) is not a sequence of quasiorthogonal polynomials. Thus, we must have $d_{k} \neq 0$ for $k \geq 2$.

It now follows from (o) that for all $n \geq 0$,

$$
\frac{T_{n-1}}{n T_{n}}=\frac{1}{T_{1}}
$$

or

$$
T_{n}=\frac{T_{1}}{n} T_{n-1}=\frac{T_{1}^{2}}{n(n-1)} T_{n-2}=\ldots
$$

$$
\begin{equation*}
T_{n}=\frac{T^{n}}{n!} \text { where } T=T_{1} \tag{6}
\end{equation*}
$$

If we substitute from (7) into (1) we obtain

$$
\begin{equation*}
p_{n}(x)={\underset{i-0}{n}}_{\Xi_{i!}}^{T_{i}} q_{i}(x) . \tag{8}
\end{equation*}
$$

If we now differentiate (8) and use (3) we see that

Now let $f_{n}(x)=n!T-" p_{n}(x)$. Then we see immediately that the sequence $f_{n}(x), n=0,1,2, \ldots$, is orthogonal with respect to the interval (a, b) and the non-decreasing function $\alpha(x)$, and iurthermore, that $f_{n}^{\prime}(x)=n t_{n-1}(x)$ tor $n \geq 1$. Hence, by a theorem of Shoнat [4] there are constanls a and b, with $a \neq 0$, such that $f_{n}(x)=a^{n} H_{n}\left(\frac{x}{a}+b\right)$, where $H_{n}(x)$ is the n-th Hermite polynomial (we use the notation used by SHOHAT, so that $H^{\prime}{ }_{n}(x)=n H_{n-1}(x)$ for all $n \geq 1$). I'hus,

$$
p_{n}(x)=\frac{T^{n} a^{n}}{n!} H_{n}\left(\begin{array}{l}
x \\
a
\end{array}+b\right)
$$

From (8). we have $T^{\prime \prime} q_{n}(x)=n!\left[p_{n}(x)-p_{n-1}(x)\right]$ and so, finally, we obtain the desired characterization:

If (Q) is a sequence of quasi-orthogonal polynomals, each of which is monic, such that $\mathrm{q}^{\prime}{ }_{n}(\mathrm{x})=\mathrm{nq}_{\mathrm{q}_{-1}(\mathrm{x})}$ for all $\mathrm{n}>1$, then $\mathrm{q}_{0}(\mathrm{x})=1$, and

$$
\begin{equation*}
q_{n}(x)=a^{n} H_{n}\left(\frac{x}{a}+b\right)-n T^{-1} a^{n-1} H_{n-1}\left(\frac{x}{a}+b\right) \quad(n \geq 1) \tag{9}
\end{equation*}
$$

where T, a, b are constants, $T \neq 0, a \neq 0$, and $H_{n}(x)$ is the n-th Hermite polynomial. Of course, if the sequence (Q) is given by (9), then it is a sequence of quasi-orthogonal polynomials and satisfies (3).

Now let us assume that (Q) is a sequence of quasi-orthogonal polynomials such that

$$
\begin{equation*}
q_{n}(x+1)-q_{n}(x)=n q_{n-1}(x) \quad(n \geq 1) \tag{10}
\end{equation*}
$$

If we now proceed as above, using (2) and (10), we again come to the conclusion that $p_{n}(x)$ is given by (8). Then.

$$
p_{n}(x+1)-p_{n}(x)=T p_{n-1}(x)
$$

Hence, $f_{n}(x)=n!T^{-n} p_{n}(x), n=0,1,2, \ldots$, is a sequence of orthogonal polynomials which satisfies (10). But, in this case, Carlitz [1] has shown that, except for a constant factor, $f_{n}(x)$ is the n-th Poisson-Charlier polynomial. 'Thus, we have determined all sequences of quasi-ortogonal polynomials for which (10) holds.

REEERENCES

[1] L. Carlitz, Characterization of certain sequences of orthogonal polynomials, Portugal Math. », vol. 20 (1961) pp. 43.46.
[2] T. S. Chihara, On quasi-orthogonal polynomials, . Proc. Amer. Math. Soc. s, vol. 8 (1957), pp. 765.767.
[3] David Dickinson, On quasi-orthogonal polynomials, •Proc. Amer. Math. Soc.》, vol. 12 (1961), pp. 185.194.
[4] J. Sho polynomials of Appell, «Amer. J. Math. ., vol 58 (1936), pp. 453-464.

