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An Electromagnetic Damping Machine:
Model, Analysis and Numerics.

A. BUFFA - Y. MADAY - F. RAPETTI (*)

Sunto. – In questo lavoro viene considerato il modello bidimensionale completo di si-
stema elettromagnetico in movimento: le equazioni dei campi elettromagnetici so-
no accoppiate con quelle della meccanica e il sistema così ottenuto risulta essere
non lineare nell’accoppiamento. Vengono analizzate la buona posizione del proble-
ma e la regolarità della soluzione continua; si propone inoltre uno schema di di-
scretizzazione di tipo esplicito. Si dimostra la buona posizione e la convergenza
della formulazione discreta e si propongono alcuni test numerici comprovanti la
convergenza dello schema proposto. L’algoritmo fornisce la simulazione completa
di un freno magnetico e permette di mettere in evidenza i fenomeni non lineari le-
gati al suo funzionamento.

Introduction.

In a coupled magneto-mechanical system, the forces due to the magnetic field
make the free structure move and the resulting variation in the structure con-
figuration modifies the distribution of the magnetic field and consequently of the
induced forces. Therefore, the interaction between magnetic and mechanical
phenomena cannot be simulated independently (see also Gaspalou et al., 1995).
The modeling of this coupled system requires to take simultaneously into account
the electromagnetic and mechanical equations. To carry out such a coupling, it is
necessary to compute the global magnetic force acting on the moving part of the
system, through the numerical evaluation of the magnetic field. As an example,
we study a system composed of two solid parts: the stator, which stands still, and
the rotor, which can rotate around its rotation axis.

The algorithm we consider is based on an «explicit» coupling procedure: at
each time step, the magnetic force obtained from the field solution is inserted
into the mechanical equation to compute the displacement. The latter is impo-
sed to the moving part for the next step of the magnetic field calculation. In
presence of a friction coefficient, the procedure naturally ends when the free
part has reached its equilibrium position corresponding to a zero magnetic
torque. In this model, the time step has to be small enough so that the induced

(*) Comunicazione presentata dal primo autore a Napoli in occasione del XVI Con-
gresso U.M.I.
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force does not change too much from one step to the next one. If it is not the
case, a procedure to check the convergence of either the force or the displace-
ment is necessary (see Vassent et al., 1991).

The magnetic force is obtained from the generalized Lorentz law and the ma-
gnetic field is computed by applying the sliding mesh mortar finite element strate-
gy to the magnetic vector potential formulation of the eddy currents problem, as
proposed in Buffa et al., 1999 (see Bernardi et al., 1994 for more details on the mor-
tar element method). To avoid the presence of a convective term in the equations,
we work in Lagrangian variables: the problem equations are solved in their own
frames, that are one fixed with the stator and the other rotating with the rotor. We
remark that in a Lagrangian approach, the mesh nodes always coincide with the
same material particles throughout the movement. Due to this feature, even if the
stator and the rotor meshes have been generated in such a way that the two sets of
nodes lying on the sliding interface coincide at the initial configuration, it could not
be the case when the rotor part has moved. The mortar method is a non-confor-
ming non-overlapping domain decomposition technique which allows for indepen-
dent (and thus, in general, non-matching at the interface) meshes in the stator and
rotor domains. The idea of the mortar method is to weakly impose the transmission
conditions at the sliding interface by means of Lagrangian multipliers. The key ar-
gument is the explicit construction of a particular Lagrangian multipliers space in
order to ensure good properties on the discrete problem. In the context of the node
finite element method, the space of Lagrangian multipliers is the space of the shape
functions’ traces at the sliding interface. The possibility of using such a method al-
lows us to work with a whole mesh composed of a fixed part and a rotating one, wi-
thout imposing constraints between the mesh element size at the interface and the
rotation angle associated with each time step. In the simulation of a coupled ma-
gneto-mechanical, this is important since at each time step the rotation angle is not
constant but depends on the magnetic torque.

1. – The continuous model problem.

In this section, we present the mathematical model we consider to study
the proposed coupled magneto-mechanical moving system. Eddy currents
problems are mathematically described by Maxwell equations where the di-
splacement currents are neglected with respect to the conducting ones. In the
two dimensional transverse magnetic formulation of such problems, the ma-
gnetic vector potential A4 (0 , 0 , u(x , t) ) satisfies, in the (x , y) section V of a
cylinder of R3 , the scalar equation

s¯t u2div (n grad u)4 jz(1)
where jz is the non-zero third component of the source currents density, s the
electric conductivity and m4n21 the magnetic permeability. The presence of a
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Fig. 1. – The computational domain V4V 1NV 2 . The iterative «explicit» procedure.

magnetic field in the considered system generates an induced electromagnetic
force which acts as a torque on the moving part V 1%V (see Fig. 1). The motion
equation of this part around its center is described by

J
dv

dt
1kv4Tm , v4

du

dt
(2)

where v4v(t) is the rotation speed, u4u(t) the rotation angle, Tm4Tm (t)
the acting global magnetic torque, J the inertial momentum per unit lenght of
V 1 and k the friction coefficient.

If we denote, for any time tD0, by rt : V 1KV 1 the rotation operator
which rotates the domain V 1 with an angle equal to u4u(t) and r2t the inver-
se operator, the coupled system reads

s (x)
¯ui

¯t
(x, t)2div (n grad ui)(x, t)4jz (x, t)

u1 (r2t x , t)4u2 (x , t)

n(r2t x)
¯u1

¯n
(r2t x , t)4n(x)

¯u2

¯n
(x , t)

u2 (x, t)4u0 (x) (¯V)D3]0, T[ ;
¯u2

¯n¯V

40

u(x , 0 )40

V i3]0, T[ (i41, 2)

G3]0 , T[

G3]0 , T[

(¯V)N3]0 , T[

V 1NV 23]0(

(3)

(0 , 0 , Tm )4s
V 1

rRkg2sg0, 0 ,
¯u1

¯t
h1(0 , 0 , jz )hRcurl (0 , 0 , u1 )l dV

J
dv

dt
1kv4Tm , v4

du

dt
]0 , T[

v(0)40 , u(0)4u 0

(4)
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where n is at every x�G the unit vector normal outward to V 2 , n¯V the unit
vector normal outward to V and ui (i41, 2 ) are the restrictions to V i of the
third component of the magnetic vector potential. We remark that for the stu-
died example, s and jz are supposed equal to zero in V 24V0V 1 . We set
H s (V)4H s (V 1NV 2 ) for any sF1.

The following theorem holds:

THEOREM 1.1. – Let Jz�H 1 (0 , T , L 2 (V 1 ) ). The system of equations (3)
admits at least one solution (u , Tm , v)�L 2 (0 , T , H 2 (V) )O
L Q (0 , T , H 1 (V) )3L 2 (0 , T)3C 0 (0 , T). For J large enough the solution is
also unique.

PROOF. – Let T�R and G : C 0 (0 , T)KC 0 (0 , T) be the open feedback ope-
rator, that associates to every angular speed v�C 0 (0 , T), the angular speed
v calculated by means of (4) when the torque Tm i s computed by means of the
solution u of (3) associated with the speed v.

Using the results obtained in Buffa et al., 1999 we know that the system (3)
admits a unique solution u�L 2 (0 , T , Ut )OC 0 (0 , T , L 2 (V) ). Now, thanks to
the regularity results proved in Bouillault et al., 2000 in the «open feedback»
system, for any v�C 0 (0 , T), the integral in the equation in (4) is meaningfull
and moreover the resulting torque Tm4Tm (t) belongs to L 2 (0 , T).

Using finally the second and third equations in (4) we find the angular
speed v which turns out to belong to H 1 (0 , T). Moreover the following stabili-
ty holds:

VvVH 1 (0 , T)GCVv VC 0 (0 , T) .

Since the embedding H 1 (0 , T) %KC 0 (0 , T) is compact, the operator G is
also compact. By applying the Schauder fixed-point theorem, we deduce that G

has at least one fixed point which corresponds to a solution of the system (3).
It is not difficult to see that, when J is large enough, the operator G is also

contractive and, by applying the Banach fixed-point theorem, we have that
such a fixed point is also unique. r

2. – Discretization of the coupled system.

As in Buffa et al., 1999, we discretize the following functional space, that is
defined at each time tF0:

(5) Ut4]u»4 (u1 , u2 )�H 1 (V 1 )3H 1
0, ¯V D

(V 2 )

such that u1 (r2t x)4u2 (x) a.e. x�G( .

Let Xi , h be finite element spaces of degree one over V i (i41, 2) and Mh
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be the space of traces over G of elements of, say, X2, h . The choice of Mh as the
space of traces over G of elements of X1, h provides a different but similar
method.

To solve problem (3-4) at each time step, we use an «explicit» coupling pro-
cedure (see Fig. 2): given a computed solution consisting in uh

n , T n
mh at time

t n4ndt and u n11
h at time t n11 , we compute the magnetic field uh

n11 belonging
to the discrete version of Ut

0 at time t n11 given by

(6) U0
h (n11)4mvh4 (v1, h , v2, h )�X1, h3X2, h such that

s
G

(v1, h (r2t n11 , h x)2v2, h (x) ) W h (x) dG40 (W h�Mhn
where r2t n11 , h is the rotation operator relative to u n11

h , by solving

(7)

(n40, R , N21, find uh
n11� U0

h (n11) such that (vh
n11� U0

h (n11):

s
C

s
uh

n112uh
n

dt
vh

n11 dV1!
i41

2

s
V i

n˜uh
n11 Q˜vh

n11 dV4s
V 2

j n11
z vh

n11 dV ,

where C denotes the conducting region (sc0).
Once we have u n11

h from system (7), we can compute the associated discre-
te torque by:

(0 , 0 , Tmh
n11 )4

s
V 1

grRkg2sg0, 0 ,
uh

n112uh
n

dt
h1 (0 , 0 , jz

n11 )hlRcurl (0 , 0 , uh
n11 )h dV .

Concerning the discretization in (2) of the angular speed, we choose the sa-
me time step, dt , as for the time discretization of the magnetic equation and
propose an implicit first order Euler scheme that reads

Find w n11
h , n40, R , N21 such that J

w n11
h 2w n

h

dt
1kw n11

h 4T n11
mh .

For what concerns the angle u n12
h , we use an explicit first order Euler scheme

of the form

u n12
h 4u n11

h 1dtw n11
h

and we can go back to problem (7) in the new space U0
h (n12). In the following

Theorem, based on convergence results proven in Bouillault et al., 2000, and in
Buffa et al., 1999, we state that this explicit algorithm has an optimal conver-
gence rate:
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THEOREM. – Under suitable regularity assumptions on the solution
(u , v , Tm ) of ((3)-(4)), the following error estimate holds:

Vu n2u n
h V

2
0, V1 !

i41

n

dtVu i2u i
h V

2
x1Nw n2w n

h N21Nu n11
h 2u n11N21

!
i41

n

dtNTm
n2T n

mh N2Gc(h 21dt 2 )

where the constant c depends neither on h nor on dt (here VuV2
x4Vu1 V

2
1, V 1

1
Vu2 V

2
1, V 2

).

In order to write the discrete version of (7) in a matrix form, we need to
construct a basis of the approximation space U0

h . As it is standard with finite
element methods, the elements of the chosen basis are built from the node ele-
ment basis functions. At the nodes lying on G , the basis elements are linked
through the matching condition stated in (6). At the algebraic level, this invol-
ves a rectangular matrix QA that allows for coupling at the sliding interface the
information coming from the stator and rotor domains at time t (see Rapetti et
al., 1999, for more details). The matrix form of the fully discrete problem (7)
has the following layout

QAn11
T gK1

M

Dt
h QAn11 Un114QAn11

T M

Dt
QAn Un1QAn11

T QAn Jn(8)

where Jn4 (0 , JG
1, n , JInt

1 , n ) and Un114 (UInt
2 , n11 , UG

1, n11 , UInt
1 , n11 ) are the real

degrees of freedom. Here we have defined Ui , n11
Int as the vector at time tn11 of

the unknown magnetic potential values at the mesh nodes internal to domain
V i ; similarly, Ui , n11

G is the vector at time tn11 of the unknown magnetic poten-
tial values at the mesh nodes lying on G and belonging to V i . We denote by T

the transpose operator, K and M , respectively, the classical stiffness and mass
matrices and by QAn11 , the coupling matrix at time tn11 . We remark that the
coupling matrix has to be rebuilt at each time step (i.e. at each new rotor posi-
tion) whereas the matrices K , M do not depend on time. The final system
(2.10) has a symmetric and positive matrix and can be solved iteratively by a
Conjugate Gradient procedure.

3. – Accuracy of the method.

The accuracy of the sliding-mesh mortar element method, when applied to
compute the induced currents in a stator-rotor system as the one considered
here, has been already analyzed in Buffa et al., 1999. In this subsection we are
going to analyze the accuracy of the same method when applied to the coupled
problem. The concerned quantities are the magnetic torque Tm , the rotation
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angle u and the angular speed v . For these three quantities, we will make a
comparison between the «exact value» (v) and the one (vh) numerically compu-
ted with different time steps on different meshes, with the fixed value s4107

S/m. The term «exact value» actually refers to a numerical value computed on
the finest mesh with the smallest time step.

Temporal error: it is given by

Vv2vh VLQ ( [0 , T] )4 sup ]Nv(t)2vh (t)N , t� [0 , T]( .(9)

The considered time steps are dt42s dt1 with s40, 1 , 2 , 3 , 4 and dt14
2. 51024 s and all simulations are led on an unstructured mesh. In Figure 2 are
reported the time errors on the position of the rotor and on the magnetic tor-
que with respect to the time step. Both figures show that the error depends li-
nearly on the time step. Results confirm the theoretical linear dependence of
the torque value on the time step.

Spatial error: analyzed for the magnetic torque only, it shows the influen-
ce of the mesh triangles size h on the torque values. All simulations have been
done with dt4dt1 and using the same stator mesh. The considered rotor me-
shes have triangles of size h42r h1 with h145 Q1023 m and r422, 21, 0, 1, 2.
The analysis that has been done in Section 3 on the coupled problem is related
to the use of curved finite elements. Since we have used more simple «flat» fi-
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Fig. 2. – Temporal error on the rotor position u (left) and on the magnetic torque Tm
(right).
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nite elements we are facing additional errors. The first one is related to the re-
solution of the magnetic problem. The corresponding error analysis is perfor-
med in Buffa et al., 1999. The second one is related to the computation of the
torque itself when the domain of integration is replaced by the polygon compo-
sed of all mesh triangles included in V 1 . The difference of the surface integral
is naturally of order O(h 2 ). The third source of error is due to the geometrical
nature of the parameter distribution that is also not well represented by the
triangulation: the domain when sD0 may be larger or smaller than the exact
one. This is also a surface contribution that involves again an error of O(h 2 ).
These arguments are in agreement with the torque behavior displayed in Fi-
gures 3. In Figure 3 (left) are presented the torque values, computed on three
rotor meshes (corresponding to h1 , 2h1 , 4h1), as a function of the rotation
angle. Looking to Figure 3 (left), we can see that, for a given rotor position
(about 307 for example), the distance (i.e. the error in the L Q-norm) between
the computed torque values on the meshes with elements of diameters 4h1 and
2h1 is roughly twice that between the computed torque values on the meshes
with elements of diameters 2h1 and h1 . This asymptotic first order accuracy in
space of the proposed method can be observed also in Figure 3 (right) where
the relative error on the magnetic torque for the rotor position corresponding
to u430 7 is displayed, in logarithm scale, with respect to the mesh element si-
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(left). Spatial error on the magnetic torque value Tm for u430 7 . The analytic value Ta is
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1023 m (right).
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ze h . The «analytical» value Ta is given by Th1 /4 , i.e. the one computed on the fi-
nest rotor mesh.

CONCLUSIONS. – The proposed method, through a weak coupling at the sli-
ding interface G that allows for non-matching grids at the interface, is well
suited for treating such a magneto-mechanical problem. It has several advan-
tages (flexibility, symmetry, robustness, accuracy, R) with respect to other
approaches and it provides an optimal approximation of the solution, as proved
in Bouillault et al., 2000.
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