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On the Onset of Convection in Porous Media:
Temperature Depending Viscosity.

F. CAPONE (*)

Sunto. – Si considera l’insorgere della convezione naturale in un mezzo poroso (Hor-
ton-Rogers-Lapwood problem), assumendo che la viscosità del fluido dipenda dalla
temperatura. Adoperando il metodo diretto di Liapunov, si effettua l’analisi della
stabilitá non lineare della soluzione di conduzione per i modelli di Darcy e di
Forchheimer.

1. – Introduction.

As it is well known, the convective flow in porous media, has a notable rele-
vance in many geophysical and industrial applications: the predictions of
groundwater movement in aquifer, nuclear engeneering etc. For this reason
— in the past as nowadays — the aforesaid problem has attracted the atten-
tion of many writers (see, for instance, [1, 9, 10, 13]).

There has been a difference of opinion as to what is the appropriate form of
the equation of motion. In several papers the flow in a porous medium is go-
verned by the Darcy’s law, i.e.

˜p42
m

k
v .(1.1)

But, when the motion is not slow we have to consider inertial effects, too. Ac-
cording to [9, 10], the appropriate modification to Darcy’s law is:

˜p42
m

k
v2cF k 21/2 r f NvNv ,(1.2)

to which we refer as the Forchheimer equation.
Another thing one has to consider is that for a lot of real fluids the viscosity

varies strongly with temperature and hence is not realistic to consider the vi-
scosity as a constant (in the setting of porous medium see [11]). In particular,

(*) Comunicazione presentata a Napoli in occasione del XVI Congresso U.M.I.
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liquids, generally, has a viscosity exponentially depending on the temperature
[2, 3, 4, 5].

The aim of this article is to perform a nonlinear stability analysis of natural
convection in a porous medium, via the Liapunov direct method, when the vi-
scosity of the fluid exhibits the following constitutive law [3]:

m4m 0 f [g(T2T0 ) ] , (m 04const .D0)(1.3)

with m 0 the dynamic viscosity at the reference temperature T0 and f a convex,
nonincreasing, positive function of the temperature T. In particular we shall
analyze the case in which

f [g(T2T0 ) ]4exp [2g(T2T0 ) ](1.4)

where g is a positive constant [2, 5].
The scheme of the paper is as follows. In Section 2 we discuss the various

forms of the momentum equation related to the theory of flow in porous media.
Then, in Section 3, we focus the energy equation that is valid in a porous ma-
terial. In Section 4, on considering both the Darcy and Forchheimer models,
we write the perturbation equations to the nonconvective stationary solution.
Finally in Sections 5 and 6, we study the nonlinear stability of the motionless
state — via the Liapunov direct method — for Darcy and Forchheimer mo-
dels, respectively.

2. – Momentum equation.

In this section we discuss some of the various forms of the momentum
equation related to the theory of flow in porous materials (1). The theory of po-
rous flow is longely based on a generalization of the empirical Darcy law which
express a proportionality between the flow rate and the applied pressure dif-
ference. The Darcy law for a slow flow in homogeneous isotropic material, un-
der the gravity action, leads to the following equation:

˜p42
m

k
v1rg(2.1)

where m is the viscosity of the fluid, p is the pressure, k is the permeability of
the medium, v is the seepage velocity (2), and rg is the gravity.

(1) Porous material means a material consisting of a solid matrix with interconnec-
ted void spaces (pores), through which one or more fluids flow.

(2) The seepage velocity v means the fluid velocity measured relative to axes fixed in
porous solid. We shall assume that the seepage velocity v is related to the pore-average
velocity V by the Dupuit-Forchheimer equation [9, 10]

v4FV(2.2)

in which F is the (constant) porosity, with F� (0 , 1 ).
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Let us observe that the Darcy law (2.1) is linear in the seepage veolocity v.
This law is valid when v is «sufficiently small», but when v increases, accor-
ding to [9, 10], the appropriate modification to Darcy’s equation is the
following

˜p42
m

k
v1rg2cF k 21/2 r f NvNv(2.3)

in which cF is a dimensionless form-drag constant. We shall refer to the last
term of (2.3) as the Forchheimer term and to the equation (2.3) as the For-
chheimer model.

Many Authors (see, for instance, [9, 10]) as extension of the Darcy law, in-
stead of (2.3), have used the following equation

r fk ¯V

¯t
1 (V Q˜) Vl42˜p2

m

k
v1rg(2.4)

which, on using Dupuit-Forchheimer relationship (2.2), becomes

r fk F21 ¯v

¯t
1F22 (v Q˜) vl42˜p2

m

k
v1rg .(2.5)

The equation (2.5) holds unless the porosity F is very large (close to unity),
otherwise one has to drop the convective term

F22 (v Q˜) v

and has to consider the following equation

r f

F

¯v

¯t
42˜p2

m

k
v1rg .

Finally, an alternative to the Darcy’s equation is the well-known Brinkma-
n’s law. With inertial terms omitted, the Brinkman’s law is the following

˜p42
m

k
v1mA Dv1rg

in which mA is the effective viscosity (3).

3. – Energy equation.

In this section we focus the equation expressing the first law of thermo-
dynamics in a porous medium [9, 10]. In particular, we shall consider the sim-

(3) Brinkman set m and mA equal to each other, but in general they are only approxi-
mately equal.
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ple situation of an isotropic medium, in which radiative effects, viscous dissipa-
tion and the work done by pressure changes are negligible. Further we shall
assume that

(i)

Ts4Tf4T(3.1)

being Ts and Tf the temperature of the solid and fluid phases, respectively, i.e.
we shall suppose the presence of a local equilibrium;

(ii) there is not net heat transfer from one phase to the other.

Under the assumptions (i) and (ii), the energy equation for the solid phase
and for the fluid phase are respectively:

(12F)(rc)s
¯T

¯t
4 (12F) ˜ Q (ks ˜T)1 (12F) q 8s(3.2)

F(rcp )f
¯T

¯t
1 (rcp )f v Q˜T4F˜ Q (kf ˜T)1Fq 8f(3.3)

in which: F is the porosity of the medium; the subscript s and f refer to the
solid and to the fluid phases, respectively; c is the specific heat of the solid; cp

is the specific heat of the fluid at constant pressure; k is the thermal conducti-
vity; q 8 is the heat production per unit volume; v is the seepage velocity. On
adding the equations (3.2) and (3.3), we obtain

(rc)m
¯T

¯t
1 (rcp )f v Q˜T4˜ Q (km ˜T)1q 8m(3.4)

with

(rc)m4 (12F)(rc)s1F(rcp )f

km4 (12F) ks1Fkf

q 8m4 (12F) q 8s 1Fq 8f

that are, respectively, the overall heat capacity per unit volume, the overall
thermal conductivity and the overall heat production per unit volume of the
medium.

On setting

A4
(rc)m

(rcp )f

(D0)(3.5)

k14
km

(rcp )f

(3.6)
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if q 8m40, i.e. if there is no heat production, the equation (3.4) becomes

A
¯T

¯t
1v Q˜T4˜ Q (k1 ˜T) .(3.7)

4. – Statement of the problem.

Let us consider an infinite horizontal layer saturated with a homogeneus
fluid under the action of a vertical gravity field g42gk in which an adverse
temperature gradient is mantained. The fluid is contained in a porous medium
between the planes z40 and z4d with assigned temperatures T(0)4T11
DR and T(d)4T1 , with DRD0.

Taking into account the law (1.3) for the dynamic viscosity, with f�C 2 (R)
and:

fD0 , f 8G0 , f 9F0 ,(4.1)

applying the Oberbeque-Boussinesq approximation [6, 7, 9] and on taking into
account the equation (3.7) with constant overall thermal conductivity k1 , the
Darcy-Oberbeque-Boussinesq equations (DOB) [5] and Forchheimer-Oberbe-
que-Boussinesq equations (FOB) [4] are, respectively

DOB Equations

.
`
/
`
´

˜p42
m 0

k
f [g(T2T0 ) ] v1gr 0 a(T2T0 ) k

˜ Qv40

ATt1v Q˜T4k1 DT ,

(4.2)

FOB Equations

.
`
/
`
´

˜p42
m 0

k
f [g(T2T0 ) ] v1gr 0 a(T2T0 ) k2cF r 0 k 21/2 NvNv

˜ Qv40

ATt1v Q˜T4k1 DT ,

(4.3)

where: z is the upward vertical, v is the seepage velocity, r 0 is the density of
the fluid at temperature T0 , p is the reduced pressure, m 0 is a reference dy-
namic viscosity, g is the gravity, a is the thermal expansion coefficient, k is the
permeability, cF is a dimensionless form-drag constant, k1 is the overall ther-
mal conductivity.
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To the systems (4.2) and (4.3) we add the boundary conditions

T(z40)4T11DR , T(z4d)4T1(4.4)

with DRD0.
On introducing the following dimensionless quantities

t4 t *
d 2

k1

, p4p *
m 0 k1

k
, x4x* d , v4v*

k1

d
, T4T * DR

R 24
agDR dkr 0

k1 m 0

, G4gDR , T04T0* DR , T14T1* DR , J4
cF r 0 k1 k 1/2

m 0 d

where, in particular, R is the Rayleigh number, J and G are physical parame-
ters, dropping all asterisks, the dimensionless form of the systems (4.2) and
(4.3) in the strip R23 [0 , 1 ] are, respectively

DOB Equations

.
/
´

˜p42f [G(T2T0 ) ] v1R 2 (T2T0 ) k

˜ Qv40

ATt1v Q˜T4DT ,

(4.5)

FOB Equations

.
/
´

˜p42f [G(T2T0 ) ] v1R 2 (T2T0 ) k2JNvNv

˜ Qv40

ATt1v Q˜T4DT .

(4.6)

To the systems (4.5) and (4.6) we append the boundary conditions

T(z40)4T111, T(z4d)4T1 .(4.7)

The problems (4.5), (4.7) and (4.6), (4.7) admit the following nonconvecting sta-
tionary solution m0 (v40 , T42z1T111, p(z) ), where p(z) is such that

dp(z)

dz
4R 2 (T(z)2T0 ) .

Indicating by Ru4 (Ru , Rv , Rw), u , Rp respectively the perturbation to the
velocity field, the temperature field and the pressure field, the equations go-
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verning the perturbation in the strip R23 [0 , 1 ] are:

DOB Equations

.
/
´

˜p42f [G(j2z)1Gu] u1Ruk

˜ Qu40

Au t4Du1Rw2Ru Q˜u

(4.8)

FOB Equations

.
/
´

˜p42f [G(j2z)1Gu] u1Ruk2JRNuNu

˜ Qu40

Au t4Du1Rw2Ru Q˜u

(4.9)

with

j4T1112T0 .

To the previous system we append the following initial conditions

u(P , 0 )4u0 (P) , u(P , 0 )4u 0 (P)(4.10)

and boundary conditions:

w4u40 on z40, 1 .(4.11)

In the sequel we assume that the perturbation fields u , u and p are sufficien-
tly smooth, that they are periodic functions of x and y , of periods 2p/a1 , 2p/a2 .
We shall denote by V4 [0 , 2p/a1 ]3 [0 , 2p/a2 ]3 [0 , 1 ] the periodicity cell,
and a4 (a1

21a2
2 )1/2 the wave number, by aQb and V QV respectively the integral

and the L 2-norm on V . Finally, taking into account the fact that the stability
of m0 makes sense only in a class of solutions of (4.8), (4.10), (4.11) and (4.9)-
(4.11) in which m0 is unique, we exclude any other rigid solutions on requiring
that

aub4 avb40 .

5. – Nonlinear stability of m0 for the Darcy model.

In this section we study the nonlinear stability of m0 for the i.b.v.p. (4.8),
(4.10), (4.11) in which we consider the law (1.3)-(1.4) for the fluid viscosity [5].
By following the Liapunov direct method [7, 9, 13], we choose the following
Liapunov functional

V4
A

2
VuV2(5.1)
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and we evaluate the time derivative of V(t) along the solution of (4.8), (4.10),
(4.11). Then on taking into account the boundary conditions (4.11) and on ap-
plying the divergence theorem, the integration on the periodicity cell V leads to:

dV

dt
42Rauwb2 aexp [G(z2j)2Gu]NuN2 b2V˜uV2 .(5.2)

Then, on taking into account the a-priori estimate for temperature perturba-
tions proved in [5] and on setting

u14exp [2G(u011) /2] u

from (5.2) one has:

dV

dt
G2R exp [G(u011) /2]auw1 b2 aexp [G(z2j) ]Nu1N2 b2V˜uV2 ,(5.3)

in which u14 (u1 , v1 , w1 ), u04ess sup
V

[ (u 0 (P)1T(z)2T121)1 ](EQ) (4).

Now, by following the standard energy method, we set

1

RL

4max
H

I1

D1

,(5.4)

where

I142auw1 b , D14 aexp [G(z2j) ]Nu1N2D1V˜uV2

and H is the class of admissible kinematic perturbations, i.e.

H 4]u1 , u : ˜ Qu140; u1 , u are regular in x and y directions , of period

2p/a1 , 2p/a2 , satisfying (4.11) and such that D1EQ( .

The maximum (5.4) exists by virtue of the Rionero’s theorem [12].
From (5.3), by virtue of (5.4), we obtain

dV

dt
Gg R exp [G(u011) /2]2RL

RL
h D1 .(5.5)

The following nonlinear stability result holds true

(4) The function (u 0(P)1T(z)2T121)1 means the following truncated function

(u 0 (P)1T(z)2T121)14
.
/
´

u 0 (P)1T(z)2T121

0

u 0 (P)DT1112T(z)

u 0 (P)GT1112T(z) .
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THEOREM 1. – In the class of perturbations u(P , t) such that

u04ess sup
V

[ (u 0 (P)1T(z)2T121)1 ]EM(5.6)

where M is a positive constant, the condition

RERL exp [2G(M11) /2](5.7)

ensures the asymptotic, exponential, nonlinear stability of the conduction
solution m0 with respect to the V-norm, according to the following inequality

V(t)GV(0) exp yg R exp [G(M11) /2]2RL

RL
h tz , tF0 .(5.8)

Now, in order to determine the numbers RL involved in the stability condi-
tion (5.7), we have to solve the variational problem (5.4). To this end let us wri-
te the Euler-Lagrange equations that solve the problem (5.4), i.e.

.
/
´

˜v42 exp [G(z2j) ] u11RL uk

04Du1RL w1 ,
(5.9)

with v a Lagrange multiplier, to which we add the boundary condition (4.11).

REMARK 1. – Let us notice that, the Euler-Lagrange equations (5.9) coinci-
de with the linear version of the equations (4.8), under the hypothesis that the
principle of exchange of stabilities holds true. But, the validity of the princi-
ple of exchange of stabilities immediately follows from the symmetry of the li-
near operator L of the problem (4.8) with f [G(j2z) ]4exp [G(z2j) ] (5) [7].

(5) Let us consider the expression of the linear operator L of the system (4.8),
i.e.

L4
def

.
`
`
`
´

2exp [G(z2j) ]
0
0
0

2¯x

0
2exp [G(z2j) ]

0
0

2¯y

0
0

2exp [G(z2j) ]
R

2¯z

0
0
R
D
0

2¯x

2¯y

2¯z

0
0

ˆ
`
`
`
˜

.(5.10)

By inspection of the matrix (5.10), it immediately follows the symmetry of L with respect
to the L 2-scalar product.
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The coincidence between the Euler-Lagrange equations (5.9) and the li-
near version of the system (4.8) ensure that

RGRL

is a necessary and sufficient condition for the linear stability [6, 7].

REMARK 2. – On denoting by RE the critical value of nonlinear stability,
let us notice that from (5.7) we have

RE4RL exp [2G(M11) /2]

and hence

REERL ,

with RL the threshold of linear stability. However, let us underline that in
our result, when RKRE , is not request that the initial data become vani-
shingly small.

The numerical values of RL in terms of

R 2
CL4min

a 2
RL

2

are evaluated by using the compound matrix method and the golden section
search [13] and are listed in Table 1 [5].

TABLE 1. – Critical Rayleigh numbers against G , with j40.5

G R 2
CL

0
0.5
1
1.5
2
2.5
3

39.4784
39.4154
39.2203
38.8761
38.3574
37.6347
36.6803

The choice j41/2 means to choose T04 (2T111) /2 as reference tempera-
ture.

6. – Nonlinear stability of m0 for Forchheimer model.

In this section, by using the Liapunov direct method, we study the nonli-
near stability of the conduction solution m0 for the Forchheimer model on ta-
king into account the viscosity variation (1.3) [4]. To this end we introduce the
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Liapunov functional:

V4
A

2
VuV2(6.1)

and we evaluate the time derivative of V(t) along the solution of (4.9)-(4.11).
Then, by virtue of the boundary conditions (4.11), on applying the divergence
theorem and the Taylor’s formula, we find

A
dV

dt
GRI2D2Ga f 8 [G(j2z) ] uNuN2 b2JRaNuN3 b ,(6.2)

where:

I4
def

2auwb , D4
def
a f [G(j2z) ]NuN2 b1V˜uV2 .(6.3)

By following the standard energy method we set:

1

RE*
4max

H

I

D
,(6.4)

where

H 4]u , u : ˜ Qu40; u , u are regular in x and y directions , of period

2p/a1 , 2p/a2 , satisfying (4.11) and such that DEQ(

and the maximum (6.4) exists by virtue of the Rionero’s theorem [12].
From (6.2) and (6.4) it turns out:

A
dV

dt
G2Dg12 R

RE*
h1GmaNuNNuN2 b2JRaNuN3 b ,(6.5)

where m4
def

2f 8 [T(j21) ]F0. Now by means of Holder and Young inequali-
ties, and the well known imbedding inequality

g s
V

W 4 dVh1/4

GV˜WV ,

we obtain:

GmaNuNNuN2 bG (Gm)3 4

27J 2 R 2
VuVV˜uV21JRaNuN3 b .(6.6)

Further, by using (6.1), (6.3)2 , (6.5) and (6.6) we have:

A
dV

dt
G2 (Gm)3 4 k2

27J 2 R 2
D(t)[d2V 1/2 (t) ] ,(6.7)
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where

d4g12 R

RE*
h y(Gm)3 4 k2

27J 2 R 2
z21

.

Finally, by virtue of Poincaré inequality and (6.7), applying a recursive argu-
ment, the following theorem holds true:

THEOREM 2. – If RERE* and V(0)Ed 2 , then the basic motion is nonliner-
ly exponentially asimptotically stable and there exists a positive constant h
such that:

V(t)GV(0) exp ]2h[d2V(0)1/2 ] t( , tF0 .

THEOREM 3. – If RL* is the critical Rayleigh number of linear instability,
then

RL*4RE* ,(6.8)

and hence the condition RERL* is necessary and sufficient for linear
stability.

PROOF. – In order to prove (6.8) we observe that the linear operator L of
(4.9), i.e.

L4
def

.
`
`
`
´

D
0
0
0
R

0
0
¯x

¯y

¯z

0
¯x

2f [G(j2z) ]
0
0

0
¯y

0
2f [G(j2z) ]

0

R
¯z

0
0

2f [G(j2z) ]

ˆ
`
`
`
˜

(6.9)

is symmetric with respect to the L 2-scalar product. By virtue of this symme-
try, the coincidence (6.8) immediately follows [7].

In order to determine the critical Rayleigh number RL*, we have to solve
the variational problem (6.4). To this end, let us consider the Euler-Lagrange
equations that solve the variational problem (6.4), i.e.

.
/
´

2 f [G(j2z) ]22Gf 8 [G(j2z) ] wz4RE* D 1 u

2Du42RE* w ,
(6.10)

to which we append the boundary conditions (4.11). For many real liquids a
good approximation for the dynamic viscosity is (1.3) with f given by (1.4). In
this case, by using the compound matrix method and the golden section search
[13], we found the numerical values in terms of RCL*24min

a 2
RE*2 and they are li-

sted in Table 2.
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TABLE 2. – Critical Rayleigh numbers against G , with j40.5.

G RCL*2

0
1
2
3
4
8
8.1
8.2
8.3
8.4

39.4784
39.2203
38.3574
36.6803
34.0054
16.8315
16.4123
15.9988
15.5912
15.1897

Acknowledgements. This work has been performed under the auspices of
the G.N.F.M. of I.N.D.A.M. The author thanks gratefully profs. Rionero for
his helpful suggestions.

R E F E R E N C E S

[1] G. I. BARENBLATT - V. M. ENTOV - V. M. RYZHIK: Theory of fluid flows through na-
tural rocks, Kluwer Academic Publishers (1990).

[2] F. CAPONE - M. GENTILE, Nonlinear stability analysis of convection for fluids
with exponentially temperature-dependent viscosity, Acta Mechanica, 107 (1994), 53.

[3] F. CAPONE - M. GENTILE, Nonlinear stability analysis of the Bénard problem for
fluids with a convex nonincreasing temperature depending viscosity, Continuum
Mech. Thermodyn., 7 (1995), 297-309.

[4] F. CAPONE - M. GENTILE, On the influence of the Forchheimer term in convective
instabilities in porous media for fluids with temperature depending viscosity,
Rend. Circolo Mat. Palermo, Serie II, Suppl. 57 (1998), 91-95.

[5] F. CAPONE - S. RIONERO, Temperature dependent viscosity and its influence on the
onset of convetion in a porous medium, Rend. Acc. Sc. fis. mat. Napoli, vol. LXVI
(1999), 159-172.

[6] S. CHANDRASEKHAR, Hydrodynamic and hydromagnetic stability, New York, Do-
ver (1961).

[7] J. FLAVIN - S. RIONERO, Qualitative estimates for partial differential equations.
An introduction, Boca Raton, Florida: CRC Press (1996).

[8] D. D. JOSEPH - D. A. NIELD - G. PAPANICOLAU, Nonlinear equation governing flow
in a saturated porous medium, Water Resources Res., 18, 1049-1052 and 19 (1982),
591.

[9] D. D. JOSEPH, Stability of fluid motions I-II, Springer Tracts in Natural Philoso-
phy, vols. 27-28 (1976).



F. CAPONE156

[10] D. A. NIELD - A. BEJAN, Convection in porous media, Berlin Heidelberg New
York: Springer-Verlag (1992).

[11] Y. QIN - J. CHADAM, Nonlinear convective stability in a porous medium, Studies
In Appl. Math. (1996), 273-288.

[12] S. RIONERO, Metodi variazionali per la stabilità asintotica in media in magnetoi-
drodinamica, Ann. Mat. Pura Appl., 78 (1968), 339-364.

[13] B. STRAUGHAN, The energy method, stability and nonlinear convection, Berlin
Heidelberg New York Tokyo: Springer (1992).

Dipartimento di Matematica e Applicazioni «Renato Caccioppoli»,
Università di Napoli «Federico II», via Cintia - 80126 Napoli, Italia

e-mail: caponeHmatna2.dma.unina.it


