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Geometric Linear Normality for Nodal Curves
on Some Projective Surfaces.

F. FLAMINI (*) C. MADONNA

Sunto. – In questo lavoro si generalizzano alcuni risultati di [3] riguardanti la pro-
prietà di alcune curve nodali, su superficie non-singolari in P r , di essere «geome-
tricamente linearmente normali» (concetto che estende la ben nota proprietà di es-
sere linearmente normale). Precisamente, per una data curva C , irriducibile e do-
tata di soli punti nodali come uniche singolarità, che giace su una superfice S
proiettiva, non-singolare e linearmente normale, si determina un limite superiore
«sharp» sul numero dei nodi di C , d4d(C , S), di modo che C è geometricamente li-
nearmente normale se il numero dei suoi nodi è minore di d . Trattiamo alcuni
esempi di superficie che sono elementi di una componente del luogo di Noether-
Lefschetz delle superficie in P 3 oppure scoppiamenti di alcune superficie proiettive
cui il nostro risultato numerico si può applicare facilmente. Infine, per dimostrare
che il nostro bound è ottimale, nel paragrafo 3 vengono considerati inoltre esempi
di superficie «canoniche» intersezioni complete.

Introduction.

It is well-known that projective, non-singular complete intersection vari-
eties are linearly normal, i.e. they are not isomorphic projection of non-de-
generate varieties in higher dimensional projective spaces. From the cohomo-
logical point of view, a projective variety X%P r is linearly normal if and only if
h 1 (X , IX (1) )40, i.e. the linear series NOX (1)N cut out by the hyperplanes is
complete. This definition makes sense even if X is singular.

However, one can extend this notion by considering the geometric linear
normality property of singular varieties X%P r , having some restricted type
of singularities which can arise from projections. We state the following:

DEFINITION 1. – Let C be any reduced curve in P r . We say that C is geomet-
rically linearly normal if the normalization map n : CAKC cannot be factored
into a non-degenerate map CAKPN , with NDr , followed by a projection.

In [3], conditions for the geometric linear normality property of certain
nodal curves on smooth projective surfaces in P 3 have been studied. In this pa-
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per, we generalize Theorem 3.5 in [3] by proving the following main
theorem.

THEOREM 2. – Let S be a smooth, non-degenerate and linearly normal sur-
face in P r and let H be the general hyperplane section on S , such that
h 1 (S , OS (H) )40. Let C be a smooth, irreducible divisor on S. Suppose
that:

i) CHDH 2 ;

ii) (C22H)2D0 and C(C22H)D0;
iii) n(C , H)E4(C(C22H)24), where n(C , H) is the Hodge number of

C and H;

iv) dE (C(C22H)1kC 2 (C22H)2)O8.

Then, if C 8�NCN is a reduced, irreducible curve with only d nodes as sin-
gular points and if N denotes the 0-dimensional scheme of nodes in C 8, N im-
poses independent conditions to NC2H1KSN.

COROLLARY 1. – In the hypotheses of Theorem 2, if C is linearly normal in
P r then C 8 is geometrically linearly normal.

REMARK 1. – Before going into details, we want to spend a few words on the
cohomological conditions we gave in the statement of the theorem above. First
of all, the linear normality of S means that h 1 (S , IS (H) )40 and this is clearly
necessary since, otherwise, we can not hope to say too much on C 8 . On the
other hand, as it will be also clear from the proof of Theorem 1, the vanishing
condition h 1 (S , OS (H) )40 implies that the linear series Nv CA (n*(2H) )N is
complete, where v CA denotes the canonical sheaf on the smooth curve CA and
n : CAKC is the normalization map. More precisely, if C%S is a d-nodal curve
and if m : SAKS denotes the blow-up of S along the set of nodes of C , such that

B4 !
i41

d

Ei is the exceptional divisor in SA, the map m induces the normalization

map n : CAKC . The exact sequence defining v CA gives rise to

0K OSA (m*(KS2H)1B)K OSA (m*(KS1C2H)2B)K

Kv CA (n*(2H) )K0 .

We observe that h 1 (SA, OSA (m*(KS2H)1B))40 implies that the map

H 0 (SA, OSA (m*(KS1C2H)2B))KH 0 (CA, v CA (n*(2H) ))

is surjective. Indeed, observe that by Serre duality on SA, h 1 (SA, OSA (m*(KS2
H)1B))4h 1 (SA, OSA (KSA2m*(H) ))4h 1 (SA, OSA (m*(H) )) , so the vanishing fol-
lows from Leray spectral sequence and our assumption on h 1 (S , OS (H) ) .
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We remark that our main result gives purely numerical conditions on the
divisors C and H in order to determine the geometric linear normality proper-
ty for nodal curves on S . As we shall see in the sequel, these conditions can be
directly checked in many cases, where other criteria fail.

The paper consists of three sections. In Section 1, we recall some terminol-
ogy and notation. Section 2 contains the main theorem, whereas Section 3 is
devoted to examples, some of which show the sharpness of our results.

Acknowledgments. The authors wish to thank Prof. L. Chiantini and Prof.
E. Sernesi for their fundamental remarks and helpful discussions.

1. – Notation and preliminaries.

We work in the category of C-schemes. X is an algebraic m-fold if it is a re-
duced, irreducible and nonsingular scheme of finite type over C and of dimen-
sion m . If m41, then X is a smooth curve; m42 is the case of a nonsingular
surface. If X%Y are two algebraic schemes, IX/Y or IX , denotes the ideal sheaf
of X in Y . When Y is smooth, KY denotes a canonical divisor.

Let X be a m-fold and let E be a rank r vector bundle on X; ci (E) will denote
the i th-Chern class of E, 1G iGr . As usual, h i (2) »4dim H i (2).

If C is a curve, pa (C)4h 1 (OC ) denotes its arithmetic genus, whereas pg (C)
denotes its geometric genus, the arithmetic genus of its normalization. For a
smooth curve C , v C shall denote the canonical sheaf, i.e. v C` OC (KC ).

Let S%P r be a smooth, non-degenerate linearly normal surface, and H be
the hyperplane section on S; then,

h 0 (S , OS (H) )4h 0 (P r , OP r (H) )4r11 .(1)

DEFINITION 2. – Let S be a smooth projective surface and denote by Div (S)
the set of the divisors on S . An element B�Div (S) is said to be nef , if B QDF0
for each irreducible curve D on S (where Q denotes the intersection form on S;
in the sequel we will omit Q). A nef divisor B is said to be big if B 2D0.

REMARK 2. – We recall that, given a smooth surface S , N(S)1 usually de-
notes the ample divisor cone on S; thus F�N(S)1 if and only if F 2D0 and
FAD0 for any ample divisor A on S . By Kleiman’s criterion (see, for example,
[8]), a nef divisor B is in the closure of N(S)1 .

DEFINITION 3. – Let S be a smooth surface and C�Div (S). We denote by
n(C , H) the Hodge number of C and H ,

n(C , H) »4 (CH)22C 2 H 2 .
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By the Index Theorem (see, for example, [1] or [5]) this number is
non-negative.

REMARK 3. – Let S%P r be a smooth, non-degenerate linearly normal sur-
face and H be the hyperplane section on S . Let C�Div (S) be an effective divi-
sor. Suppose that C is smooth, non-degenerate and such that C2H big and
nef. Clearly h 0 ( OS (H2C) )40, hence we have the following exact se-
quence

0KH 0 (S , OS (H) )KH 0 (C , OC (H) )KH 1 (S , OS (H2C) )KR

By Serre duality, h 1 (S , OS (H2C) )4h 1 (S , OS (KS1C2H) ) and, by the
Kawamata-Viehweg vanishing theorem (see, for example, [11]), this equals 0.
Hence, by (1), it follows

h 0 (C , OC (H) )4h 0 (S , OS (H) )4r11 ,(2)

so we get that C is linearly normal.
We recall the following:

DEFINITION 4. – We say that a linear system on a surface is a Bertini linear
system if its general element is smooth and irreducible.

DEFINITION 5. – Let S be a smooth projective surface. A rank 2 vector bun-
dle E on S is said to be Bogomolov-unstable if there exist M , B�Div (S) and a
0-dimensional scheme Z (possibly empty) with the following exact se-
quence

0K OS (M)K E K IZ (B)K0(3)

and moreover (M2B)�N(S)1 .

REMARK 4. – We recall that E is Bogomolov-unstable when c1 (E)22
4c2 (E)D0 (see [2] or [10]).

2. – Geometric linear normality on some projective, non-degenerate and
linearly normal surfaces.

In this section we discuss the problem of geometric linear normality for
nodal curves on a smooth projective surface, which is linearly normal and sat-
isfies a suitable cohomological condition (see Remark 1). More precisely, we
characterize the geometric linear normality of a nodal curve C , in a Bertini lin-
ear system, in terms of its set of nodes.
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THEOREM 1. – Let S be a smooth, non-degenerate and linearly normal sur-
face in P r such that h 1 (S , OS (H) )40. Let NDN be a Bertini linear system on
S , whose general element is supposed to be linearly normal in P r . Let C�NDN
be an irreducible curve with only d nodes as singular points. Then C is geo-
metrically linearly normal if and only if the set of nodes, N , imposes inde-
pendent conditions to the linear system ND1KS2HN .

PROOF. – Let D be the general member of the linear system NDN . By the
linear normality hypothesis and by Riemann-Roch, we have

h 1 (D , OD (H) )4 (r11)2deg (D)1pa (D)21 ,

hence, by Serre duality and by adjunction on S , we get

h 0 (D , OD (D1KS2H) )4 (r11)2deg (D)1pa (D)21 .(4)

Now, let C�NDN be a curve with only d nodes as singularities. Denote by

m : SAKS the blow-up of S along the set of nodes of C , N , and let B4 !
i41

d

Ei be

the exceptional divisor in SA. The blow-up induces the normalization map
n : CAKC . By adjunction theory,

v CA4 OCA (KSA1CA)4 OCA (m*(KS1C)2B)4 OCA (n*(KS1C)(2NA) ) ,(5)

where OCA (NA)4 OCA (B) is a divisor of degree 2d on CA, formed by the points
which map to the nodes of C . From Riemann-Roch on CA, it follows that

h 1 (CA, OCA (n*(H) ))4h 0 (CA, OCA (n*(H) ))2deg (C)1pa (C)212d .

By using (5) and the fact that CAD on S , we get

(6) h 0(OCA(n*(KS1D2H)(2NA)))4h 0(OCA(n*(H)))2deg (C)1pa(C)212d .

Observe that h 0 (CA, OCA (n*(H) ))4r11 if and only if

h 0 (CA, OCA (n*(KS1D2H)(2NA) ))4 (r11)2deg (C)1pa (C)212d .

By using (4) and the fact that the adjunction on S is independent from the cho-
sen element in NDN , we obtain

(7) h 0 (CA, OCA (n*(H) ))4r11 ` h 0 (CA, OCA (n*(KS1D2H)(2NA) ))4

h 0 (C , OC (D1KS2H) )2d .

Now, we use our assumption h 1 (S , OS (H) )40. It implies, by duality on S ,
that

h 0 (S , OS (D1KS2H) )2h 0 (S , OS (KS2H) )4h 0 (C , OC (D1KS2H) )
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whereas, on SA,

h 0 (SA, OSA (m*(KS1D2H)2B))2h 0 (SA, OSA (m*(KS2H)1B)4

h 0 (CA, OCA (n*(KS1D2H)(2NA) )) ,

since, by Leray spectral sequence, h 1 (OSA (m*(KS2H)1B))4h 1 ( OS (H) )4
0. Substituting in (7), it gives

h 0 (OCA (n*(H) ))4r11 ` h 0 (SA, OSA (m*(KS1D2H)2B))4

h 0 (S , OS (D1KS2H) )2d .

The claim follows from the fact that h 0 (SA, OSA (m*(KS1D2H)2B))4
h 0 (S , IN/S (KS1D2H) ) . r

For what concerns the geometric linear normality problem, by considering
Bogomolov unstable vector bundles on S we can obtain an upper-bound d u on
the number of nodes such that if C has at most d u21 nodes, then it is geomet-
rically linearly normal. Using the procedure of [4], we can prove the following
result.

THEOREM 2. – Let S be a smooth, non-degenerate and linearly normal sur-
face in P r such that h 1 ( OS (H) )40. Let C be a smooth, irreducible divisor on
S . Suppose that:

i) CHDH 2 ;

ii) (C22H)2D0 and C(C22H)D0;

iii) n(C , H)E4(C(C22H)24) , where n(C , H) is the Hodge number of
C and H;

iv) dE (C(C22H)1kC 2 (C22H)2)O8.

If C 8�NCN is a reduced, irreducible curve with only d nodes as singular
points and if N denotes the 0-dimensional scheme of nodes of C 8 , then N im-
poses independent conditions to NC2H1KSN .

PROOF. – By contradiction, assume that N does not impose independent
conditions to NC2H1KSN . Let N0%N be a minimal 0-dimensional subscheme
of N for which this property holds and let d 04NN0N . This means that
h 1 (S , IN0

(C2H1KS ) )c0 and that N0 satisfies the Cayley-Bacharach condi-
tion (see, for example [7]). Therefore, a non-zero element of H 1 ( IN0

(C2H1
KS ) ) gives rise to a non-trivial rank 2 vector bundle E �Ext 1 ( IN0

(C2H), OS )
fitting in the following exact sequence

0K OSK E K IN0
(C2H)K0 ,(8)
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with c1 (E)4C2H and c2 (E)4d 0 hence

c1 (E)224c2 (E)4 (C2H)224d 0 .(9)

By iv)

(C2H)224d 0F (C2H)224d4C 222CH1H 224dDH 2D0 ,

since d 0Gd thus E is Bogomolov-unstable (see Definition 5 and Remark 4),
hence h 0 ( E(2M) )c0. Twisting (8) by 2M , we obtain

0K OS (2M)K E(2M)K IN0
(C2H2M)K0 .(10)

We claim that h 0 ( OS (2M) )40; otherwise, 2M would be an effective divi-
sor, therefore 2MAD0, for each ample divisor A . From (3), it follows that
c1 (E)4M1B , so, by (3) and (8),

M2B42M2C1H�N(S)1 .(11)

Thus

MHD
(C2H)H

2
;(12)

next by i) it follows that H(C2H)D0, hence 2MHE0.
The cohomological exact sequence associated to (10) allows us to deduce

that there exists a divisor D�NC2H2MN s.t. N0%D and s.t. the irreducible
nodal curve C 8�NCN , whose set of nodes is N , is not a component of D . Other-
wise, 2M2H would be an effective divisor, whereas, by (12), we get

H(2M2H)42H 22HME2H 22
(C2H) H

2
42

(C1H) H

2
E0 ,

since H(C1H)4 (C2H) H12H 2D0.
Next, by Bezout’s theorem

C 8D4C 8 (C2H2M)F2d 0 .(13)

On the other hand, taking M maximal, we may further assume that the gener-
al section of E(2M) vanishes in codimension 2 . Denote by Z this vanishing-lo-
cus, thus, c2 ( E(2M) )4deg (Z)F0; moreover,

c2 ( E(2M) )4c2 (E)1M 21c1 (E)(2M)4d 01M 22M(C2H) ,

which implies

d 0FM(C2H2M) .(14)
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Applying the Index theorem to the divisor pair (C , 2M2C1H), we get

C 2 (2M2C1H)2G (C(C2H)22C(C2H2M) )2 .(15)

Note now that, from hypothesis i) and the second one of ii) it follows that
C(C2H)D0, since C(C22H)D0 hence C 22HCDHCD0. In the same way
we find C 2D0. Since C is irreducible, this also implies that C is a nef divisor.
From (13) and from the positivity of C(C2H), it follows that

C(C2H)22C(C2H2M)GC(C2H)24d 0 .(16)

We observe that the left side member of (16) is non-negative, since C(C2
H)22C(C2H2M)4C(2M2C1H), where C is effective and, by (11),
2M2C1H�N(S)1 . Squaring both sides of (16), together with (15), we
find

C 2 (2M2C1H)2G (C(C2H)24d 0 )2 .(17)

On the other hand, by (14), we get

(2M2C1H)244gM2
(C2H)

2
h2

4

(C2H)224(C2H2M) MF (C2H)224d 0 ,

i.e

(2M2C1H)2F (C2H)224d 0 .(18)

Next, we define

F(d 0 ) »416d 0
224C(C22H) d 01 (CH)22C 2 H 2 .(19)

Putting together (17) and (18), it follows that F(d 0 )F0. We will show that,
with our numerical hypotheses, one has F(d 0 )E0, proving the statement.

Indeed, the discriminant of the equation F(d 0 )40 is 16C 2 (C22H)2 , and
it is a positive number, since (C22H)2D0, by the first one of ii), and C 2D0.
We remark that F(d 0 )E0 iff d 0� (a(C , H), b(C , H) ) , where

a(C , H)4
C(C22H)2kC 2 (C22H)2

8

and

b(C , H)4
C(C22H)1kC 2 (C22H)2

8
;

so we have to show that, d 0� (a(C , H), b(C , H) ) .
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From iv), it follows that d 0Eb(C , H). Note that a(C , H)F0. Indeed, if
a(C , H)E0 then C(C22H)EkC 2 (C22H)2 , which contradicts the Index
Theorem, since C(C22H)D0. In order to simplify the notation, we put t»4
C(C22H). Thus, a(C , H)E1 if and only if t28Ekt 224n(C , H) .

If t28E0, the previous inequality trivially holds, so d 0Da(C , H). Note
also that, by iii), 4n(C , H)E16 t264, so that b(C , H)D1, which ensures
there exists at least a positive integral value for the number of nodes.

If t28F0, a(C , H)E1 directly follows from iii), whereas b(C , H)D1
holds since it is equivalent to t28D2kt 224n(C , H) .

In conclusion, our numerical hypotheses contradict F(d 0 )F0, therefore
the assumption h 1 ( IN (D2H1KS ) )c0 leads to a contradiction. r

COROLLARY 1. – In the hypotheses of previous theorem, if C is linearly nor-
mal in P r then C 8 is geometrically linearly normal.

REMARK 5. – Observe that, if t28F0, then

C(C22H)1C(C22H)28

8
E

C(C22H)1kC 2 (C22H)2

8
,

therefore we may change the bound dEb(C , H) with the more «readable» one
dG (C(C22H) /4)21.

Indeed,

C(C22H)1C(C22H)28

8
E

C(C22H)1kC 2 (C22H)2

8
G

C(C22H)

4
.

3. – Examples.

This section will be devoted to the study of some examples, which also show
the sharpness of our bound in Theorem 2.

First of all, assume that S is a smooth, projective, non-degenerate and lin-
early normal surface, with Picard group Z-generated by the hyperplane section
H . Suppose also that h 1 (S , OS(H))40; then our results easily apply to the
cases of nodal curves CAnH on S , such that nF3 and deg (S)D(4/n(n22)).
Indeed, condition ii) in Theorem 2 implies that nD2, whereas condition iii) gives
that n(nH , H)40, so C(C22H)244n(n22) H 224D0 if and only if H 2D
(4/n(n22)); this means that the degree of S must be greater than or equal to 2,
but with the further condition that S%Pr is non-degenerate.

In particular, if we go back to the case of a general surface S%P 3 , such that
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deg (S)F2, the bound on the number of nodes is

dE
n(n22)

4
deg (S) ,

which generalizes Theorem 3.5 in [3], where the cases in which KS is an ample
divisor on S are considered.

We can also state the following generalization

PROPOSITION 1. – Let S be a smooth, non-degenerate complete intersection
surface of type (a1 , R , ar22 ) in P r , rF4, and let C�NnHN with only d nodes
as singular points. Suppose that nF3 and deg (S)F4; then, if

dE
n(n22)

4
deg (S) ,(20)

hence C is geometrically linearly normal.

PROOF. – Observe, first, that this result obviously generalizes the bounds
for general smooth surfaces in P 3 , of degree dF2, mentioned above and the
ones of Theorem 3.5, in [3], to the cases of non-degenerate, complete intersec-
tions in higher dimensional projective spaces. The proof is a straightforward
application of Theorem 2. Indeed, the cohomological condition trivially holds,
for a 2-dimensional complete intersection; moreover, the hypotheses on n and
on deg (S) ensure that conditions i), ii) and iii) of Theorem 2 hold. In the state-
ment of the proposition we considered the bound deg (S)F4 instead of the one
obtained by numerical computations, i.e. deg (S)F2, since complete intersec-
tions of degree 2 and 3 are obviously degenerate if rF4. The bound on d is
condition iv). r

In [3] it is proved the sharpness of the bound on d for a general quintic sur-
face in P 3 . In particular, since in this case the Neron-Severi group of S is such
that NS(S)`Z[KS ], then, when CAnH on S , with n an odd integer, the
bound on the number of nodes is dE (5(n21)2O4) instead of 5n(n22)O4. We
shall see that the same occurs in some other cases of general complete inter-
sections. Indeed, we will show the sharpness of bound iv), in Theorem 2, by
considering nodal curves CAnH on general «canonical» complete intersec-
tion surfaces. Since in these cases the Hodge number is zero, this bound re-
duces to (20); moreover, when n is an odd integer, (20) can be replaced by

dE
(n21)2

4
deg (S) ,

as it follows from Theorem 2.2 in [3]. Applying the same procedure of
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[3] we will show that these bounds are almost sharp for a sestic surface
in P 3 .

To do this, we want to recall that the geometric linear normality property
is equivalent, in some particular cases, to another important aspect of families
of nodal curves on a projective surface.

REMARK 6. – Let S be a nonsingular projective surface, which is non-degen-
erate and linearly normal, for which KSAH . In such a case, the fundamental
condition h 1 (S , OS (H) )40, used in the proof of Theorem 1, implies that S is a
regular surface. Therefore, Theorem 2 determines purely numerical condi-
tions on the nodal curve C ensuring that its set of nodes imposes independent
conditions to the linear system which C belongs to or, similarly (see [3]), that C
corresponds to a smooth point of the Severi variety VNDN , d , C�NDN . We recall
that, given a Bertini linear system NDN on a surface S , VNDN , d denotes the local-
ly closed subscheme of NDN parametrizing irreducible nodal curves with d
nodes in NDN . With abuse of language, it is called the Severi variety of d-nodal
curves in NDN . The fact that C corresponds to a smooth point of such a varity
means that the nodes of C can be independently smoothed. In [3] this problem
is studied when KS is an ample divisor on S and C is a divisor which is numeri-
cally equivalent to pKS , where p is a rational number greater than 2. A first
improvement of this result is given in [6], where the authors weakened the as-
sumptions of KS being ample and considered the cases in which C , C2KS are
ample divisors and C 2FKS

2 . In [4], purely numerical conditions are given in
order to generalize these results on the regularity of the Severi variety
VNDN , d .

Examples of projective, regular, non-degenerate and linearly normal sur-
faces, such that KSAH , are given by general complete intersections in P r of

type (a1 , R , ar22 ), such that g!
i41

r22

aih4r12 (see [11]); therefore, only few

cases may occur. More precisely, we have a general quintic surface in P 3 , sur-
faces of type (2, 4) and (3, 3) in P 4 , the surface of type (2, 2, 3) in P 5 , whereas in
P 6 we have the case (2, 2, 2, 2). In P r , for rF7, no non-degenerate case can
occur.

In the following example we consider the case of a general complete inter-
section of type (2, 4) in P 4 . The construction can be obviously generalized to
the other cases in the list above.

EXAMPLE 1. – Let F2 , F4 be two general hypersurfaces in P 4 of degree 2
and 4 , respectively; let S be the surface of degree 8 , which is the complete in-
tersection of F2 and F4 . Denote by W2 and W4 the cones in P 5 , over F2 and F4

respectively, with the same vertex P�P 5 . Let V2 and Vm be two general 4-
folds in P 5 of degree 2 and m , respectively, where m is a positive integer
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greater than or equal to 3. Let T be the complete intersection 3-fold of V2 and
Vm and denote by p P the projection p P : TKT 8 from the vertex P of T onto
the variety T 8 of dimension 3. It is classically known that the degree of T 8 is
2m and that T 8 contains a double surface G and in order to compute its de-
gree, we use the technique of «hyperplane sections». Indeed, let us denote by
E the curve obtained on T taking two consecutive hyperplane sections; hence
E is a complete intersection of type (2 , m , 1 , 1 ) in P 5 and so pg (E)4m(m2
2)11. Using the same procedure for T 8�P 4 , we obtain a plane curve E 8 of
degree 2m; therefore, its arithmetic genus is pa (E 8 )42m 323m11. Hence,
deg (G)4m 22m .

Let CA be the complete intersection curve in P 5 determined by

CA »4V2OVmOW2OW4 .

CA is a smooth curve of degree 16m , which lies on the cone of dimension 3, SA »4
W2OW4 . Denote by C the projection of CA from P; C has degree 16m and it is
complete intersection of S and T 8 in P 4 . Therefore, C�N2mHN on S and its
singularities coincide with the zero-dimensional scheme of SOG; thus C has a
set N of d48m 228m nodes and no other singularities. By construction, CA is
the normalization of C which, therefore, cannot be geometrically linearly nor-
mal. Observe that, the bound in (20) becomes, in this case, dE8m 228m ,
hence it is sharp.

REMARK 7. – The above construction shows that our result is sharp for
«canonical» complete intersection surfaces. Furthermore, from Theorem 1 it
follows that, in this example, N cannot impose independent condition to NCN ,
so that the Severi variety VN2mHN , 8m 228m is not smooth of the expected dimen-
sion, i.e. dim (N2mHN)28m 228m , in a neighbourhood of C .

PROPOSITION 2. – The curve C constructed above is a singular point of
VN2mHN , 8m 228m , which is generically smooth, of the expected dimension.

PROOF. – The previous construction, together with Theorem 3, shows that
the tangent space of VN2mHN , 8m 228m at C has codimension 8m 228m21 in the
tangent space of N2mHN at C (see [3] for details). Hence, h 1 (S , IN (2mH) )4
1, since C is the projection of a smooth, complete intersection in P 5 .

Let C 8 be a curve in a neighbourhood of C in VN2mHN , 8m 228m , for which the
set of nodes N 8 does not impose independent conditions to N2mHN . Then, by
semicontinuity, h 1 (S , IN 8 (2mH) )41; therefore, also C 8 is the projection of a
curve CA8 in P 5 which «lives» in a neighbourhood of CA in the Hilbert scheme of
P 5 . It follows that also CA8 must be a smooth, complete intersection of the cone
SA with some complete intersection 3-fold of type (2 , m). If we denote by M the
subvariety of VN2mHN , 8m 228m , formed by these projected curves, we can find an
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upper-bound for dim (M). By keeping the cones W2 and W4 fixed, the normal-
izations of the elements of M fill a variety of dimension at most

h 0 (CA, 8CA /SA )4h 0 (CA, OCA (2)5OCA (m) )48m 2216m138 .

If we let also the vertex P vary in P 5 , we get a variety of dimension at most
8m 2216m143. On the other hand, VN2mHN , 8m 228m has dimension at
least

h 0 (S , OS (2m) )2128m 218m48m 215 .

Since mF3, then 8m 215D8m 2216m143, which means that the general
element of the Severi variety does not arise from this construction and is a
smooth point of VN2mHN , 8m 228m . r

REMARK 8. – We remark that there exist non-canonical surfaces for which
the bound is not sharp. Indeed, let us consider a nonsingular sextic surface S
in P 3 . Let C be a curve on S equivalent to nH , with n an even integer greater
than 4. Arguing with cones as in the previous example, we can prove that C has
(3 /2)(n 222n) nodes, while the bound in this case is given by the number
(3 /2) n(n24), and C is the projection of a curve in P 4 . It remains to under-
stand what happens in the range [(3 /2) n(n24), (3 /2) n(n22)21].

We end this section by considering some examples of surfaces to which our
numerical criterion can be easily applied, whereas other criteria fail. We shall
focus on blown-up surfaces or surfaces of P 3 which contain a line L .

1) Let S%P 3 be a general smooth quartic. We have therefore, OS (KS )`
OS . Let H be the plane section of S . If p : SAKS denotes the blow-up in a point
p�S and E the p-exceptional divisor, then KSAAE is not ample. Moreover,
given CAmp*(H) on SA, where m a positive integer, it cannot be an ample di-
visor since CKSA40. Thus, both the results in [3] and [6] cannot be
applied.

However, consider HA42p*(H)2E , which is a very ample divisor, since
the linear system NHAN trivially separates points and tangent vectors on SA. If
we consider the embedding of SA via the complete linear system NHAN , then SA is
linearly normal. Furthermore,

h 1 ( OSA (HA) )4h 1 ( I]p( /S (2H) )40 ,

since ]p( imposes independent conditions to N2HN on S%P 3 . Observe also
that the general element of Nmp*(H)N is smooth and irreducible. Further-
more, C22 HAA (m24) p*(H)22E; so that the numerical conditions in
Theorem 2 become (C22 HA)244(m 228m115)D0, C(C22 HA)44m(m2
4)D0, n(C , HA)44m 2E4(C(C22 HA)24)44(4m 2216m24)D0. These
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simultaneously hold as soon as mF6. Moreover,

dE
m(m24)1mk(m24)221

2
.

From Remark 5, we know that, since t284C(C22 HA)284m 224m22 is
positive for mF6, then we may change the bound above with the more «read-
able» one dG (C(C22 HA)O4)214m(m24)214m 224m21.

Thus, if there exists a nodal curve C�Nmp* HN , mF6, such that the num-
ber of nodes is

dGm 224m21 ,

then C is geometrically linearly normal by Theorem 2.

2) Let S be a smooth quintic surface in P 3 which contains a line L . De-
note by G%S a plane quartic which is coplanar to L , so that GAH2L .
Thus,

H 245, HL41, L 2423, HG44, G 240 and GL44 .

Choose CA3H1L , so that NCN contains curves which are residue to G in the
complete intersection of S with the smooth quartic surfaces of P 3 containing G .
N3H1LN is base-point-free and not composed with a pencil, since (3H1
L) L40 and 3H is an ample divisor. By Bertini’s theorems, its general mem-
ber is smooth and irreducible; but C and C2KS cannot be both either ample
or, even, nef divisors. In fact, CL40 and (C2KS ) L4 (2H1L) L421.
Moreover C is not numerically equivalent to a rational multiple of KSAH .
Therefore, the results in [3] and in [6] cannot be applied.

Neverthless, S is trivially linearly normal with h 1 ( OS (H) )40; further-
more, CH4C(C22H)4n(C , H)416, (C22H)244, H 245, 4(C(C2

2H)24)448; we then obtain dE
16

4
44. Thus, if N3H1LN contains some

nodal, irreducible curves, then, if dG3, this singular curve is geometrically
linearly normal; since KSAH , this is equivalent to saying that such a curve
corresponds to a smooth point of VN3H1LN , d , which will be everywhere smooth
of the expected dimension.
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