Bollettino

Unione Matematica Italiana

F. Leonetti, E. Mascolo, F. Siepe
 Gradient regularity for minimizers of functionals under $p-q$ subquadratic growth

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 4-B (2001), n.3, p. 571-586.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2001_8_4B_3_571_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2001.

Gradient Regularity for Minimizers of Functionals Under $p-q$ Subquadratic Growth (*).

F. Leonetti - E. Mascolo - F. Siepe

Sunto. - Si prova la maggior sommabilità del gradiente dei minimi locali di funzionali integrali della forma

$$
\int_{\Omega} f(D u) d x
$$

dove f soddisfa l'ipotesi di crescita

$$
|\xi|^{p}-c_{1} \leqslant f(\xi) \leqslant c\left(1+|\xi|^{q}\right),
$$

con $1<p<q \leqslant 2$. L'integrando f è C^{2} e DDf ha crescita $p-2$ dal basso e $q-2$ dall'alto.

1. - Introduction.

Let us consider the functional

$$
\begin{equation*}
\mathscr{F}(u, \Omega)=\int_{\Omega} f(D u(x)) d x \tag{1.1}
\end{equation*}
$$

where Ω is a bounded open set in $\mathbb{R}^{n}, n \geqslant 2, D u$ is the gradient of a vector valued function $u: \Omega \rightarrow \mathbb{R}^{N}, N \geqslant 1$, and $f: \mathbb{R}^{n N} \rightarrow \mathbb{R}$.

In this paper we study the local regularity of minimizers of \mathfrak{F}. In particular, we consider the case in which the integrand function f satisfies the $p-q$ growth condition

$$
\begin{equation*}
|\xi|^{p}-c_{1} \leqslant f(\xi) \leqslant c\left(1+|\xi|^{q}\right) \tag{1.2}
\end{equation*}
$$

with $p<q$.
The regularity properties of minimizers, under assumption (1.2), has been intensely studied in the last years.

In the scalar case, i.e. when $N=1$, Marcellini in [M2] and [M3], proved the $W^{1, \infty}$ regularity, provided p and q are not too far apart.
(*) We acknowledge the support of MURST ($40 \%, 60 \%$) and GNAFA-CNR.
Mathematics subjects classification (Amer. Math. Soc.): 49 N 60, 35 J 60.

In the setting of $p-q$ growth, minimizers may be unbounded in general, if no restriction on p and q is assumed (see [G2], [M1], [H]).

In the vectorial case there are recent results in [ELM1] and [ELM2], about higher integrability for the gradient of minimizers, in the case of $2 \leqslant p<q$.

Moreover, Marcellini in [M4] gives the local Lipschitz continuity of the local minimizers, when $f(\xi)=g(|\xi|)$ and g satisfies some general conditions which imply, if (1.2) holds, that $2 \leqslant p<q$.

Our aim is to study the case when (1.2) holds with $1<p<q \leqslant 2$.
We will prove a higher integrability result for the gradient $D u$ of local minimizers u of \mathfrak{F}. More precisely there exists $\chi=\chi(n, p)>1$ such that

$$
\begin{equation*}
D u \in L_{\mathrm{loc}}^{p \chi}\left(\Omega, \mathbb{R}^{n N}\right) . \tag{1.3}
\end{equation*}
$$

This result will be obtained under the restrictions

$$
\begin{equation*}
\frac{2 n}{n+2}<p<q \leqslant 2 \tag{1.4}
\end{equation*}
$$

$f \in C^{2}, D D f$ has $p-2$ growth from below and $q-2$ growth from above. The idea of the proof is the following. We consider a family of perturbed functionals of (1.1), defining, for $\sigma \in(0,1)$

$$
\mathscr{F}_{\sigma}\left(w, B_{R}\right)=\int_{B_{R}} f(D w) d x+\sigma \int_{B_{R}}\left[\left(1+|D w|^{2}\right)^{q / 2}-1\right] d x
$$

where B_{R} is a ball such that $B_{4 R} \subset \subset \Omega$.
Now \mathscr{F}_{σ} has the same q growth from above and below. For local minimizers $v \in W^{1, q}\left(B_{R}, \mathbb{R}^{N}\right)$ of \mathscr{F}_{σ}, the following estimate holds

$$
\begin{equation*}
\|D v\|_{L^{p x}\left(B_{a R}\right)} \leqslant c\left[1+\int_{B_{R}} f(D v) d x\right]^{2 / p^{2}} \tag{1.5}
\end{equation*}
$$

for $\alpha \in(0,1)$ and a constant c that does not depend on σ.
As in [ELM2], if u is a local minimizer of \mathfrak{F}, we mollify u and we get u_{ε}. Then we consider the Dirichlet problems

$$
\min \left\{\mathscr{F}_{\sigma}\left(w, B_{R}\right): w \in u_{\varepsilon}+W_{0}^{1, q}\left(B_{R}, \mathbb{R}^{N}\right)\right\}
$$

If $v_{\varepsilon, \sigma}$ is the solution of such a problem, we write (1.5) for $v=v_{\varepsilon, \sigma}$. We will prove that letting first $\sigma \rightarrow 0$ and then $\varepsilon \rightarrow 0, D v_{\varepsilon, \sigma}$ converges weakly to $D u$ and we can pass to the limit in (1.5), thus obtaining (1.3).

In the case of $f(\xi)=g(|\xi|)$ where $g:[0,+\infty) \rightarrow[0,+\infty)$ is convex, $g(0)=0, g \geqslant 0$ and $g \in \Delta_{2}$, we apply a recent result about local boundedness of minimizers of \mathfrak{F}, contained in [DM]. This result allows us to get (1.3) without
the restriction

$$
\frac{2 n}{n+2}<p
$$

contained in (1.4). Related results can be found in [FS], [Ch], [BL], [Li], and [CF].

2. - Statements and notations.

As we have seen in section 1, we deal with the local regularity properties for minimizers of functionals of type (1.1). Moreover we assume that $f \in$ $C^{2}\left(\mathbb{R}^{n N}\right), f \geqslant 0$ satisfies the following growth conditions

$$
\begin{equation*}
|\xi|^{p}-c_{1} \leqslant f(\xi) \leqslant L\left(1+|\xi|^{2}\right)^{\frac{q}{2}} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
|D f(\xi)| \leqslant L\left(1+|\xi|^{2}\right)^{\frac{q-1}{2}} \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\left|D^{2} f(\xi)\right| \leqslant L\left(1+|\xi|^{2}\right)^{\frac{q-2}{2}} \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle D^{2} f(\xi) \lambda, \lambda\right\rangle \geqslant v\left(1+|\xi|^{2}\right)^{\frac{p-2}{2}}|\lambda|^{2} \tag{2.4}
\end{equation*}
$$

for every $\xi, \lambda \in \mathbb{R}^{n N}$ and some $L>1, v>0, c_{1} \geqslant 0 . p, q$ are such that $1<p<$ $q \leqslant 2$. Note that growth condition (2.2) for $D f$ can be derived by growth condition (2.1) for f and convexity (2.4).

We say that $u \in W_{\text {loc }}^{1,1}\left(\Omega, \mathbb{R}^{N}\right)$ is a local minimizer of \mathscr{F} if $f(D u) \in L_{\text {loc }}^{1}(\Omega)$, and

$$
\int_{\operatorname{supp}(\varphi)} f(D u) d x \leqslant \int_{\operatorname{supp}(\varphi)} f(D u+D \varphi) d x,
$$

for every $\varphi \in W^{1,1}\left(\Omega, \mathbb{R}^{N}\right)$ such that $\operatorname{supp}(\varphi) \subset \subset \Omega$.
By these assumptions, we observe immediately that $u \in W_{\text {loc }}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$. We will prove the following higher integrability result for u

Theorem 2.1. - Let $u \in W_{\text {loc }}^{1,1}\left(\Omega, \mathbb{R}^{N}\right)$ be a local minimizer of functional (1.1), satisfying conditions (2.1), (2.2), (2.3) and (2.4). Then, if $p>2 n /(n+2)$, we have

$$
D u \in L_{\mathrm{loc}}^{\chi p}\left(\Omega, \mathbb{R}^{n N}\right)
$$

for some $\chi=\chi(n, p)>1$.
Moreover, if $x_{0} \in \Omega$ and $R>0$ are such that $B\left(x_{0}, 4 R\right) \subset \subset \Omega$, and $\alpha \in(0,1)$,
there exists a positive constant $c \equiv c(n, N, p, q, L, v, \alpha, R)$ such that

$$
\begin{equation*}
\int_{B_{a^{3}}{ }^{3}}|D u|^{p \chi} d x \leqslant c\left(1+\int_{B_{R}} f(D u) d x\right)^{\frac{2 \chi}{p}} \tag{2.5}
\end{equation*}
$$

This Theorem can be improved when we consider a particular structure for the functional, that is when we suppose that $f(\xi)=g(|\xi|)$, where $g \in C^{2}([0,+\infty))$ is a convex, increasing N-function of class Δ_{2}, that is, $g:[0,+\infty) \rightarrow$ $[0,+\infty)$ is such that $g(t)=0$ if and only if $t=0$ and for every $t>0$ and every $\lambda>1$

$$
g(\lambda t) \leqslant \lambda^{m} g(t)
$$

for some $m>1$ (to be more precise, if this property holds, we say that $g \in \Delta_{2}^{m}$). Moreover g satisfies the following limit conditions

$$
\lim _{t \rightarrow 0^{+}} \frac{g(t)}{t}=0 \quad \lim _{t \rightarrow+\infty} \frac{g(t)}{t}=+\infty
$$

Under these assumptions we prove the following
Theorem. - 2.2. - Let us suppose that $u \in W_{\mathrm{loc}}^{1,1}\left(\Omega, \mathbb{R}^{N}\right)$ is a local minimizer of functional (1.1), satisfying conditions (2.1)-(2.4). Let us assume also that $f(\xi)=g(|\xi|)$, with g as above. Then

$$
D u \in L_{\mathrm{loc}}^{\chi p}\left(\Omega, \mathbb{R}^{n N}\right)
$$

for some $\chi=\chi(n, p)>1$, and the following estimate holds

$$
\begin{equation*}
\int_{B_{a^{3} R}}|D u|^{p \chi} d x \leqslant c\left(1+\int_{B_{R}} g(|D u|) d x+\int_{B_{R}} g(|u|) d x\right)^{2 \chi(3-p)} \tag{2.6}
\end{equation*}
$$

for some positive $c=c(n, N, p, q, L, v, \alpha, R, m)$ and every $\alpha \in(0,1)$.
Let us recall some known and technical results that will be useful later

Lemma 2.1. - For every $\zeta, \xi \in \mathbb{R}^{k}$ and $\delta \in\left(-\frac{1}{2}, 0\right)$

$$
\begin{gather*}
1 \leqslant \frac{\int_{0}^{1}\left(1+|\zeta+t(\xi-\zeta)|^{2}\right)^{\delta} d t}{\left(1+|\zeta|^{2}+|\xi|^{2}\right)^{\delta}} \leqslant c(\delta) \tag{2.7}\\
0<c_{1}(\delta) \leqslant \frac{\left|\left(1+|\xi|^{2}\right)^{\delta} \zeta-\left(1+|\xi|^{2}\right)^{\delta} \xi\right|}{\left(1+|\zeta|^{2}+|\xi|^{2}\right)^{\delta}|\zeta-\xi|} \leqslant c_{2}(\delta, k)
\end{gather*}
$$

Proof. - See [AF], [Gi, page 274].

Fix $h>0$ and for $s=1, \ldots, n$ a direction e_{s} in \mathbb{R}^{n}. For every vector valued function $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ we define

$$
\tau_{s, h} G(x)=G\left(x+h e_{s}\right)-G(x)
$$

We state some properties of this difference function in connection with Sobolev spaces.

Lemma 2.2. - Let $0<\varrho<R,|h|<R-\varrho, p \geqslant 1$, and $G \in W^{1, p}\left(B_{R}, \mathbb{R}^{k}\right)$. Then for every $s=1, \ldots, n$

$$
\int_{B_{Q}}\left|\tau_{s, h} G(x)\right|^{p} d x \leqslant|h|^{p} \int_{B_{R}}\left|D_{s} G(x)\right|^{p} d x
$$

Proof. - See [G1].
Lemma 2.3. - Let $0<\varrho<R$ and $G \in L^{2}\left(B_{R}, \mathbb{R}^{k}\right)$. If for some $a \in(0,2)$, $M>0$ and $\eta \in C_{0}^{1}\left(B \frac{R+\varrho}{2}\right)$ such that $0 \leqslant \eta \leqslant 1$ and $|D \eta| \leqslant 4 /(R-\varrho)$ in $\mathbb{R}^{n}, \eta=$ 1 on B_{ϱ},

$$
\sum_{s=1}^{n} \int_{B_{R}} \eta^{2}\left|\tau_{s, h} G(x)\right|^{2} d x \leqslant M^{2}|h|^{a}
$$

for every h with $|h|<R-\varrho$, then $G \in W^{b, 2}\left(B_{\varrho}, \mathbb{R}^{k}\right) \cap L^{\frac{2 n}{n-2 b}}\left(B_{\varrho}, \mathbb{R}^{k}\right)$, for every $b \in(0,(a / 2))$. Moreover

$$
\|G\|_{L \frac{2 n}{n-2 b}\left(B_{e}\right)} \leqslant c\left(M+\|G\|_{L^{2}\left(B_{R}\right)}\right)
$$

with $c \equiv c(n, k, b, a, R, \varrho)$.
Proof. - See [A].

3. - Preliminary results.

In this section we consider a perturbation of the integrand of functional (1.1), given by

$$
f_{\sigma}(\xi)=f(\xi)+\sigma\left[\left(1+|\xi|^{2}\right)^{\frac{q}{2}}-1\right]
$$

where $\sigma \in(0,1)$ under (2.1), $\ldots,(2.4)$. The following Lemma contains some properties of this function f_{σ}. The proof is rather easy

Lemma 3.1. - $f_{\sigma} \in C^{2}\left(\mathbb{R}^{n N}\right), f_{\sigma} \geqslant 0$ and satisfies the following conditions

$$
\begin{gather*}
\sigma \mu|\xi|^{q}+|\xi|^{p}-c_{1}-\sigma \leqslant f_{\sigma}(\xi) \leqslant(L+1)\left(1+|\xi|^{2}\right)^{\frac{q}{2}} \tag{3.1}\\
\left|D f_{\sigma}(\xi)\right| \leqslant(L+q)\left(1+|\xi|^{2}\right)^{\frac{q-1}{2}} \tag{3.2}\\
\left|D^{2} f_{\sigma}(\xi)\right| \leqslant\left(L+n N q^{2}\right)\left(1+|\xi|^{2}\right)^{\frac{q-2}{2}} \tag{3.3}
\end{gather*}
$$

$$
\begin{equation*}
\left\langle D^{2} f_{\sigma}(\xi) \lambda, \lambda\right\rangle \geqslant\left[\sigma q(q-1)\left(1+|\xi|^{2}\right)^{\frac{q-2}{2}}+v\left(1+|\xi|^{2}\right)^{\frac{p-2}{2}}\right]|\lambda|^{2} \tag{3.4}
\end{equation*}
$$

for every $\xi, \lambda \in \mathbb{R}^{n N}$, where L, v and c_{1} are those of (2.1), .., (2.4) and $\mu=\left(\left(2^{q / 2}-1\right) / 2^{q / 2}\right) \in(0,1)$.

Moreover, if f satisfies the assumptions of Theorem 2.2, then

$$
f_{\sigma}(\xi)=g_{\sigma}(|\xi|)
$$

where

$$
g_{\sigma}(t)=g(t)+\sigma\left[\left(1+t^{2}\right)^{q / 2}-1\right]
$$

$g_{\sigma}:[0,+\infty) \rightarrow[0,+\infty)$ is convex, increasing, $g_{\sigma}(t)=0$ if and only if $t=0$, g_{σ} satisfies the Δ_{2}^{s}-condition, where $s=2 \bigvee m=\max \{2, m\}$. We have also $g_{\sigma} \in C^{2}([0,+\infty))$ and

$$
\lim _{t \rightarrow 0^{+}} \frac{g_{\sigma}(t)}{t}=0, \quad \lim _{t \rightarrow+\infty} \frac{g_{\sigma}(t)}{t}=+\infty
$$

Now we introduce for every $\sigma \in(0,1)$ and $R>0$ such that $B_{4 R} \subset \subset \Omega$, the functional

$$
\mathscr{F}_{\sigma}(w)=\int_{B_{R}} f_{\sigma}(D w) d x
$$

A local minimizer of functional \mathscr{F}_{σ}, will be a function $v \in W^{1, q}\left(B_{R}, \mathbb{R}^{N}\right)$ such that $\mathscr{F}_{\sigma}(v) \leqslant \mathscr{F}_{\sigma}(v+\varphi)$, for every $\varphi \in W_{0}^{1, q}\left(B_{R}, \mathbb{R}^{N}\right)$. Let us prove the following result.

Lemma 3.2. - Let $v \in W^{1, q}\left(B_{R}, \mathbb{R}^{N}\right)$ be a local minimizer of functional \mathfrak{F}_{σ} with $(2 n /(n+2))<p<q \leqslant 2$. Then for every $\alpha \in(0,1)$, and for every b such that

$$
0<b<\frac{n}{2}-\frac{n}{p}+1
$$

we have that

$$
\begin{equation*}
D v \in L^{\frac{n p}{n-2 b}}\left(B_{a^{3} R}, \mathbb{R}^{n N}\right) \tag{3.5}
\end{equation*}
$$

Moreover there exists a constant $c \equiv c\left(n, N, p, q, L, v, c_{1}, R, \alpha, b\right)$ such that

$$
\begin{equation*}
\|D v\|_{L \frac{n p}{n-2 b}\left(B_{a}{ }^{3} R\right)} \leqslant c\left[1+\int_{B_{R}} f(D v) d x\right]^{\frac{2}{p^{2}}} \tag{3.6}
\end{equation*}
$$

Proof. - Since v is a local minimizer for \mathscr{F}_{σ}, under growth conditions (3.1)(3.4) we have that the Euler's equation

$$
\begin{equation*}
\int_{B_{R}} D f_{\sigma}(D v) D \varphi d x=0 \tag{3.7}
\end{equation*}
$$

holds for every $\varphi \in W^{1, q}\left(B_{R}, \mathbb{R}^{N}\right)$ such that $\operatorname{supp}(\varphi) \subset \subset B_{R}$.
Let $\alpha \in(0,1)$ and $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be a cut-off function. More precisely we assume that $\operatorname{supp}(\eta) \subset B \frac{\alpha^{3} R+\alpha^{2} R}{2}, \quad \eta \equiv 1 \quad$ in $B_{\alpha^{3} R}, \quad 0 \leqslant \eta \leqslant 1, \quad|D \eta| \leqslant$ $4 /\left(\alpha^{2}(1-\alpha) R\right)$.

Now let $|h|<R \alpha^{2}(1-\alpha)$ and for $s=1, \ldots, n$ put $\varphi=\tau_{s,-h}\left(\eta^{2} \tau_{s, h} v\right)$ as test function in (3.7). We get

$$
\begin{align*}
(I) & =\int_{B_{R}} \eta^{2} \tau_{s, h}\left(D f_{\sigma}(D v)\right) \tau_{s, h} D v d x \\
& =-\int_{B_{R}} \tau_{s, h}\left(D f_{\sigma}(D v)\right) 2 \eta D \eta \otimes \tau_{s, h} v d x=(I I) . \tag{3.8}
\end{align*}
$$

Moreover, since

$$
\tau_{s, h}\left(D f_{\sigma}(D v)\right)=\int_{0}^{1} D^{2} f_{\sigma}\left(D v+t \tau_{s, h}(D v)\right) d t \tau_{s, h} D v
$$

we have that

$$
\begin{gather*}
(I)=\int_{B_{R}} \int_{0}^{1} D^{2} f_{\sigma}\left(D v+t \tau_{s, h}(D v)\right) \eta \tau_{s, h} D v \eta \tau_{s, h} D v d t d x, \tag{3.9}\\
(I I)=-\int_{B_{R}} \int_{0}^{1} 2 D^{2} f_{\sigma}\left(D v+t \tau_{s, h}(D v)\right) \eta \tau_{s, h} D v D \eta \otimes \tau_{s, h} v d t d x .
\end{gather*}
$$

By the properties of f_{σ} we are in conditions to apply Cauchy-Schwartz inequality:

$$
\begin{align*}
(I I) \leqslant & \frac{1}{2} \int_{B_{R}} \int_{0}^{1} D^{2} f_{\sigma}\left(D v+t \tau_{s, h}(D v)\right) \eta \tau_{s, h} D v \eta \tau_{s, h} D v d t d x \tag{3.10}\\
& +2 \int_{B_{R}} \int_{0}^{1} D^{2} f_{\sigma}\left(D v+t \tau_{s, h}(D v)\right) D \eta \otimes \tau_{s, h} v D \eta \otimes \tau_{s, h} v d t d x \\
= & \frac{1}{2}(I)+2(I I I) .
\end{align*}
$$

Since the integrals (I) and (III) are finite, by (3.8) and (3.10) we get

$$
(I) \leqslant 4(I I I)
$$

Moreover, by (3.4) and Lemma 2.1

$$
\begin{equation*}
(I) \geqslant c \int_{B_{R}} \eta^{2}\left|\tau_{s, h}\left(\left(1+|D v|^{2}\right)^{\frac{p-2}{4}} D v\right)\right|^{2} d x \tag{3.11}
\end{equation*}
$$

for some positive constant $c \equiv c(v, p, n, N)$. Now by growth conditions (3.3) and the properties of η we have

$$
(I I I) \leqslant c \int_{B_{a}^{2} R} \int_{0}^{1}|D \eta|^{2}\left(1+\left|D v+t \tau_{s, h} D v\right|^{2}\right)^{\frac{q-2}{2}}\left|\tau_{s, h} v\right|^{2} d t d x
$$

where $c \equiv c(n, N, L, q)$. Since we suppose that $1<p<q \leqslant 2$ we can $\operatorname{drop}(1+$ $\left.\left|D v+t \tau_{s, h} D v\right|^{2}\right)^{\frac{q-2}{2}}$ since it is less than 1 . Then we have

$$
\begin{equation*}
(I I I) \leqslant c(n, N, L, q, \alpha, R) \int_{B_{\alpha}^{2} R}\left|\tau_{s, h} v\right|^{2} d x=(I V) \tag{3.12}
\end{equation*}
$$

Let $a \in(0, p)$. Then

$$
\begin{align*}
(I V) & =c \int_{B_{a^{2} R}}\left|\tau_{s, h} v\right|^{a}\left|\tau_{s, h} v\right|^{2-a} d x \tag{3.13}\\
& \leqslant c\left(\int_{B_{a^{2} R}}\left|\tau_{s, h} v\right|^{p} d x\right)^{\frac{a}{p}}\left(\int_{B_{a^{2} R}}\left|\tau_{s, h} v\right|^{\frac{2-a}{p-a} p} d x\right)^{\frac{p-a}{p}} .
\end{align*}
$$

Since $v \in W^{1, p}\left(B_{R}, \mathbb{R}^{N}\right), B_{\alpha^{2} R} \subset B_{\alpha R} \subset B_{R}$ and $|h|<\alpha^{2} R-\alpha^{3} R<\alpha R-\alpha^{2} R$,
by Lemma 2.2 we have

$$
\begin{equation*}
(I V) \leqslant c|h|^{a}\left(\int_{B_{a R}}|D v|^{p} d x\right)^{\frac{a}{p}}\left(\int_{B_{a}{ }^{2} R}\left|\tau_{s, h} v\right|^{\frac{2-a}{p-a} p} d x\right)^{\frac{p-a}{p}} . \tag{3.14}
\end{equation*}
$$

Now we use the assumption $p>2 n /(n+2)$: let us choose a in such a way that

$$
\frac{2-a}{p-a} p=p^{*}=\frac{n p}{n-p} \quad \text { that is } \quad a=n+2-2 \frac{n}{p}
$$

We remark that a satisfies the required properties since we suppose that

$$
p>\frac{2 n}{n+2} .
$$

With these assumptions and applying Sobolev inequality in (3.14) we obtain

$$
\begin{equation*}
(I V) \leqslant c|h|^{a}\left(\int_{B_{a R}}|D v|^{p} d x\right)^{\frac{a}{p}}\left(\int_{B_{a R}}|D v|^{p} d x\right)^{\frac{2-a}{p}} \tag{3.15}
\end{equation*}
$$

and finally, by (2.1) and (3.11)

$$
\begin{equation*}
\int_{B_{R}} \eta^{2}\left|\tau_{s, h}\left(\left(1+|D v|^{2}\right)^{\frac{p-2}{4}} D v\right)\right|^{2} d x \leqslant 4 \tilde{c}|h|^{a}\left(1+\int_{B_{R}} f(D v) d x\right)^{\frac{2}{p}} \tag{3.16}
\end{equation*}
$$

for some positive constant $\tilde{c} \equiv \tilde{c}\left(n, N, p, q, L, v, c_{1}, \alpha, R\right)$. By this estimate and Lemma 2.3 it follows that

$$
\left(1+|D v|^{2}\right)^{\frac{p-2}{4}} D v \in W^{b, 2}\left(B_{\alpha^{3} R}, \mathbb{R}^{n N}\right) \cap L^{\frac{2 n}{n-2 b}}\left(B_{\alpha^{3} R}, \mathbb{R}^{n N}\right)
$$

for every $b \in(0,(a / 2))$. In particular, if we set

$$
\begin{equation*}
M=2 \sqrt{\tilde{c} n}\left(1+\int_{B_{R}} f(D v) d x\right)^{\frac{1}{p}} \tag{3.17}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{s=1}^{n} \int_{B_{R}} \eta^{2} \left\lvert\, \tau_{s, h}\left(\left.\left(1+|D v|^{2} \frac{p-2}{4} D v\right)\right|^{2} d x \leqslant M^{2}|h|^{a}\right.\right. \tag{3.18}
\end{equation*}
$$

from which it follows that

$$
\left\|\left(1+|D v|^{2}\right)^{\frac{p-2}{4}} D v\right\|_{L \frac{2 n}{n-2 b}\left(B_{a^{3} R}\right)} \leqslant \widehat{c}\left(M+\left\|\left(1+|D v|^{2}\right)^{\frac{p-2}{4}} D v\right\|_{L^{2}\left(B_{R}\right)}\right)
$$

for some $\hat{c} \equiv \hat{c}(n, N, b, p, R, \alpha)$.
It is easy to show that for every $z \in \mathbb{R}^{k}, \vartheta>0$ and $p \in(1,2)$ we have

$$
|z|^{p \vartheta} \leqslant 1+2^{\frac{(2-p) \vartheta}{2}}\left[\left(1+|z|^{2}\right)^{\frac{p-2}{2}}|z|^{2}\right]^{\vartheta} .
$$

By this fact, since $(n /(n-2 b))>1$ and $p<2$, it follows that

$$
\begin{aligned}
\int_{B_{a^{3} R}}|D v|^{\frac{n p}{n-2 b}} d x & \leqslant c(n, p, b, R, \alpha)\left(1+\int_{B_{a^{3} R}}\left(\left(1+|D v|^{2} \frac{p-2}{2}|D v|^{2}\right)^{\frac{n}{n-2 b}} d x\right)\right. \\
& \leqslant c(n, N, p, b, R, \alpha)\left[1+\left(M+\left\|\left(1+|D v|^{2}\right)^{\frac{p-2}{4}} D v\right\|_{L^{2}\left(B_{R}\right)}\right)^{\frac{2 n}{n-2 b}}\right] \\
& \leqslant c\left[1+\left(1+\int_{B_{R}} f(D v) d x\right)^{\frac{1}{p}}+\left(1+\int_{B_{R}} f(D v) d x\right)^{\frac{1}{2}}\right]^{\frac{2 n}{n-2 b}} \\
& \leqslant c\left(n, N, p, q, L, v, c_{1}, R, \alpha, b\right)\left(1+\int_{B_{R}} f(D v) d x\right)^{\frac{2 n}{p(n-2 b)}}
\end{aligned}
$$

that is just estimate (3.6). Then the proof is concluded.

4. - Proof of Theorem 2.1.

Our next goal is to prove that Lemma 3.2 holds also for the minimizer u of our original functional (1.1). We use an approximation argument.

Let $0<\varepsilon<\min \{1, R\}$ and consider a sequence of smooth functions u_{ε}, obtained by u by mean of standard mollifiers. We have that $u_{\varepsilon} \in W^{1, q}\left(B_{R}, \mathbb{R}^{N}\right)$ and $u_{\varepsilon} \rightarrow u$ in $W^{1, p}$.

By the growth conditions about \mathscr{F}_{σ}, we are able to define the solution $v_{\varepsilon, \sigma} \in$ $u_{\varepsilon}+W_{0}^{1, q}\left(B_{R}, \mathbb{R}^{N}\right)$ of the Dirichlet problem

$$
\begin{equation*}
\min \left\{\int_{B_{R}} f_{\sigma}(D w) d x: w \in u_{\varepsilon}+W_{0}^{1, q}\left(B_{R}, \mathbb{R}^{N}\right)\right\} \tag{4.1}
\end{equation*}
$$

according to direct methods of the calculus of variations.
Let us fix $\alpha \in(0,1)$. We are going to apply estimate (3.6) for $v_{\varepsilon, \sigma}$. There exists a constant $c \equiv c\left(n, N, p, q, R, \alpha, v, c_{1}, L, b\right)$ not depending neither on
ε nor σ, such that

$$
\begin{align*}
\left(\int_{B_{a^{3} R}}\left|D v_{\varepsilon, \sigma}\right|^{\frac{n p}{n-2 b}} d x\right)^{\frac{p(n-2 b)}{2 n}} & \leqslant c\left(1+\int_{B_{R}} f\left(D v_{\varepsilon, \sigma}\right) d x\right) \tag{4.2}\\
& \leqslant c\left(1+\int_{B_{R}} f_{\sigma}\left(D u_{\varepsilon}\right) d x\right) \\
& \leqslant c\left(1+\int_{B_{R+\varepsilon}} f(D u) d x+\sigma \int_{B_{R}}\left(1+\left|D u_{\varepsilon}\right|^{2}\right)^{\frac{q}{2}} d x\right)
\end{align*}
$$

by the minimality of $v_{\varepsilon, \sigma}$ and Jensen inequality.
Moreover we have also

$$
\begin{equation*}
\int_{B_{R}}\left|D v_{\varepsilon, \sigma}\right|^{p} d x \leqslant \int_{B_{R}} f\left(D v_{\varepsilon, \sigma}\right) d x+c_{1}\left|B_{R}\right| \tag{4.3}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{B_{R}} f\left(D v_{\varepsilon, \sigma}\right) d x & \leqslant \int_{B_{R}} f_{\sigma}\left(D v_{\varepsilon, \sigma}\right) d x \leqslant \int_{B_{R}} f_{\sigma}\left(D u_{\varepsilon}\right) d x \\
& \leqslant \int_{B_{R}} f\left(D u_{\varepsilon}\right) d x+\sigma \int_{B_{R}}\left(1+\left|D u_{\varepsilon}\right|^{2}\right)^{\frac{q}{2}} d x \tag{4.4}\\
& \leqslant \int_{B_{R+\varepsilon}} f(D u) d x+\sigma \int_{B_{R}}\left(1+\left|D u_{\varepsilon}\right|^{2}\right)^{\frac{q}{2}} d x
\end{align*}
$$

Since $\sigma<1$, by (4.3) and (4.4) we deduce that $D v_{\varepsilon, \sigma}$ is uniformly bounded in $L^{p}\left(B_{R}, \mathbb{R}^{n N}\right)$ with respect to σ. Then up to a subsequence

$$
D v_{\varepsilon, \sigma} \rightharpoonup D w_{\varepsilon} \quad \text { weakly in } L^{p}\left(B_{R}\right) \quad \text { as } \sigma \rightarrow 0
$$

for some $w_{\varepsilon} \in u_{\varepsilon}+W_{0}^{1, p}\left(B_{R}, \mathbb{R}^{N}\right)$. By lower semicontinuity we can let $\sigma \rightarrow 0$ in (4.2) and (4.4) obtaining

$$
\begin{equation*}
\left(\int_{B_{a^{3} R}}\left|D w_{\varepsilon}\right|^{\frac{n p}{n-2 b}} d x\right)^{\frac{p(n-2 b)}{2 n}} \leqslant c\left(1+\int_{B_{R+\varepsilon}} f(D u) d x\right) \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B_{R}} f\left(D w_{\varepsilon}\right) d x \leqslant \int_{B_{R+\varepsilon}} f(D u) d x \tag{4.6}
\end{equation*}
$$

so that

$$
\begin{equation*}
\int_{B_{R}}\left|D w_{\varepsilon}\right|^{p} d x \leqslant \int_{B_{R+\varepsilon}} f(D u) d x+c_{1}\left|B_{R}\right| \tag{4.7}
\end{equation*}
$$

Now, since $w_{\varepsilon} \in u_{\varepsilon}+W_{0}^{1, p}\left(B_{R}, \mathbb{R}^{N}\right)$ and $D u_{\varepsilon}$ converges to $D u$ strongly in L^{p}, by (4.7) we deduce that up to a subsequence

$$
D w_{\varepsilon} \rightharpoonup D w \text { weakly in } L^{p}\left(B_{R}\right) \quad \text { as } \varepsilon \rightarrow 0
$$

for some $w \in u+W_{0}^{1, p}\left(B_{R}, \mathbb{R}^{N}\right)$. Finally, letting $\varepsilon \rightarrow 0$ in (4.5) and (4.6), by semicontinuity we have

$$
\int_{B_{a}^{3} R}|D w|^{\frac{n p}{n-2 b}} d x \leqslant c\left(1+\int_{B_{R}} f(D u) d x\right)^{\frac{2 n}{p(n-2 b)}}
$$

and

$$
\begin{equation*}
\int_{B_{R}} f(D w) d x \leqslant \lim \inf _{\varepsilon \rightarrow 0} \int_{B_{R}} f\left(D w_{\varepsilon}\right) d x \leqslant \int_{B_{R}} f(D u) d x \tag{4.8}
\end{equation*}
$$

Inequality (4.8) and the strict convexity of f implies that $D w=D u$ a.e. in B_{R}. Moreover, since $w=u$ on ∂B_{R}, Poincaré inequality gives $u=w$. This concludes the proof of Theorem 2.1.

5. - Proof of Theorem 2.2.

Before we prove Theorem 2.2, we give a precise statement of the boundedness result contained in [DM].

Theorem 5.1. - Let $u \in W^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ be a minimizer of the functional

$$
\mathscr{F}(u)=\int_{\Omega} g(|D u|) d x
$$

where g is a N-function, $g \in \Delta_{2}^{m}$. Then u is locally bounded in Ω and the following estimate holds

$$
\begin{equation*}
\sup _{B_{a R}}|u| \leqslant c(m, \alpha, R)\left(1+\int_{\Omega} g(|u|) d x\right) \tag{5.1}
\end{equation*}
$$

for every $R>0$ such that $B_{R} \subset \Omega$ and every $\alpha \in(0,1)$.
It is remarkable that since $g \in \Delta_{2}$, from $g(|D u|) \in L_{\text {loc }}^{1}(\Omega)$ it follows that also $g(|u|) \in L_{\text {loc }}^{1}(\Omega)$.

Let us go on with the proof of Theorem 2.2. We proceed as in the proof of

Lemma 3.2. So, let v be a minimizer of

$$
\mathscr{F}_{\sigma}(w)=\int_{B_{R}} g(|D w|) d x+\sigma \int_{B_{R}}\left[\left(1+|D w|^{2}\right)^{\frac{q}{2}}-1\right] d x .
$$

By (3.12) and Lemma 2.2 we have

$$
\begin{aligned}
(I I I) & \leqslant c(n, N, L, q, \alpha, R) \int_{B_{a^{2} R}}\left|\tau_{s, h} v\right|^{2} d x \\
& \leqslant c(n, N, L, p, q, \alpha, R)\left(\sup _{B_{a R}}|v|\right)^{2-p} \int_{B_{a^{2} R}}\left|\tau_{s, h} v\right|^{p} d x \\
& \leqslant c(n, N, L, p, q, \alpha, R)\left(\sup _{B_{a R}}|v|\right)^{2-p}|h|_{B_{a R}}^{p}|D v|^{p} d x .
\end{aligned}
$$

This estimate is similar to (3.15) of the previous proof. Then by Lemma 2.3 we have, as in conclusion of Lemma 3.2

$$
\begin{equation*}
\left(\int_{B_{a}^{3} B_{R}}|D v|^{\frac{n p}{n-2 b}} d x\right)^{\frac{n-2 b}{2 n}} \leqslant c\left(1+\left(\sup _{B_{a R}}|v|\right)^{\frac{2-p}{2}}\right)\left(1+\int_{B_{R}} g(|D v|) d x\right)^{\frac{1}{2}} \tag{5.2}
\end{equation*}
$$

for every $b \in(0,(p / 2))$.
Let now u be a local minimizer of \mathfrak{F}. We mollify u as in section 4, in order to have $u_{\varepsilon} \in W^{1, q}\left(B_{R}, \mathbb{R}^{N}\right)$ and $u_{\varepsilon} \rightarrow u$ in $W^{1, p}$. Moreover we consider the Dirichlet problem

$$
\begin{equation*}
\min \left\{\int_{B_{R}} g_{\sigma}(|D w|) d x: w \in u_{\varepsilon}+W_{0}^{1, q}\left(B_{R}\right)\right\} . \tag{5.3}
\end{equation*}
$$

Let $v_{\varepsilon, \sigma} \in u_{\varepsilon}+W_{0}^{1, q}\left(B_{R}, \mathbb{R}^{N}\right)$ be the solution of (5.3). Then (5.2) implies

$$
\begin{align*}
\left(\int_{B_{a}{ }^{3} R}\left|D v_{\varepsilon, \sigma}\right|^{\frac{n p}{n-2 b}} d x\right)^{\frac{n-2 b}{2 n}} & \leqslant \tag{5.4}\\
& c\left(1+\left(\sup _{B_{a R}}\left|v_{\varepsilon, \sigma}\right|\right)^{\frac{2-p}{2}}\right)\left(1+\int_{B_{R}} g\left(\left|D v_{\varepsilon, \sigma}\right|\right) d x\right)^{\frac{1}{2}}
\end{align*}
$$

Now we use Theorem 5.1 obtaining

$$
\begin{equation*}
\sup _{B_{a R}}\left|v_{\varepsilon, \sigma}\right| \leqslant \tilde{c}\left(1+\int_{B_{R}} g_{\sigma}\left(\left|v_{\varepsilon, \sigma}\right|\right) d x\right) \tag{5.5}
\end{equation*}
$$

where \tilde{c} is a positive constant, independent of ε and σ. We use Δ_{2} condition and
convexity of g_{σ} :

$$
\int_{B_{R}} g_{\sigma}\left(\left|v_{\varepsilon, \sigma}\right|\right) d x \leqslant c\left(\int_{B_{R}} g_{\sigma}\left(\frac{\left|v_{\varepsilon, \sigma}-\left(v_{\varepsilon, \sigma}\right)_{R}\right|}{2 R}\right) d x+\int_{B_{R}} g_{\sigma}\left(\left|\left(v_{\varepsilon, \sigma}\right)_{R}\right|\right) d x\right),
$$

where $\left(v_{\varepsilon, \sigma}\right)_{R}=\left|B_{R}\right|^{-1} \int_{B_{R}} v_{\varepsilon, \sigma} d x$.
Then we apply Poincaré inequality (see [BL]):

$$
\int_{B_{R}} g_{\sigma}\left(\frac{\left|v_{\varepsilon, \sigma}-\left(v_{\varepsilon, \sigma}\right)_{R}\right|}{2 R}\right) d x \leqslant c \int_{B_{R}} g_{\sigma}\left(\left|D v_{\varepsilon, \sigma}\right|\right) d x .
$$

Moreover

$$
\begin{aligned}
\left|\left(v_{\varepsilon, \sigma}\right)_{R}\right| & \leqslant \frac{1}{\left|B_{R}\right|}\left(\int_{B_{R}}\left|v_{\varepsilon, \sigma}-u_{\varepsilon}\right| d x+\int_{B_{R}}\left|u_{\varepsilon}\right| d x\right) \\
& \leqslant \frac{c}{\left|B_{R}\right|}\left(\int_{B_{R}}\left|D v_{\varepsilon, \sigma}\right| d x+\int_{B_{R}}\left|D u_{\varepsilon}\right| d x+\int_{B_{R}}\left|u_{\varepsilon}\right| d x\right)
\end{aligned}
$$

thus, using Jensen inequality and integrating over B_{R},

$$
\int_{B_{R}} g_{\sigma}\left(\left|\left(v_{\varepsilon, \sigma}\right)_{B_{R}}\right|\right) d x \leqslant c\left(\int_{B_{R}} g_{\sigma}\left(\left|D v_{\varepsilon, \sigma}\right|\right) d x+\int_{B_{R}} g_{\sigma}\left(\left|D u_{\varepsilon}\right|\right) d x+\int_{B_{R}} g_{\sigma}\left(\left|u_{\varepsilon}\right|\right) d x\right) .
$$

Eventually we put together the previous inequalities and we use the minimality of $v_{\varepsilon, \sigma}$ with respect to u_{ε} :

$$
\begin{align*}
\int_{B_{R}} g_{\sigma}\left(\left|v_{\varepsilon, \sigma}\right|\right) d x \leqslant & c\left(\int_{B_{R}} g_{\sigma}\left(\left|D v_{\varepsilon, \sigma}\right|\right) d x+\int_{B_{R}} g_{\sigma}\left(\left|D u_{\varepsilon}\right|\right) d x+\int_{B_{R}} g_{\sigma}\left(\left|u_{\varepsilon}\right|\right) d x\right) \tag{5.6}\\
\leqslant & c\left(2 \int_{B_{R}} g_{\sigma}\left(\left|D u_{\varepsilon}\right|\right) d x+\int_{B_{R}} g_{\sigma}\left(\left|u_{\varepsilon}\right|\right) d x\right) \\
\leqslant & c\left(\int_{B_{R}} g\left(\left|D u_{\varepsilon}\right|\right) d x+\sigma \int_{B_{R}}\left(1+\left|D u_{\varepsilon}\right|^{2}\right)^{\frac{q}{2}} d x\right. \\
& \left.+\int_{B_{R}} g\left(\left|u_{\varepsilon}\right|\right) d x+\sigma \int_{B_{R}}\left(1+\left|u_{\varepsilon}\right|^{2}\right)^{\frac{q}{2}} d x\right) .
\end{align*}
$$

(5.4), (5.5), (5.6) and Jensen merge into
(5.7) $\quad\left(\int_{B_{a} 3_{R}}\left|D v_{\varepsilon, \sigma}\right|^{\frac{n p}{n-2 b}} d x\right)^{\frac{n-2 b}{2 n}} \leqslant$
$c\left(1+\int_{B_{R+\varepsilon}} g(|D u|) d x+\int_{B_{R+\varepsilon}} g(|u|) d x+\sigma \int_{B_{R}}\left(1+\left|D u_{\varepsilon}\right|^{2}\right)^{\frac{q}{2}} d x+\sigma \int_{B_{R}}\left(1+\left|u_{\varepsilon}\right|^{2}\right)^{\frac{q}{2}} d x\right)^{3-p}$.

Moreover, as in (4.3) and (4.4),

$$
\begin{equation*}
\int_{B_{R}} g\left(\left|D v_{\varepsilon, \sigma}\right|\right) d x \leqslant \int_{B_{R+\varepsilon}} g(|D u|) d x+\sigma \int_{B_{R}}\left(1+\left|D u_{\varepsilon}\right|^{2}\right)^{\frac{q}{2}} d x . \tag{5.9}
\end{equation*}
$$

Since $\sigma<1$, these estimates are uniform with respect to σ. Thus there exists $w_{\varepsilon} \in u_{\varepsilon}+W_{0}^{1, p}\left(B_{R}, \mathbb{R}^{N}\right)$ such that, up to a subsequence,

$$
D v_{\varepsilon, \sigma} \rightharpoonup D w_{\varepsilon} \quad \text { weakly in } L^{p}\left(B_{R}\right), \text { as } \sigma \rightarrow 0,
$$

then, by semicontinuity and (5.7), (5.8), (5.9) we get

$$
\left(\int_{B_{a}^{3} R}\left|D w_{\varepsilon}\right|^{\frac{n p}{n-2 b}} d x\right)^{\frac{n-2 b}{2 n}} \leqslant c\left(1+\int_{B_{R+\varepsilon}} g(|D u|) d x+\int_{B_{R+\varepsilon}} g(|u|) d x\right)^{3-p}
$$

and

$$
\int_{B_{R}}\left|D w_{\varepsilon}\right|^{p} d x \leqslant \int_{B_{R+\varepsilon}} g(|D u|) d x+c_{1}\left|B_{R}\right|
$$

Therefore, since $D u_{\varepsilon} \rightarrow D u$ strongly in L^{p}, there exists $w \in u+W_{0}^{1, p}\left(B_{R}, \mathbb{R}^{N}\right)$ such that

$$
D w_{\varepsilon} \rightharpoonup D w \quad \text { as } \varepsilon \rightarrow 0,
$$

weakly in $L^{p}\left(B_{R}\right)$. Again we use semicontinuity:

$$
\left(\int_{B_{a}^{3} R}|D w|^{\frac{n p}{n-2 b}} d x\right)^{\frac{n-2 b}{2 n}} \leqslant c\left(1+\int_{B_{R}} g(|D u|) d x+\int_{B_{R}} g(|u|) d x\right)^{3-p}
$$

and

$$
\int_{B_{R}} g(|D w|) d x \leqslant \lim \inf _{\varepsilon \rightarrow 0} \int_{B_{R}} g\left(\left|D w_{\varepsilon}\right|\right) d x \leqslant \int_{B_{R}} g(|D u|) d x .
$$

As in Theorem 2.1 we conclude that $u=w$.

REFERENCES

[A] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975.
[AF] E. Acerbi - N. Fusco, Regularity for minimizers of non-quadratic functionals. The case $1<p<2$, Journ. of Math. Anal. and Applications, 140 (1989), 115-135.
[BL] T. Bhattacharya - F. Leonetti, A new Poincaré inequality and its applications to the regularity of minimizers of integral functionals with nonstandard growth, Nonlinear Analysis TMA, vol. 17, 9 (1991), 833-839.
[BMS] L. Boccardo - P. Marcellini - C. Sbordone, L^{∞}-regularity for variational problems with sharp non standard growth conditions, Boll. U.M.I. (7) 4-A (1990), 219-225.
[Ch] H. J. Сhoe, Interior behavior of minimizers for certain functionals with non standard growth conditions, Nonlinear Analysis TMA, 19 (1992), 933-945.
[CF] A. Cianchi A. - N. Fusco, Gradient regularity for minimizers under general growth conditions, J. reine angew. Math., 507 (1999), 15-36.
[DM] A. Dall'Aglio - E. Mascolo, Regularity for a class of non linear elliptic systems with non standard growth conditions, To appear.
[ELM1] L. Esposito - F. Leonetti - G. Mingione, Regularity for minimizers of functionals with $p-q$ growth, NoDEA Nonlinear Differential Equations Appl., 6 (1999), 133-148.
[ELM2] L. Esposito - F. Leonetti - G. Mingione, Higher integrability for minimizers of integral functionals with (p, q) growth, J. Differential Equations, 157 (1999), 414-438.
[FS] N. Fusco - C. Sbordone, Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions, Comm. on Pure and Appl. Math., 43 (1990), 673-683.
[G1] M. Giaquinta, Multiple integrals in the calculus of variations and non linear elliptic systems, Annals of Math. Studies, 105 (1983), Princeton Univ. Press.
[G2] M. GIaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987), 245-248.
[Gi] E. Giusti, Metodi diretti nel calcolo delle variazioni, U.M.I. (1994).
[H] M. C. Hong, Some remarks on the minimizers of variational integrals with non standard growth conditions, Boll. U.M.I. A, 6 (1992), 91-101.
[Li] G. Lieberman, The natural generalization of the natural growth conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361.
[M1] P. Marcellini, Un example de solution discontinue d'un probléme variationel dans le cas scalaire, Preprint Ist. «U. Dini», Firenze (1987).
[M2] P. Marcellini, Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions, Arch. Rat. Mech. and Analysis, 105 (1989), 267-284.
[M3] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Diff. Equat., 90 (1991), 1-30.
[M4] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa, Cl. sci., 23 (1996), 1-25.
F. Leonetti: Dipartimento di Matematica Pura ed Applicata Università di L'Aquila, 67100 L'Aquila, Italy. E-Mail: leonetti@univaq.it
E. Mascolo: Dipartimento di Matematica «U. Dini», Università di Firenze

Viale Morgagni 67/A, 50134 Firenze, Italy. E-Mail: mascolo@udini.math.unifi.it
F. Siepe: Dipartimento di Matematica «U. Dini», Università di Firenze Viale Morgagni 67/A, 50134 Firenze, Italy. E-Mail: siepe@udini.math.unifi.it

[^0]
[^0]: Pervenuta in Redazione
 il 18 giugno 1999 ed in forma riveduta il 16 marzo 2000

