BOLLETTINO UNIONE MATEMATICA ITALIANA

F. LEONETTI, E. MASCOLO, F. SIEPE

Gradient regularity for minimizers of functionals under p-q subquadratic growth

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **4-B** (2001), n.3, p. 571–586.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2001_8_4B_3_571_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Gradient Regularity for Minimizers of Functionals Under p-q Subquadratic Growth (*).

F. Leonetti - E. Mascolo - F. Siepe

Sunto. – Si prova la maggior sommabilità del gradiente dei minimi locali di funzionali integrali della forma

$$\int_{\Omega} f(Du) \, dx \,,$$

dove f soddisfa l'ipotesi di crescita

$$|\xi|^p - c_1 \le f(\xi) \le c(1 + |\xi|^q),$$

con 1 . L'integrando <math>f è C^2 e DDf ha crescita p-2 dal basso e q-2 dall'alto.

1. - Introduction.

Let us consider the functional

(1.1)
$$\mathcal{F}(u, \Omega) = \int_{\Omega} f(Du(x)) dx$$

where Ω is a bounded open set in \mathbb{R}^n , $n \ge 2$, Du is the gradient of a vector valued function $u: \Omega \to \mathbb{R}^N$, $N \ge 1$, and $f: \mathbb{R}^{nN} \to \mathbb{R}$.

In this paper we study the local regularity of minimizers of \mathcal{F} . In particular, we consider the case in which the integrand function f satisfies the p-q growth condition

$$|\xi|^p - c_1 \le f(\xi) \le c(1 + |\xi|^q)$$

with p < q.

The regularity properties of minimizers, under assumption (1.2), has been intensely studied in the last years.

In the scalar case, i.e. when N=1, Marcellini in [M2] and [M3], proved the $W^{1, \infty}$ regularity, provided p and q are not too far apart.

(*) We acknowledge the support of MURST (40%, 60%) and GNAFA-CNR. Mathematics subjects classification (Amer. Math. Soc.): 49×60 , 35×160 .

In the setting of p-q growth, minimizers may be unbounded in general, if no restriction on p and q is assumed (see [G2], [M1], [H]).

In the vectorial case there are recent results in [ELM1] and [ELM2], about higher integrability for the gradient of minimizers, in the case of $2 \le p < q$.

Moreover, Marcellini in [M4] gives the local Lipschitz continuity of the local minimizers, when $f(\xi) = g(|\xi|)$ and g satisfies some general conditions which imply, if (1.2) holds, that $2 \le p < q$.

Our aim is to study the case when (1.2) holds with 1 .

We will prove a higher integrability result for the gradient Du of local minimizers u of \mathcal{F} . More precisely there exists $\chi = \chi(n, p) > 1$ such that

$$(1.3) Du \in L^{p\chi}_{loc}(\Omega, \mathbb{R}^{nN}).$$

This result will be obtained under the restrictions

$$(1.4) \frac{2n}{n+2}$$

 $f \in C^2$, DDf has p-2 growth from below and q-2 growth from above. The idea of the proof is the following. We consider a family of perturbed functionals of (1.1), defining, for $\sigma \in (0, 1)$

$$\mathcal{F}_{\sigma}(w, B_R) = \int_{B_R} f(Dw) dx + \sigma \int_{B_R} [(1 + |Dw|^2)^{q/2} - 1] dx,$$

where B_R is a ball such that $B_{4R} \subset \Omega$.

Now \mathcal{T}_{σ} has the same q growth from above and below. For local minimizers $v \in W^{1, q}(B_R, \mathbb{R}^N)$ of \mathcal{T}_{σ} , the following estimate holds

(1.5)
$$||Dv||_{L^{p\chi}(B_{aR})} \le c \left[1 + \int_{B_R} f(Dv) \ dx \right]^{2/p^2}$$

for $\alpha \in (0, 1)$ and a constant c that does not depend on σ .

As in [ELM2], if u is a local minimizer of \mathcal{F} , we mollify u and we get u_{ε} . Then we consider the *Dirichlet problems*

$$\min \left\{ \mathcal{F}_{\sigma}(w, B_R) : w \in u_{\varepsilon} + W_0^{1, q}(B_R, \mathbb{R}^N) \right\}.$$

If $v_{\varepsilon,\sigma}$ is the solution of such a problem, we write (1.5) for $v = v_{\varepsilon,\sigma}$. We will prove that letting first $\sigma \to 0$ and then $\varepsilon \to 0$, $Dv_{\varepsilon,\sigma}$ converges weakly to Du and we can pass to the limit in (1.5), thus obtaining (1.3).

In the case of $f(\xi) = g(|\xi|)$ where $g:[0, +\infty) \to [0, +\infty)$ is convex, g(0) = 0, $g \ge 0$ and $g \in \Delta_2$, we apply a recent result about local boundedness of minimizers of \mathcal{F} , contained in [DM]. This result allows us to get (1.3) without

the restriction

$$\frac{2n}{n+2}$$

contained in (1.4). Related results can be found in [FS], [Ch], [BL], [Li], and [CF].

2. – Statements and notations.

As we have seen in section 1, we deal with the local regularity properties for minimizers of functionals of type (1.1). Moreover we assume that $f \in C^2(\mathbb{R}^{nN})$, $f \ge 0$ satisfies the following growth conditions

(2.1)
$$|\xi|^p - c_1 \le f(\xi) \le L(1 + |\xi|^2)^{\frac{q}{2}}$$

$$|Df(\xi)| \le L(1+|\xi|^2)^{\frac{q-1}{2}}$$

$$|D^2 f(\xi)| \le L(1+|\xi|^2)^{\frac{q-2}{2}}$$

(2.4)
$$\langle D^2 f(\xi) \lambda, \lambda \rangle \ge \nu (1 + |\xi|^2)^{\frac{p-2}{2}} |\lambda|^2$$

for every ξ , $\lambda \in \mathbb{R}^{nN}$ and some L > 1, $\nu > 0$, $c_1 \ge 0$. p, q are such that 1 . Note that growth condition (2.2) for <math>Df can be derived by growth condition (2.1) for f and convexity (2.4).

We say that $u \in W^{1,\,1}_{loc}(\Omega,\,\mathbb{R}^N)$ is a local minimizer of \mathcal{F} if $f(Du) \in L^1_{loc}(\Omega)$, and

$$\int\limits_{\mathrm{supp}(\varphi)} f(Du) \; dx \leqslant \int\limits_{\mathrm{supp}(\varphi)} f(Du + D\varphi) \; dx \; ,$$

for every $\varphi \in W^{1,1}(\Omega, \mathbb{R}^N)$ such that $\operatorname{supp}(\varphi) \subset \Omega$.

By these assumptions, we observe immediately that $u \in W^{1,p}_{loc}(\Omega, \mathbb{R}^N)$. We will prove the following higher integrability result for u

Theorem 2.1. – Let $u \in W^{1,\,1}_{loc}(\Omega,\,\mathbb{R}^N)$ be a local minimizer of functional (1.1), satisfying conditions (2.1), (2.2), (2.3) and (2.4). Then, if p > 2n/(n+2), we have

$$Du \in L_{\text{loc}}^{\chi p}(\Omega, \mathbb{R}^{nN})$$

for some $\chi = \chi(n, p) > 1$.

Moreover, if $x_0 \in \Omega$ and R > 0 are such that $B(x_0, 4R) \subset \Omega$, and $\alpha \in (0, 1)$,

there exists a positive constant $c \equiv c(n, N, p, q, L, \nu, \alpha, R)$ such that

(2.5)
$$\int_{B_{3p}} |Du|^{p\chi} dx \le c \left(1 + \int_{B_p} f(Du) dx\right)^{\frac{2\chi}{p}}.$$

This Theorem can be improved when we consider a particular structure for the functional, that is when we suppose that $f(\xi) = g(|\xi|)$, where $g \in C^2([0, +\infty))$ is a convex, increasing N-function of class Δ_2 , that is, $g:[0, +\infty) \to [0, +\infty)$ is such that g(t) = 0 if and only if t = 0 and for every t > 0 and every t > 0

$$g(\lambda t) \leq \lambda^m g(t)$$

for some m > 1 (to be more precise, if this property holds, we say that $g \in \Delta_2^m$). Moreover g satisfies the following limit conditions

$$\lim_{t \to 0^+} \frac{g(t)}{t} = 0 \qquad \lim_{t \to +\infty} \frac{g(t)}{t} = +\infty .$$

Under these assumptions we prove the following

THEOREM. – 2.2. – Let us suppose that $u \in W^{1,1}_{loc}(\Omega, \mathbb{R}^N)$ is a local minimizer of functional (1.1), satisfying conditions (2.1)-(2.4). Let us assume also that $f(\xi) = g(|\xi|)$, with g as above. Then

$$Du \in L_{loc}^{\chi p}(\Omega, \mathbb{R}^{nN})$$

for some $\chi = \chi(n, p) > 1$, and the following estimate holds

(2.6)
$$\int_{B_{\alpha^{3}R}} |Du|^{p\chi} dx \le c \left(1 + \int_{B_R} g(|Du|) dx + \int_{B_R} g(|u|) dx \right)^{2\chi(3-p)}$$

for some positive $c = c(n, N, p, q, L, \nu, \alpha, R, m)$ and every $\alpha \in (0, 1)$.

Let us recall some known and technical results that will be useful later

Lemma 2.1. – For every ξ , $\xi \in \mathbb{R}^k$ and $\delta \in (-\frac{1}{2}, 0)$

(2.7)
$$1 \leq \frac{\int_{0}^{1} (1 + |\xi + t(\xi - \xi)|^{2})^{\delta} dt}{(1 + |\xi|^{2} + |\xi|^{2})^{\delta}} \leq c(\delta)$$

$$(2.8) 0 < c_1(\delta) \le \frac{\left| (1 + |\xi|^2)^{\delta} \xi - (1 + |\xi|^2)^{\delta} \xi \right|}{(1 + |\xi|^2 + |\xi|^2)^{\delta} |\xi - \xi|} \le c_2(\delta, k).$$

Proof. - See [AF], [Gi, page 274].

Fix h > 0 and for s = 1, ..., n a direction e_s in \mathbb{R}^n . For every vector valued function $G: \mathbb{R}^n \to \mathbb{R}^k$ we define

$$\tau_{s,h}G(x) = G(x + he_s) - G(x).$$

We state some properties of this difference function in connection with Sobolev spaces.

LEMMA 2.2. – Let $0 < \varrho < R$, $|h| < R - \varrho$, $p \ge 1$, and $G \in W^{1, p}(B_R, \mathbb{R}^k)$. Then for every s = 1, ..., n

$$\int\limits_{B_\varrho} |\tau_{s,\,h} G(x)|^p \, dx \leq |h|^p \int\limits_{B_R} |D_s G(x)|^p \, dx \; .$$

Proof. - See [G1].

LEMMA 2.3. – Let $0 < \varrho < R$ and $G \in L^2(B_R, \mathbb{R}^k)$. If for some $a \in (0, 2)$, M > 0 and $\eta \in C_0^1(B_{\frac{R+\varrho}{2}})$ such that $0 \le \eta \le 1$ and $|D\eta| \le 4/(R-\varrho)$ in \mathbb{R}^n , $\eta = 1$ on B_o ,

$$\sum_{s=1}^{n} \int_{B_{p}} \eta^{2} |\tau_{s,h} G(x)|^{2} dx \leq M^{2} |h|^{a}$$

for every h with $|h| < R - \varrho$, then $G \in W^{b, 2}(B_{\varrho}, \mathbb{R}^k) \cap L^{\frac{2n}{n-2b}}(B_{\varrho}, \mathbb{R}^k)$, for every $b \in (0, (a/2))$. Moreover

$$||G||_{L^{\frac{2n}{n-2h}}(B_{\alpha})} \leq c(M + ||G||_{L^{2}(B_{R})}),$$

with $c \equiv c(n, k, b, a, R, \varrho)$.

Proof. - See [A].

3. - Preliminary results.

In this section we consider a perturbation of the integrand of functional (1.1), given by

$$f_{\sigma}(\xi) = f(\xi) + \sigma[(1 + |\xi|^2)^{\frac{q}{2}} - 1]$$

where $\sigma \in (0, 1)$ under (2.1), ..., (2.4). The following Lemma contains some properties of this function f_{σ} . The proof is rather easy

LEMMA 3.1. – $f_{\sigma} \in C^{2}(\mathbb{R}^{nN})$, $f_{\sigma} \ge 0$ and satisfies the following conditions

(3.1)
$$\sigma\mu|\xi|^{q} + |\xi|^{p} - c_{1} - \sigma \leq f_{\sigma}(\xi) \leq (L+1)(1+|\xi|^{2})^{\frac{q}{2}}$$

$$|Df_{\sigma}(\xi)| \le (L+q)(1+|\xi|^2)^{\frac{q-1}{2}}$$

$$|D^2 f_{\sigma}(\xi)| \le (L + nNq^2)(1 + |\xi|^2)^{\frac{q-2}{2}}$$

$$(3.4) \qquad \langle D^2 f_{\sigma}(\xi) \lambda, \lambda \rangle \ge \left[\sigma q(q-1)(1+|\xi|^2)^{\frac{q-2}{2}} + \nu(1+|\xi|^2)^{\frac{p-2}{2}} \right] |\lambda|^2$$

for every $\xi, \lambda \in \mathbb{R}^{nN}$, where L, ν and c_1 are those of (2.1), ..., (2.4) and $\mu = ((2^{q/2} - 1)/2^{q/2}) \in (0, 1)$.

Moreover, if f satisfies the assumptions of Theorem 2.2, then

$$f_{\sigma}(\xi) = g_{\sigma}(|\xi|),$$

where

$$g_{\sigma}(t) = g(t) + \sigma[(1+t^2)^{q/2} - 1],$$

 $g_{\sigma}:[0, +\infty) \rightarrow [0, +\infty)$ is convex, increasing, $g_{\sigma}(t)=0$ if and only if t=0, g_{σ} satisfies the Δ_2^s -condition, where $s=2 \lor m=\max\{2, m\}$. We have also $g_{\sigma} \in C^2([0, +\infty))$ and

$$\lim_{t \to 0^+} \frac{g_{\sigma}(t)}{t} = 0 , \qquad \lim_{t \to +\infty} \frac{g_{\sigma}(t)}{t} = +\infty .$$

Now we introduce for every $\sigma \in (0, 1)$ and R > 0 such that $B_{4R} \subset \Omega$, the functional

$$\mathcal{T}_{\sigma}(w) = \int_{B_{D}} f_{\sigma}(Dw) \ dx \ .$$

A local minimizer of functional \mathcal{F}_{σ} , will be a function $v \in W^{1, q}(B_R, \mathbb{R}^N)$ such that $\mathcal{F}_{\sigma}(v) \leq \mathcal{F}_{\sigma}(v + \varphi)$, for every $\varphi \in W_0^{1, q}(B_R, \mathbb{R}^N)$. Let us prove the following result.

LEMMA 3.2. – Let $v \in W^{1, q}(B_R, \mathbb{R}^N)$ be a local minimizer of functional \mathcal{F}_{σ} with $(2n/(n+2)) . Then for every <math>\alpha \in (0, 1)$, and for every b such that

$$0 < b < \frac{n}{2} - \frac{n}{n} + 1$$
,

we have that

(3.5)
$$Dv \in L^{\frac{np}{n-2b}}(B_{a^3R}, \mathbb{R}^{nN}).$$

Moreover there exists a constant $c \equiv c(n, N, p, q, L, \nu, c_1, R, \alpha, b)$ such that

(3.6)
$$||Dv||_{L^{\frac{np}{n-2b}}(B_a^3R)} \le c \left[1 + \int_{B_B} f(Dv) \ dx\right]^{\frac{2}{p^2}}.$$

PROOF. – Since v is a local minimizer for \mathcal{F}_{σ} , under growth conditions (3.1)-(3.4) we have that the Euler's equation

(3.7)
$$\int_{B_D} Df_{\sigma}(Dv) \, D\varphi \, dx = 0$$

holds for every $\varphi \in W^{1, q}(B_R, \mathbb{R}^N)$ such that $\operatorname{supp}(\varphi) \subset B_R$.

Let $\alpha \in (0, 1)$ and $\eta \in C_0^{\infty}(\mathbb{R}^n)$ be a cut-off function. More precisely we assume that $\sup_{\alpha \in \mathbb{R}^n} (\eta) \in B_{\frac{\alpha^3R + \alpha^2R}{2}}, \quad \eta \equiv 1$ in $B_{\alpha^3R}, \quad 0 \le \eta \le 1, \quad |D\eta| \le 4/(\alpha^2(1-\alpha)R)$.

Now let $|h| < R\alpha^2(1-\alpha)$ and for $s=1,\ldots,n$ put $\varphi = \tau_{s,-h}(\eta^2\tau_{s,h}v)$ as test function in (3.7). We get

$$(I) = \int_{B_R} \eta^2 \tau_{s,h} (Df_{\sigma}(Dv)) \tau_{s,h} Dv dx$$

$$(3.8) \qquad = -\int_{B_{\sigma}} \tau_{s,h} (Df_{\sigma}(Dv)) 2\eta D\eta \otimes \tau_{s,h} v dx = (II).$$

Moreover, since

$$\tau_{s,h}(Df_{\sigma}(Dv)) = \int_{0}^{1} D^{2}f_{\sigma}(Dv + t\tau_{s,h}(Dv)) dt\tau_{s,h}Dv,$$

we have that

(3.9)
$$(I) = \int_{B_R} \int_0^1 D^2 f_{\sigma}(Dv + t\tau_{s,h}(Dv)) \eta \tau_{s,h} Dv \eta \tau_{s,h} Dv dt dx ,$$

$$(II) = -\int_{B_{D}} \int_{0}^{1} 2D^{2} f_{\sigma}(Dv + t\tau_{s, h}(Dv)) \eta \tau_{s, h} Dv D\eta \otimes \tau_{s, h} v dt dx.$$

By the properties of f_{σ} we are in conditions to apply Cauchy-Schwartz inequality:

$$(3.10) (II) \leq \frac{1}{2} \int_{B_R}^{1} \int_{0}^{1} D^2 f_{\sigma}(Dv + t\tau_{s,h}(Dv)) \eta \tau_{s,h} Dv \eta \tau_{s,h} Dv dt dx$$

$$+ 2 \int_{B_R}^{1} \int_{0}^{1} D^2 f_{\sigma}(Dv + t\tau_{s,h}(Dv)) D\eta \otimes \tau_{s,h} v D\eta \otimes \tau_{s,h} v dt dx$$

$$= \frac{1}{2} (I) + 2(III).$$

Since the integrals (I) and (III) are finite, by (3.8) and (3.10) we get

$$(I) \leq 4(III)$$
.

Moreover, by (3.4) and Lemma 2.1

(3.11)
$$(I) \ge c \int_{B_{D}} \eta^{2} |\tau_{s,h}((1+|Dv|^{2})^{\frac{p-2}{4}}Dv)|^{2} dx$$

for some positive constant $c \equiv c(\nu, p, n, N)$. Now by growth conditions (3.3) and the properties of η we have

$$(III) \leq c \int_{B_{\sigma^2 R}} \int_{0}^{1} |D\eta|^2 (1 + |Dv + t\tau_{s,h} Dv|^2)^{\frac{q-2}{2}} |\tau_{s,h} v|^2 dt dx,$$

where $c \equiv c(n, N, L, q)$. Since we suppose that $1 we can drop <math>(1 + |Dv + t\tau_{s,h}Dv|^2)^{\frac{q-2}{2}}$ since it is less than 1. Then we have

(3.12)
$$(III) \le c(n, N, L, q, \alpha, R) \int_{B_{\alpha^2 R}} |\tau_{s, h} v|^2 dx = (IV).$$

Let $a \in (0, p)$. Then

(3.13)
$$(IV) = c \int_{B_a^2_R} |\tau_{s,h} v|^a |\tau_{s,h} v|^{2-a} dx$$

$$\leq c \left(\int\limits_{B_{s^{2}p}} |\tau_{s,h} v|^{p} dx \right)^{\frac{a}{p}} \left(\int\limits_{B_{a^{2}p}} |\tau_{s,h} v|^{\frac{2-a}{p-a}^{p}} dx \right)^{\frac{p-a}{p}}.$$

Since $v \in W^{1, p}(B_R, \mathbb{R}^N)$, $B_{\alpha^2 R} \subset B_{\alpha R} \subset B_R$ and $|h| < \alpha^2 R - \alpha^3 R < \alpha R - \alpha^2 R$,

by Lemma 2.2 we have

$$(3.14) (IV) \le c |h|^a \left(\int_{B_{a,p}} |Dv|^p dx \right)^{\frac{a}{p}} \left(\int_{B_{a^2,p}} |\tau_{s,h} v|^{\frac{2-a}{p-a}^p} dx \right)^{\frac{p-a}{p}}.$$

Now we use the assumption p > 2n/(n+2): let us choose a in such a way that

$$\frac{2-a}{p-a}p = p^* = \frac{np}{n-p} \quad \text{that is} \quad a = n+2-2\frac{n}{p}.$$

We remark that a satisfies the required properties since we suppose that

$$p > \frac{2n}{n+2} \, .$$

With these assumptions and applying Sobolev inequality in (3.14) we obtain

$$(3.15) (IV) \le c |h|^a \left(\int_{B_{aR}} |Dv|^p dx \right)^{\frac{a}{p}} \left(\int_{B_{aR}} |Dv|^p dx \right)^{\frac{2-a}{p}}$$

and finally, by (2.1) and (3.11)

$$(3.16) \quad \int_{B_p} \eta^2 |\tau_{s,h}((1+|Dv|^2)^{\frac{p-2}{4}}Dv)|^2 dx \le 4 \ \tilde{c} |h|^a \left(1+\int_{B_p} f(Dv) \ dx\right)^{\frac{2}{p}}$$

for some positive constant $\tilde{c} \equiv \tilde{c}(n, N, p, q, L, \nu, c_1, \alpha, R)$. By this estimate and Lemma 2.3 it follows that

$$(1+|Dv|^2)^{\frac{p-2}{4}}Dv \in W^{b,2}(B_{a^3R},\mathbb{R}^{nN}) \cap L^{\frac{2n}{n-2b}}(B_{a^3R},\mathbb{R}^{nN}),$$

for every $b \in (0, (a/2))$. In particular, if we set

(3.17)
$$M = 2\sqrt{\tilde{c}n} \left(1 + \int_{B_p} f(Dv) dx\right)^{\frac{1}{p}}$$

we have

(3.18)
$$\sum_{s=1}^{n} \int_{B_{R}} \eta^{2} |\tau_{s,h}((1+|Dv|^{2})^{\frac{p-2}{4}}Dv)|^{2} dx \leq M^{2} |h|^{a}$$

from which it follows that

$$\|(1+|Dv|^2)^{\frac{p-2}{4}}Dv\|_{L^{\frac{2n}{n-2b}}(B_{q^3R})} \le \hat{c}(M+\|(1+|Dv|^2)^{\frac{p-2}{4}}Dv\|_{L^2(B_R)})$$

for some $\hat{c} \equiv \hat{c}(n, N, b, p, R, \alpha)$.

It is easy to show that for every $z \in \mathbb{R}^k$, $\vartheta > 0$ and $p \in (1, 2)$ we have

$$|z|^{p\vartheta} \le 1 + 2^{\frac{(2-p)\vartheta}{2}} [(1+|z|^2)^{\frac{p-2}{2}} |z|^2]^{\vartheta}.$$

By this fact, since (n/(n-2b)) > 1 and p < 2, it follows that

$$\begin{split} \int\limits_{B_{a^{3}R}} |Dv|^{\frac{np}{n-2b}} \, dx &\leq c(n,p,b,R,\alpha) \left(1 + \int\limits_{B_{a^{3}R}} \left((1 + |Dv|^{2})^{\frac{p-2}{2}} |Dv|^{2}\right)^{\frac{n}{n-2b}} dx \right) \\ &\leq c(n,N,p,b,R,\alpha) \Big[1 + (M + \|(1 + |Dv|^{2})^{\frac{p-2}{4}} Dv\|_{L^{2}(B_{R})})^{\frac{2n}{n-2b}} \Big] \\ &\leq c \left[1 + \left(1 + \int\limits_{B_{R}} f(Dv) \, dx \right)^{\frac{1}{p}} + \left(1 + \int\limits_{B_{R}} f(Dv) \, dx \right)^{\frac{1}{2}} \right]^{\frac{2n}{n-2b}} \\ &\leq c(n,N,p,q,L,\nu,c_{1},R,\alpha,b) \left(1 + \int\limits_{B_{R}} f(Dv) \, dx \right)^{\frac{2n}{p(n-2b)}} \end{split}$$

that is just estimate (3.6). Then the proof is concluded.

4. - Proof of Theorem 2.1.

Our next goal is to prove that Lemma 3.2 holds also for the minimizer u of our original functional (1.1). We use an approximation argument.

Let $0 < \varepsilon < \min\{1, R\}$ and consider a sequence of smooth functions u_{ε} , obtained by u by mean of standard mollifiers. We have that $u_{\varepsilon} \in W^{1, q}(B_R, \mathbb{R}^N)$ and $u_{\varepsilon} \to u$ in $W^{1, p}$.

By the growth conditions about \mathcal{T}_{σ} , we are able to define the solution $v_{\varepsilon, \sigma} \in u_{\varepsilon} + W_0^{1, q}(B_R, \mathbb{R}^N)$ of the Dirichlet problem

(4.1)
$$\min \left\{ \int_{B_R} f_{\sigma}(Dw) \ dx : \ w \in u_{\varepsilon} + W_0^{1, q}(B_R, \mathbb{R}^N) \right\}$$

according to direct methods of the calculus of variations.

Let us fix $\alpha \in (0, 1)$. We are going to apply estimate (3.6) for $v_{\varepsilon, \sigma}$. There exists a constant $c \equiv c(n, N, p, q, R, \alpha, \nu, c_1, L, b)$ not depending neither on

 ε nor σ , such that

$$(4.2) \qquad \left(\int\limits_{B_{a^{3}R}} |Dv_{\varepsilon,\sigma}|^{\frac{np}{n-2b}} dx\right)^{\frac{p(n-2b)}{2n}} \leq c \left(1 + \int\limits_{B_{R}} f(Dv_{\varepsilon,\sigma}) dx\right)$$

$$\leq c \left(1 + \int\limits_{B_{R}} f(Du_{\varepsilon}) dx\right)$$

$$\leq c \left(1 + \int\limits_{B_{R}} f(Du) dx + \sigma \int\limits_{B_{R}} (1 + |Du_{\varepsilon}|^{2})^{\frac{q}{2}} dx\right)$$

by the minimality of $v_{\varepsilon,\,\sigma}$ and Jensen inequality.

Moreover we have also

$$(4.3) \qquad \int_{B_R} |Dv_{\varepsilon,\sigma}|^p dx \leq \int_{B_R} f(Dv_{\varepsilon,\sigma}) dx + c_1 |B_R|$$

and

$$\int_{B_R} f(Dv_{\varepsilon,\sigma}) dx \leq \int_{B_R} f_{\sigma}(Dv_{\varepsilon,\sigma}) dx \leq \int_{B_R} f_{\sigma}(Du_{\varepsilon}) dx$$

$$\leq \int_{B_R} f(Du_{\varepsilon}) dx + \sigma \int_{B_R} (1 + |Du_{\varepsilon}|^2)^{\frac{q}{2}} dx$$

$$\leq \int_{B_{R+\varepsilon}} f(Du) dx + \sigma \int_{B_R} (1 + |Du_{\varepsilon}|^2)^{\frac{q}{2}} dx.$$

Since $\sigma < 1$, by (4.3) and (4.4) we deduce that $Dv_{\varepsilon, \sigma}$ is uniformly bounded in $L^p(B_R, \mathbb{R}^{nN})$ with respect to σ . Then up to a subsequence

$$Dv_{\varepsilon,\sigma} \longrightarrow Dw_{\varepsilon}$$
 weakly in $L^{p}(B_{R})$ as $\sigma \longrightarrow 0$,

for some $w_{\varepsilon} \in u_{\varepsilon} + W_0^{1, p}(B_R, \mathbb{R}^N)$. By lower semicontinuity we can let $\sigma \to 0$ in (4.2) and (4.4) obtaining

$$\left(\int_{B_{a^3R}} |Dw_{\varepsilon}|^{\frac{np}{n-2b}} dx\right)^{\frac{p(n-2b)}{2n}} \leq c \left(1 + \int_{B_{R+\varepsilon}} f(Du) dx\right),$$

and

(4.6)
$$\int_{B_R} f(Dw_{\varepsilon}) dx \leq \int_{B_{R+\varepsilon}} f(Du) dx$$

so that

$$(4.7) \qquad \int_{B_R} |Dw_{\varepsilon}|^p dx \leq \int_{B_{R+\varepsilon}} f(Du) dx + c_1 |B_R|.$$

Now, since $w_{\varepsilon} \in u_{\varepsilon} + W_0^{1, p}(B_R, \mathbb{R}^N)$ and Du_{ε} converges to Du strongly in L^p , by (4.7) we deduce that up to a subsequence

$$Dw_{\varepsilon} \rightarrow Dw$$
 weakly in $L^{p}(B_{R})$ as $\varepsilon \rightarrow 0$,

for some $w \in u + W_0^{1, p}(B_R, \mathbb{R}^N)$. Finally, letting $\varepsilon \to 0$ in (4.5) and (4.6), by semicontinuity we have

$$\int_{B_{n}^{3}_{R}} |Dw|^{\frac{np}{n-2b}} dx \le c \left(1 + \int_{B_{R}} f(Du) dx\right)^{\frac{2n}{p(n-2b)}}$$

and

$$(4.8) \qquad \int\limits_{B_P} f(Dw) \ dx \leq \lim \inf_{\varepsilon \to 0} \int\limits_{B_P} f(Dw_\varepsilon) \ dx \leq \int\limits_{B_P} f(Du) \ dx \ .$$

Inequality (4.8) and the strict convexity of f implies that Dw = Du a.e. in B_R . Moreover, since w = u on ∂B_R , Poincaré inequality gives u = w. This concludes the proof of Theorem 2.1.

5. - Proof of Theorem 2.2.

Before we prove Theorem 2.2, we give a precise statement of the boundedness result contained in [DM].

THEOREM 5.1. – Let $u \in W^{1, p}(\Omega, \mathbb{R}^N)$ be a minimizer of the functional

$$\mathcal{F}(u) = \int_{\Omega} g(|Du|) dx,$$

where g is a N-function, $g \in \Delta_2^m$. Then u is locally bounded in Ω and the following estimate holds

$$\sup_{B_{\alpha R}} |u| \le c(m, \alpha, R) \left(1 + \int_{\Omega} g(|u|) dx \right)$$

for every R > 0 such that $B_R \subset \Omega$ and every $\alpha \in (0, 1)$.

It is remarkable that since $g \in \Delta_2$, from $g(|Du|) \in L^1_{loc}(\Omega)$ it follows that also $g(|u|) \in L^1_{loc}(\Omega)$.

Let us go on with the proof of Theorem 2.2. We proceed as in the proof of

Lemma 3.2. So, let v be a minimizer of

$$\mathcal{F}_{\sigma}(w) = \int_{B_R} g(|Dw|) dx + \sigma \int_{B_R} [(1 + |Dw|^2)^{\frac{q}{2}} - 1] dx.$$

By (3.12) and Lemma 2.2 we have

$$\begin{split} (III) & \leq c(n, N, L, q, \alpha, R) \int\limits_{B_{a^{2}R}} |\tau_{s, h} v|^{2} dx \\ & \leq c(n, N, L, p, q, \alpha, R) \left(\sup_{B_{aR}} |v| \right)^{2-p} \int\limits_{B_{a^{2}R}} |\tau_{s, h} v|^{p} dx \\ & \leq c(n, N, L, p, q, \alpha, R) \left(\sup_{B_{aR}} |v| \right)^{2-p} |h|^{p} \int\limits_{B_{a}} |Dv|^{p} dx \,. \end{split}$$

This estimate is similar to (3.15) of the previous proof. Then by Lemma 2.3 we have, as in conclusion of Lemma 3.2

$$(5.2) \qquad \left(\int\limits_{B_{\sigma^{3}R}} |Dv|^{\frac{np}{n-2b}} dx\right)^{\frac{n-2b}{2n}} \leq c \left(1 + \left(\sup\limits_{B_{aR}} |v|\right)^{\frac{2-p}{2}}\right) \left(1 + \int\limits_{B_{R}} g(|Dv|) dx\right)^{\frac{1}{2}}$$

for every $b \in (0, (p/2))$.

Let now u be a local minimizer of \mathcal{F} . We mollify u as in section 4, in order to have $u_{\varepsilon} \in W^{1, q}(B_R, \mathbb{R}^N)$ and $u_{\varepsilon} \to u$ in $W^{1, p}$. Moreover we consider the Dirichlet problem

(5.3)
$$\min \left\{ \int_{B_{D}} g_{\sigma}(|Dw|) dx : w \in u_{\varepsilon} + W_{0}^{1, q}(B_{R}) \right\}.$$

Let $v_{\varepsilon, \sigma} \in u_{\varepsilon} + W_0^{1, q}(B_R, \mathbb{R}^N)$ be the solution of (5.3). Then (5.2) implies

$$(5.4) \qquad \left(\int\limits_{B_{a^{3}R}} |Dv_{\varepsilon,\sigma}|^{\frac{np}{n-2b}} dx\right)^{\frac{n-2b}{2n}} \leq c\left(1 + \left(\sup\limits_{B_{aR}} |v_{\varepsilon,\sigma}|\right)^{\frac{2-p}{2}}\right) \left(1 + \int\limits_{B_{D}} g(|Dv_{\varepsilon,\sigma}|) dx\right)^{\frac{1}{2}}.$$

Now we use Theorem 5.1 obtaining

$$\sup_{B_{aR}} |v_{\varepsilon,\sigma}| \le \tilde{c} \left(1 + \int_{B_{\rho}} g_{\sigma}(|v_{\varepsilon,\sigma}|) dx \right)$$

where \tilde{c} is a positive constant, independent of ε and σ . We use Δ_2 condition and

convexity of g_{σ} :

$$\int_{B_R} g_{\sigma}(|v_{\varepsilon,\sigma}|) dx \leq c \left(\int_{B_R} g_{\sigma}\left(\frac{|v_{\varepsilon,\sigma} - (v_{\varepsilon,\sigma})_R|}{2R}\right) dx + \int_{B_R} g_{\sigma}(|(v_{\varepsilon,\sigma})_R|) dx \right),$$

where $(v_{\varepsilon,\sigma})_R = |B_R|^{-1} \int v_{\varepsilon,\sigma} dx$.

Then we apply Poincaré inequality (see [BL]):

$$\int_{B_{P}} g_{\sigma} \left(\frac{|v_{\varepsilon, \, \sigma} - (v_{\varepsilon, \, \sigma})_{R}|}{2R} \right) dx \leq c \int_{B_{P}} g_{\sigma}(|Dv_{\varepsilon, \, \sigma}|) dx.$$

Moreover

$$\begin{split} |(v_{\varepsilon,\,\sigma})_R| &\leq \frac{1}{|B_R|} \bigg(\int\limits_{B_R} |v_{\varepsilon,\,\sigma} - u_{\varepsilon}| \, dx + \int\limits_{B_R} |u_{\varepsilon}| \, dx \bigg) \\ &\leq \frac{c}{|B_R|} \bigg(\int\limits_{B_R} |Dv_{\varepsilon,\,\sigma}| \, dx + \int\limits_{B_R} |Du_{\varepsilon}| \, dx + \int\limits_{B_R} |u_{\varepsilon}| \, dx \bigg), \end{split}$$

thus, using Jensen inequality and integrating over B_R ,

$$\int\limits_{B_R} g_\sigma(\left|(v_{\varepsilon,\,\sigma})_{B_R}\right|)\,dx \leq c\left(\int\limits_{B_R} g_\sigma(\left|Dv_{\varepsilon,\,\sigma}\right|)\,dx + \int\limits_{B_R} g_\sigma(\left|Du_\varepsilon\right|)\,dx + \int\limits_{B_R} g_\sigma(\left|u_\varepsilon\right|)\,dx\right).$$

Eventually we put together the previous inequalities and we use the minimality of $v_{\varepsilon,\sigma}$ with respect to u_{ε} :

$$(5.6) \quad \int_{B_{R}} g_{\sigma}(|v_{\varepsilon,\sigma}|) dx \leq c \left(\int_{B_{R}} g_{\sigma}(|Dv_{\varepsilon,\sigma}|) dx + \int_{B_{R}} g_{\sigma}(|Du_{\varepsilon}|) dx + \int_{B_{R}} g_{\sigma}(|u_{\varepsilon}|) dx \right)$$

$$\leq c \left(2 \int_{B_{R}} g_{\sigma}(|Du_{\varepsilon}|) dx + \int_{B_{R}} g_{\sigma}(|u_{\varepsilon}|) dx \right)$$

$$\leq c \left(\int_{B_{R}} g(|Du_{\varepsilon}|) dx + \sigma \int_{B_{R}} (1 + |Du_{\varepsilon}|^{2})^{\frac{q}{2}} dx \right)$$

$$+ \int_{B_{R}} g(|u_{\varepsilon}|) dx + \sigma \int_{B_{R}} (1 + |u_{\varepsilon}|^{2})^{\frac{q}{2}} dx \right).$$

(5.4), (5.5), (5.6) and Jensen merge into

$$(5.7) \qquad \left(\int_{B_{\alpha^{3}R}} |Dv_{\varepsilon,\sigma}|^{\frac{np}{n-2b}} dx\right)^{\frac{n-2b}{2n}} \leq c \left(1 + \int_{B_{R+\varepsilon}} g(|Du|) dx + \int_{B_{R+\varepsilon}} g(|u|) dx + \sigma \int_{B_{R}} (1 + |Du_{\varepsilon}|^{2})^{\frac{q}{2}} dx + \sigma \int_{B_{R}} (1 + |u_{\varepsilon}|^{2})^{\frac{q}{2}} dx\right)^{3-p}.$$

Moreover, as in (4.3) and (4.4),

(5.8)
$$\int_{B_R} |Dv_{\varepsilon,\sigma}|^p dx \leq \int_{B_R} g(|Dv_{\varepsilon,\sigma}|) dx + c_1 |B_R|$$

$$(5.9) \qquad \int\limits_{B_R} g(|Dv_{\varepsilon,\sigma}|) \, dx \leq \int\limits_{B_{R+\varepsilon}} g(|Du|) \, dx + \sigma \int\limits_{B_R} (1+|Du_{\varepsilon}|^2)^{\frac{q}{2}} \, dx \, .$$

Since $\sigma < 1$, these estimates are uniform with respect to σ . Thus there exists $w_{\varepsilon} \in u_{\varepsilon} + W_0^{1, p}(B_R, \mathbb{R}^N)$ such that, up to a subsequence,

$$Dv_{\varepsilon,\sigma} \rightharpoonup Dw_{\varepsilon}$$
 weakly in $L^{p}(B_{R})$, as $\sigma \rightarrow 0$,

then, by semicontinuity and (5.7), (5.8), (5.9) we get

$$\left(\int\limits_{B_{a^3R}} |Dw_{\varepsilon}|^{\frac{np}{n-2b}} dx\right)^{\frac{n-2b}{2n}} \leq c \left(1 + \int\limits_{B_{R+\varepsilon}} g(|Du|) dx + \int\limits_{B_{R+\varepsilon}} g(|u|) dx\right)^{3-p}$$

and

$$\int_{B_R} |Dw_{\varepsilon}|^p dx \leq \int_{B_{R+\varepsilon}} g(|Du|) dx + c_1 |B_R|$$

Therefore, since $Du_{\varepsilon} \to Du$ strongly in L^p , there exists $w \in u + W_0^{1, p}(B_R, \mathbb{R}^N)$ such that

$$Dw_{\varepsilon} \rightarrow Dw$$
 as $\varepsilon \rightarrow 0$,

weakly in $L^p(B_R)$. Again we use semicontinuity:

$$\left(\int_{B_{n^{3}p}} |Dw|^{\frac{np}{n-2b}} dx\right)^{\frac{n-2b}{2n}} \le c \left(1 + \int_{B_{p}} g(|Du|) dx + \int_{B_{p}} g(|u|) dx\right)^{3-p},$$

and

$$\int\limits_{B_R} g(\, \big|\, Dw\, \big|\,)\; dx \leqslant \lim \, \inf_{\varepsilon \to 0} \int\limits_{B_R} g(\, \big|\, Dw_\varepsilon\, \big|\,)\; dx \leqslant \int\limits_{B_R} g(\, \big|\, Du\, \big|\,)\; dx\;.$$

As in Theorem 2.1 we conclude that u = w.

REFERENCES

- [A] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975.
- [AF] E. ACERBI N. Fusco, Regularity for minimizers of non-quadratic functionals. The case 1 , Journ. of Math. Anal. and Applications, 140 (1989), 115-135.
- [BL] T. Bhattacharya F. Leonetti, A new Poincaré inequality and its applications to the regularity of minimizers of integral functionals with nonstandard growth, Nonlinear Analysis TMA, vol. 17, 9 (1991), 833-839.

- [BMS] L. Boccardo P. Marcellini C. Sbordone, L^{∞} -regularity for variational problems with sharp non standard growth conditions, Boll. U.M.I. (7) 4-A (1990), 219-225.
- [Ch] H. J. Choe, Interior behavior of minimizers for certain functionals with non standard growth conditions, Nonlinear Analysis TMA, 19 (1992), 933-945.
- [CF] A. CIANCHI A. N. Fusco, Gradient regularity for minimizers under general growth conditions, J. reine angew. Math., 507 (1999), 15-36.
- [DM] A. Dall'Aglio E. Mascolo, Regularity for a class of non linear elliptic systems with non standard growth conditions, To appear.
- [ELM1] L. ESPOSITO F. LEONETTI G. MINGIONE, Regularity for minimizers of functionals with p-q growth, NoDEA Nonlinear Differential Equations Appl., 6 (1999), 133-148.
- [ELM2] L. ESPOSITO F. LEONETTI G. MINGIONE, Higher integrability for minimizers of integral functionals with (p, q) growth, J. Differential Equations, 157 (1999), 414-438.
- [FS] N. Fusco C. Sbordone, Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions, Comm. on Pure and Appl. Math., 43 (1990), 673-683.
- [G1] M. GIAQUINTA, Multiple integrals in the calculus of variations and non linear elliptic systems, Annals of Math. Studies, 105 (1983), Princeton Univ. Press.
- [G2] M. GIAQUINTA, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987), 245-248.
- [Gi] E. Giusti, Metodi diretti nel calcolo delle variazioni, U.M.I. (1994).
- [H] M. C. Hong, Some remarks on the minimizers of variational integrals with non standard growth conditions, Boll. U.M.I. A, 6 (1992), 91-101.
- [Li] G. Lieberman, The natural generalization of the natural growth conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361.
- [M1] P. Marcellini, Un example de solution discontinue d'un problème variationel dans le cas scalaire, Preprint Ist. «U. Dini», Firenze (1987).
- [M2] P. MARCELLINI, Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions, Arch. Rat. Mech. and Analysis, 105 (1989), 267-284.
- [M3] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Diff. Equat., 90 (1991), 1-30.
- [M4] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa, Cl. sci., 23 (1996), 1-25.
 - F. Leonetti: Dipartimento di Matematica Pura ed Applicata Università di L'Aquila, 67100 L'Aquila, Italy. E-Mail: leonetti@univaq.it
 - E. Mascolo: Dipartimento di Matematica «U. Dini», Università di Firenze Viale Morgagni 67/A, 50134 Firenze, Italy. E-Mail: mascolo@udini.math.unifi.it
 - F. Siepe: Dipartimento di Matematica «U. Dini», Università di Firenze Viale Morgagni 67/A, 50134 Firenze, Italy. E-Mail: siepe@udini.math.unifi.it