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Gradient Regularity for Minimizers
of Functionals Under p — ¢ Subquadratic Growth (*).

F. LEONETTI - E. MAScoLo - F. SIEPE

Sunto. — St prova la maggior sommabilita del gradiente der minimi locali di funziona-
li integrali della forma

[ rouy de,
o

dove f soddisfa Uipotesi di crescita
|| — e <f(&) <1+ |E]),

con 1 <p<q<2. Lintegrando f é C? e DDf ha crescita, p — 2 dal basso e g —2
dall’alto.

1. — Introduction.

Let us consider the functional
(1.1) Flu, Q) = ff(Du(x))dm
Q

where 2 is a bounded open set in R*, n =2, Du is the gradient of a vector
valued function u: 2 —>RY, N=1, and f: R > R.

In this paper we study the local regularity of minimizers of . In particular,
we consider the case in which the integrand function f satisfies the p — ¢
growth condition

(1.2) |E]7 —er sfE) <e(1+ |&]D

with p <q.

The regularity properties of minimizers, under assumption (1.2), has been
intensely studied in the last years.

In the scalar case, i.e. when N =1, Marcellini in [M2] and [M3], proved the
W1 = regularity, provided p and ¢ are not too far apart.

(*) We acknowledge the support of MURST (40%, 60%) and GNAFA-CNR.
Mathematics subjects classification (Amer. Math. Soc.): 49 N 60, 35 J 60.
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In the setting of p — q growth, minimizers may be unbounded in general, if
no restriction on p and q is assumed (see [G2], [M1], [H]).

In the vectorial case there are recent results in [ELM1] and [ELMZ2],
about higher integrability for the gradient of minimizers, in the case of
2=sp<yq.

Moreover, Marcellini in [M4] gives the local Lipschitz continuity of the lo-
cal minimizers, when f(§) =¢(|&|) and ¢ satisfies some general conditions
which imply, if (1.2) holds, that 2 <p <q.

Our aim is to study the case when (1.2) holds with 1 <p <q <2.

We will prove a higher integrability result for the gradient Du of local min-
imizers u of J. More precisely there exists y = y(n, p) > 1 such that

(1.3) Due LA (Q, R™).

This result will be obtained under the restrictions

(1.4

<p<qg=<2,

n+2 p=1
feC? DDf has p — 2 growth from below and ¢ — 2 growth from above. The
idea of the proof is the following. We consider a family of perturbed function-
als of (1.1), defining, for o (0, 1)

F,(w, B) = | f(Dw) de + o [T(1 + | Dw|?) — 1] de,
Bg By

where By is a ball such that B,pcc Q.
Now &, has the same ¢ growth from above and below. For local minimizers
ve Wh4(Bg, RY) of J,, the following estimate holds

2/p?
(1.5) D2, < € [1 + f f(Dv) dm]
Bp

for ae (0, 1) and a constant ¢ that does not depend on o.
As in [ELM2], if % is a local minimizer of &, we mollify « and we get u,.
Then we consider the Dirichlet problems

min {F,(w, Bg): weu, + Wi (B, R¥)}.

If v, , is the solution of such a problem, we write (1.5) for v=wv, ,. We will
prove that letting first 0—0 and then ¢ —0, Dv, , converges weakly to Du
and we can pass to the limit in (1.5), thus obtaining (1.3).

In the case of f(§) =g¢(|5|) where g:[0, +)—[0, + ) is convex,
9(0) =0,g=0and ge4d,, we apply a recent result about local boundedness of
minimizers of &, contained in [DM]. This result allows us to get (1.3) without
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the restriction
2n
n+2

contained in (1.4). Related results can be found in [FS], [Ch], [BL], [Li], and
[CF].

<P,

2. — Statements and notations.

As we have seen in section 1, we deal with the local regularity properties
for minimizers of functionals of type (1.1). Moreover we assume that fe
C%(R™), f= 0 satisfies the following growth conditions

2.1) E|” — e < SO <L+ |E[D)2
2.2) IDFE) | <L+ 6T
2.3) ID?AE) | <L+ )T
@.4) (D2f(E) 2, 2) 2 (1 + |E]D'T |42

for every &, Ae R™ and some L >1,v>0, ¢; =0. p, ¢ are such that 1 <p <
q < 2. Note that growth condition (2.2) for Df can be derived by growth condi-
tion (2.1) for f and convexity (2.4).

We say that u e WL.1(2, RY) is a local minimizer of & if f(Du) e L...(R),
and

[ rowde< [ fou+De)de,

supp(¢p) supp()

for every o e W1 1(2, RY) such that supp(¢) cc Q.
By these assumptions, we observe immediately that u e W,?(2, RY). We
will prove the following higher integrability result for u

THEOREM 2.1. — Let ue Wik.'(2, RY) be a local minimizer of functional
(1.1), satisfying conditions (2.1), (2.2), (2.3) and (2.4). Then, if p > 2n/(n + 2),
we have

DueLi(Q, R™)

for some x = y(n, p) > 1.
Moreover, if xye 2 and R > 0 are such that B(x,, 4R) cc 2, and a e (0, 1),
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there exists a positive constant ¢ =c(n, N, p, q, L, v, a, R) such that
2
2.5) [ |Du|mdxs@(1 + [ row dx) !
BagR BR

This Theorem can be improved when we consider a particular structure for
the functional, that is when we suppose that f(§) =g(|&|), where geC 210, + «))
is a convex, increasing N-function of class A4,, that is, ¢g:[0, + ©)—
[0, + o) is such that g(t) = 0 if and only if ¢ = 0 and for every ¢ > 0 and every
A>1

g(At) < A" g(t)

for some m > 1 (to be more precise, if this property holds, we say that g e A%").
Moreover ¢ satisfies the following limit conditions

t t
t—0t ¢ t=to f

Under these assumptions we prove the following

THEOREM. — 2.2. — Let us suppose that we W, (2, RY) is a local mini-
mizer of functional (1.1), satisfying conditions (2.1)-(2.4). Let us assume also
that f(&) = g(|&|), with g as above. Then

Due L[ (Q, R™)
Jor some y =y(n, p) >1, and the following estimate holds
2%(3 —p)
(2.6) f |Du|pxdac$c(1+fg(|Du|)dx+fg(|u|)dac)
B3R Br Br

for some positive c=c(n, N, p,q, L, v, a, R, m) and every ae (0, 1).

Let us recall some known and technical results that will be useful
later

LEMMA 2.1. — For every &, EeRF and de (-4, 0)

1
[a+crue-opya
0
1+ 1212+ &)%)

|1+ 87— (1 + |E]’E
(L4 [E]*+ 6] &~ €]

2.7) 1< < c(9)

2.8) 0<¢ ()< <c(0, k).

ProoF. — See [AF], [Gi, page 274].
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Fix & >0 and for s=1, ..., n a direction e, in R". For every vector valued
function G : R*—R* we define

7,1, G(x) = G(x + hey) — G(x).

We state some properties of this difference function in connection with
Sobolev spaces.

LEMMA 2.2. — Let 0<o<R, |h| <R—9, p=1, and Ge W"P?(Bg, R").
Then for every s=1, ..., n

[ 10,060 Pde< |h)? [ |D,G@) |Pda.

B, B

Proor. — See [G1].

LEMMA 2.3. — Let 0 <o <R and G e L?(Bg, R"). If for some ac (0, 2),
M >0andneCi(Bi+e) such that 0 <5 <1 and |Dn| <4/(R—0)inR", n=
1 on B,, :

f’]z |75, 0 G(x) |2de < M? |h|"
s:lBR
RYY N L 7% (B

for every h with |h| <R —o, then Ge W"?(B R"), for

every be (0,(a/2)). Moreover

0 0’

”G”L%(gg) < oM +[|Gl2,)
with c=cn, k, b, a, R, 0).

Proor. — See [A]

3. — Preliminary results.

In this section we consider a perturbation of the integrand of functional
(1.1), given by

£,(8) =f(E) +ol(1 + |E]D)E — 1]

where oe (0, 1) under (2.1),...,(2.4). The following Lemma contains some
properties of this function f,. The proof is rather easy
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LEmMMA 3.1. — f,eC3(R™), f,=0 and satisfies the following condi-
tions

3.1) ou|E|1+ &7 — e — o <£,(8) < (L + D)1+ |€]D)7
(32) DA | <L+ (L+ 6T
(3.3) ID*£,(8)| < (L +nNg®)(1+ |E]>)' T

B4)  (D,(E) 2, 2) = [oglq — DL+ [T +u(L+ [T 1|4

for every E,AeR"™, where L,v and c¢; are those of (2.1),...,(2.4) and
=272 -1)/27*)e (0, 1).
Moreover, if f satisfies the assumptions of Theorem 2.2, then

fa(é) :ga(|§|)7
where
9o(t) = g(t) + o[ (1 + 372 - 1],

95:10, +0)—[0, + o) is convex, increasing, 9,(t) =0 if and only if t =0,
9, satisfies the As-condition, where s =2\ m =max{2, m}. We have also
o€ C%([0, + ®)) and

t t
im % o,

t—0* ¢ =+

Now we introduce for every oe (0, 1) and R >0 such that B,pcc 2, the
functional

T, (w) = ffg(Dw) dx .

Bpr

A local minimizer of functional &,, will be a function ve W 4(Bg, RY) such
that &, (v) < F,(v + @), for every ¢ e W} 9(Bg, RY). Let us prove the follow-
ing result.

LEMMA 3.2. — Let ve Wh 9(Bg, RY) be a local minimizer of functional &,
with 2n/(n +2)) <p <q<2. Then for every ae (0, 1), and for every b such
that

0<b<g—ﬁ+1,

p
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we have that

3.5) DveL % (Bp, R™).

Moreover there exists a constant c=c(n, N, p, q, L, v,c, R, a, b) such
that

2
oz

(3.6) 1Dl 2 g5 S € [1 + f f(Dv) dx] "
Bg

PROOF. — Since v is a local minimizer for &,, under growth conditions (3.1)-
(3.4) we have that the Euler’s equation

3.7 foo(Dv) Dgdx =0
Bg

holds for every ¢ e W' 9(Bg, RY) such that supp (¢) cc B.

Let ae(0,1) and neCy*(R") be a cut-off function. More precisely we
assume that supp(y)cB#r+«’r, n=1 in Bgg, 0sny<1, |Dy|s
4/(a*(1—a) R). ?

Now let |h| <Ra*(1—a) and for s=1, ..., n put ¢ =7, _,(n%7, ,v) as
test function in (3.7). We get

) = [ n*r, (0, (w7, Doda
Bp

(3.8) =- frsyh,(Dfa(Dv))%yDn®rs,hvdac= II).

Bp

Moreover, since

1
2,0 (Df, (D) = [ D2, (Dv + tr, (D)) dte,, Do,
0

we have that

1
8.9 ) = f fD2f(,(Dv +tr, ,(Dv))yrg , Doyr , Dvdtde
Bp 0

1
I = —f f2D2fU(Dv+trs,h(Dv))ﬂrs,hDan@rsyhvdtdm.
0

B
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By the properties of f, we are in conditions to apply Cauchy-Schwartz
inequality:

(8100 (UD < —f sz (Dv + tr (D)) nr,, , Doge, , Dudt di

BRO

+2ffD2 L(Dv+tr, ,(Dv) Dyt ,vDn @1, ,vdtde

Bp 0
1
= E(D + 2(111).

Since the integrals (/) and (/II) are finite, by (3.8) and (3.10) we get
(I) <4U1D).

Moreover, by (3.4) and Lemma 2.1
(3.11) (I)>cf77 7, 0 (1 + |Do|®)" T Dv)|2de

for some positive constant ¢ =¢(v, p, n, N). Now by growth conditions (3.3)
and the properties of # we have

1
q—2
(HI)Scf f|D77|2(1+ |Dv+trs‘hDv|2)lT |7, n0|?dtda ,
B.z2p 0
where ¢ = c¢(n, N, L @). Since we suppose that 1 <p < ¢ <2 we can drop (1 +

|Dv +tr g, hDv| ) 2 since it is less than 1. Then we have

(3.12) (Il)<cen,N,L,q,a, R) f |tsyh,v|2doc = V).

B,2p

Let a e (0, p). Then

(3.13) Uy =c [ Jro 0l fe, 02 de
Bazlf
a p-e
( f |7:9 h’l)|pdx) ( f |'L'q h’l)lp a dﬂﬁ) g .
BZR BazR

Since ve W ?(Bg, RY), By2pCB,zCBy and |h| <a’R —a’R <aR —a*R,
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by Lemma 2.2 we have

a p-a

" 2-qa _,

(3.14) (IV)Sc|h|“( f|Dv|Pdm)”( f|tsyhv|ﬁ?’dac) "
Bur

B,2p

Now we use the assumption p > 2n/(n + 2): let us choose a in such a way
that

2._
ap=p*= that is a=n+2—2ﬁ.
p—a n—p p

We remark that a satisfies the required properties since we suppose that

2n
n+2

p >
With these assumptions and applying Sobolev inequality in (3.14) we ob-
tain

2—-a

(Bf |Dv|%lac)T

aR

SH

(3.15) 01%) sc|h|“(

f|Dv|?’dx)

Bur

and finally, by (2.1) and (3.11)

2

n—2 -
316 [ n2 (v, a1+ |Dv|2)”TDv)|2dxs4&|h|a(1 + [ #ow) dx)”
Bgr Bg

for some positive constant ¢ = ¢(n, N, p, q, L, v, ¢;, a, R). By this estimate
and Lemma 2.3 it follows that

-2 2n
(1+ |Dv|®) T Dve W»2(Byig, R™Y) N L 75 (Bysg, R™),

for every be(0,(a/2)). In particular, if we set

1

(3.17) M=2 6n<1+ff(Dv)dac)p
Bpr
we have
n p-2
(3.18) > f;72|rs,h((1+|Dv|2)TDv)|2deM2|h|a
1

s = BR
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from which it follows that

p-2 - -2
I(1+ |Dv|*) ™5 Dol 2= <cM+ (1 + |Dv|» T Dulrag,y)

—nzb (Ba3R)
for some ¢ =c¢(n, N, b, p, R, a).
It is easy to show that for every zeR*, 9 >0 and pe (1, 2) we have

2-p)d p—2
lz|P"<1+272 [(1+ 2Dz |z]*].

By this fact, since (n/(n —2b))>1 and p <2, it follows that

", -2 n
| |Dv|ﬁdxsc(n,p,b,3,a)(1+ f((1+|Dv|2)pT|Dv|2)mOzx)
B,3p B,3p

-2 2n
<c(n,N,p, b, R, )1+ (M +[[(1 + |Dv|2)pTDv||Lz(BR))m]

2n

] n—2b

2n

p(n—2b)
<c(n,N,p,q,L,v,c, R, a, b)(l + ff(Dv) d.?c)
Bg

1

$cl1 + (1 +ff(Dv) dac); + (1 +ff(Dv) dac)
Br Br

o | =

that is just estimate (3.6). Then the proof is concluded. =

4. — Proof of Theorem 2.1.

Our next goal is to prove that Lemma 3.2 holds also for the minimizer u of
our original functional (1.1). We use an approximation argument.

Let 0 <e<min{l, R} and consider a sequence of smooth functions u,,
obtained by u by mean of standard mollifiers. We have that u, e W' (Bg, RY)
and u,—w in WbH?,

By the growth conditions about &,, we are able to define the solution v, , e
u, + Wi 1(Bg, RY) of the Dirichlet problem

4.1) min{ ffg(Dw) de: weu, + W (B, RN)}
Bg

according to direct methods of the calculus of variations.
Let us fix a e (0, 1). We are going to apply estimate (3.6) for v, ,. There
exists a constant c =c(n, N, p, q, R, a, v, ¢;, L, b) not depending neither on
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¢ nor o, such that

p(n —2b)

4.2) ( f|Dvs,a|%dx)

By3g

<c (1 + ff(Dvg, o) dm)
Bpr

<c (1 + ffo(Dug) dac)
Bpr

sc(1+ ff(Du)dachof(lJr|Dus|2)%d9¢)

Brie B

by the minimality of v, , and Jensen inequality.
Moreover we have also

4.3) f |Dv,, , |Fde < ff(Dvm,) dx + ¢, |Bg|
Bp

B

and

[ oo, ) de< [ 1,00, ) de< [1,(Du) d
B B Br
(4.4) < [fDu) de+ o [ (1 + |Du, 1% da
Bp By

< [ fow de+ o[+ |Du ) de.

Bp . Bp

Since 0 <1, by (4.3) and (4.4) we deduce that Dv, , is uniformly bounded in
L?(Bg, R™) with respect to o. Then up to a subsequence

Dv, ,—Dw, weakly in L?(Bg) as 0—0,

for some w, € u, + Wi ?(Bg, RY). By lower semicontinuity we can let 6— 0 in
(4.2) and (4.4) obtaining

pn—2b)

(4.5) ( f|Dw£|%dx) ” sc(1+ ff(Du)dx),

By3r Bri.

and

(4.6) ff(Dws)de ff(Du) dx
Bgr Br e

R
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so that
4.7 f|Dw£|pdﬂcS f f(Du) dx + ¢, |Bg| .
Bg Brie

Now, since w, € u, + Wi ?(Bg, RY) and Du, converges to Du strongly in L7,
by (4.7) we deduce that up to a subsequence
Dw,—Dw weakly in L?(Br) as ¢—0,
for some weu + W P(Bg, RY). Finally, letting e—0 in (4.5) and (4.6), by
semicontinuity we have
2n

f |Dw|%dxs(:(1+ff(pu) dm)”("*“)
R

B3R B
and
(4.8) ff(Dw) dx < lim inf(’) ff(Dwe) dr < ff(Du) dx .
Br ¢~V Bp

Inequality (4.8) and the strict convexity of f implies that Dw = Du a.e. in Bp.
Moreover, since w=u on 0By, Poincaré inequality gives u =w. This con-
cludes the proof of Theorem 2.1. =

5. — Proof of Theorem 2.2.

Before we prove Theorem 2.2, we give a precise statement of the bounded-
ness result contained in [DM].

THEOREM 5.1. — Let ue WH?(2, RY) be a minimizer of the functional

F(u) = fg( |Du|) de ,
Q
where g is a N-function, g e A%. Then u is locally bounded in 22 and the fol-
lowing estimate holds

(5.1) sup |u| <c(m, a, R)(l +fg(|u|)dac>
Bur Q

for every R >0 such that Brc Q and every ae (0, 1).

It is remarkable that since geA,, from g(|Du|) e L. (Q) it follows that
also g(|u|) e Lit.(Q).

Let us go on with the proof of Theorem 2.2. We proceed as in the proof of
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Lemma 3.2. So, let v be a minimizer of
q
T (w) = fg(|Dw|)dx+of[(1 + |Dw|®z —1]dx.
Bg Bgr
By (3.12) and Lemma 2.2 we have
(II)<c¢n,N,L, q,a, R) f |75, 002 de

B,2p

2-p
sc(n,N,L,p,q,a,R)(sup|'u|) f |75 v|Pda
BaR

B.2g
2-p
Sc(n,N,L,p,q,a,R)(sup|v|) |h|”f|Dv|”dm.
Bar Bur

This estimate is similar to (3.15) of the previous proof. Then by Lemma 2.3 we
have, as in conclusion of Lemma 3.2

n—2b 2-p

(5.2) (f|Dv|%ozac)7sc<1+(sup|v|)7)(1+fg(|Dv|)azﬁc)E
B By

B,3g aR

for every be(0,(p/2)).

Let now  be a local minimizer of & We mollify « as in section 4, in order to
have u, e W' (B, RY) and u,—u in W ?. Moreover we consider the Dirich-
let problem

(5.3) min{ fgg(lDWDdoc T weu, + Wol’q(BR)}.
Bp

Let v, ,eu, + W 9(Bg, RY) be the solution of (5.3). Then (5.2) implies
n—2b

np T
(5.4) ( f |Dvs,a|ﬁd9¢) <

By3g
2-p
e
cl1+ (sup|ug 0|)
BaR '

Now we use Theorem 5.1 obtaining

(1 +fg(|Dvg,g|)dac)E.

B

(5.5) sup | v, | Sé(1+fgo(|vg’g|)doc)
Bar Bg

where ¢ is a positive constant, independent of ¢ and o. We use 4, condition and
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convexity of g,:

|vs, o (vs, (T)R |
9o(|ve, s Ddusc| ) 9| ———F5— | do+ ] 9,(| (v, o)r|) d ],
Bpr Bgr 2R Bp

where (v, ,)g = |BR|’1fv8,(,dac.
B
Then we apply Poincaré inequality (see [BL]):

Ve a_(vs (7)
fga(l'z—’Rl)dac<cfgo(|Dvs,g|)dac.

Bp R B
Moreover

|(sa)R = (fl/usa eldx_'_flue'dx)
|Br| \5y

(f|Dvs g|dx+f|Du |dac+f|u |dac)

Bp

<

|BR|
thus, using Jensen inequality and mtegratlng over Bp,

fgg(|(v£,g)gk |)dm$c( fg(,(|DvE‘,,|)dx+ fg(,(|Du€|)dac+fg(,(|u8|)dac).
By Bp By Bg

Eventually we put together the previous inequalities and we use the minimali-
ty of v, , with respect to u,:

(5.6) fga(|vg,a|)d90Sc( fgg(|Dvw|)d90+fga(lDu8|)dx+fgo(|u£|)dgg)
Br Br Br Bp
$C(2 fga(lDus |)dﬂc+fga(|u8 |)dx)
Bp Bg
sc( fg(IDugl)dac+of(1+ |Du8|2)§dx
Br Br

+fg(|u5|)d.oc+of(1+ |u€|2)%doc).
Br Br

(5.4), (6.5), (5.6) and Jensen merge into

n—2b

5.7 ( i |Dv£,(,|%dx) " <

B3R

3
( fg(|Du|)dx+ fg(|u|)dx+af(1+|Du|2)zdac+af(1+|u|2)zdx) p.

BRie Brie
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Moreover, as in (4.3) and (4.4),

(5.8) f|Dv£,0|pdacSfg(|Dv8,o|)dx+cl|BR|
Bg

Bp

(5.9) fg(|Dvg,g|)dac< f g(|Du|)dac+of(1+ |Du8|2)(_zldac.
Bpr

BR+;, BR
Since 0 < 1, these estimates are uniform with respect to o. Thus there exists
w, eu, + WHP(Bg, RY) such that, up to a subsequence,
Dv, ,—Dw, weakly in L?(Bg), as 0—0,
then, by semicontinuity and (5.7), (5.8), (56.9) we get
n—2b
p T 3-p
( f |Dw8|n—2bd.%') Sc(1+ fg(|Du|)doc+ fg(|u|)dx)
B,3p Bp . Brie

and

f|Dw£|”de fg(|Du|)dx+cl|BR|

B Bp .
Therefore, since Du, — Du strongly in L?, there exists weu + Wi ?(Bg, RY)
such that
Dw,—Dw as ¢—0,
weakly in L?(Bp). Again we use semicontinuity:

n—20

np 20 3-p
( f | Dw | =2 dac) Sc(l+fg(|Du|)dx+fg(|u|)dac) ,
Bg Bg

BagR
and

fg(|Dw|)dac$lim inf;) fg(|Dw£|)d90$ fg(|Du|)dx.
Br ¢=Vp, Bp

As in Theorem 2.1 we conclude that u =w. =
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