Bollettino

Unione Matematica Italiana

Piotr Kobak, Andrew Swann

The hyperKähler geometry associated to Wolf spaces

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 4-B (2001), n.3, p. 587-595.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2001_8_4B_3_587_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2001.

The HyperKähler Geometry Associated to Wolf Spaces.

Piotr Kobak - Andrew Swann

Sunto. - Sia G un grupo di Lie compatto e semplice. Sia $\mathcal{O}_{\min }$ la più piccola orbita nilpotente non-banale nell'algebra di Lie complessa $\mathfrak{g}^{\mathrm{C}}$. Si presenta una costruzione diretta di teoria di Lie delle metriche iperKahler su $\mathcal{O}_{\text {min }}$ con potenziale Kahleriano G-invariante e compatibili con la forma simplettica complessa di Kostant-Kiril-lov-Souriau. In particolare si ottengono le metriche iperKahler dei fibrati associati sugli spazi di Wolf (spazi simmetrici quaternionali a curvatura scalare positiva).

1. - Introduction.

One of the glories of homogeneous geometry is Cartan's classification of the compact Riemannian symmetric spaces [5,6]. Many manifolds that play a central rôle in geometry are symmetric and it is fascinating to look for patterns in the presentations G / H. One obvious family is provided by the sphere $S^{n}=S O(n+1) /$ $S O(n)$, complex projective space $C P(n)=U(n+1) /(U(n) U(1))$, quaternionic projective space $H P(n)=S p(n+1) /(S p(n) S p(1))$ and the Cayley projective plane $F_{4} / \operatorname{Spin}(9)$. Another consists of the Hermitian symmetric spaces: these are of the form $G /(U(1) L)$ (see [4]). However, the most surprising is the family of quaternionic symmetric spaces $W(G):=G /(S P(1) K)$, which has the feature that there is precisely one example for each compact simple simply-connected Lie group G. The manifolds in this last family have become known as Wolf spaces following [14]. Alekseevsky [1] proved that they are the only homogeneous positive quaternionic Kähler manifolds (cf. [2]).

Wolf showed that the quaternionic symmetric spaces may be constructed by choosing a highest root α for $\mathfrak{g}^{\mathrm{C}}$. The corresponding root vector E_{α} is a nilpotent element in $\mathfrak{g}^{\mathrm{C}}$. In [13] it was shown that there is a fibration of the nilpotent adjoint orbit $\mathcal{O}_{\text {min }}=G^{\mathrm{C}} \cdot E_{\alpha}$ over the Wolf space $W(G)$.

Nilpotent orbits \mathcal{O} in $\mathfrak{g}^{\mathrm{C}}$ have a rich and interesting geometry. Firstly, they are complex submanifolds of $\mathfrak{g}^{\mathrm{C}}$ with respect to the natural complex structure I. Secondly, the construction of Kirillov, Kostant and Souriau endows them with a G^{C}-invariant complex symplectic form ω_{c}. It is natural to ask whether one can find a metric making the orbit hyperKähler, i.e., can one find a Riemannian metric g on \mathcal{O}, such that the real and imaginary parts of ω_{c} are

Kähler forms with respect to complex structures J and K satisfying $I J=K$. By identifying \mathcal{O} with a moduli space of solutions to Nahm's equations, Kronheimer [12] showed that there is indeed such a hyperKähler metric on \mathcal{O}. This hyperKähler structure is invariant under the compact group G, and has the important additional property that it admits [13] a hyperKähler potential ϱ : a function that is simultaneously a Kähler potential with respect to I, J and K. Using ϱ, one can define an action of H^{*} on \mathcal{O} such that the quotient is a quaternionic Kähler manifold. It is in this way that one may obtain the Wolf space $W(G)$ from $\mathcal{O}_{\min }$. In contrast to the semi-simple case [3], currently one does not know how many invariant hyperKähler metrics a given nilpotent orbit admits.

The aim of this paper is to study the hyperKähler geometry of $\mathcal{O}_{\text {min }}$ in an elementary way. We look for all hyperKähler metrics on $\mathcal{O}_{\min }$ with a G-invariant Kähler potential and which are compatible with the complex symplectic structure. Note that we do not restrict our attention to metrics with hyperKähler potentials. We derive a simple formula for the a priori unknown complex structure J. The orbit $\mathcal{O}_{\text {min }}$ is particularly straight-forward to study in this way, since G acts with orbits of codimension one. This means that the metrics we obtain are already known, they are covered by the classification [7], but it is interesting to see how these metrics can be constructed directly from their potentials. In agreement with the classification, the hyperKähler structure is found to be unique, unless $\mathfrak{g}=\mathfrak{g u}(2)$, in which case one obtains a one-dimensional family of metrics, the Eguchi-Hanson metrics.

Acknowledgements. We are grateful for financial support from the Epsrc of Great Britain and Kbn in Poland.

2. - Definitions.

On the simple complex Lie algebra $\mathfrak{g}^{\mathrm{C}}$, let $\langle\cdot, \cdot\rangle$ be the negative of the Killing form and let σ be a real structure giving a compact real form \mathfrak{g} of $\mathfrak{g}^{\text {C }}$. An element X of $\mathfrak{g}^{\mathrm{C}}$ is said to be nilpotent if $\left(\mathrm{ad}_{X}\right)^{k}=0$ for some integer k. Let \mathcal{O} be the orbit of a nilpotent element X under the adjoint action of G^{C}. At $X \in \mathcal{O}$, the vector field generated by A in $\mathfrak{g}^{\mathrm{C}}$ is $\xi_{A}=[A, X]$. Using the Jacobi identity it is easy to see that these vector fields satisfy $\left[\xi_{A}, \xi_{B}\right]=\xi_{-[A, B]}$, for $A, B \in \mathfrak{g}^{\mathrm{C}}$. The orbit \mathcal{O} is a complex submanifold of the complex vector space $\mathfrak{g}^{\mathrm{C}}$ and so has a complex structure I given by $I \xi_{A}=i \xi_{A}=\xi_{i A}$.

On a hyperKähler manifold M with complex structures I, J and K and metric g, we define Kähler two-forms by $\omega_{I}(X, Y)=g(X, I Y)$, etc., for tangent vectors X and Y. The condition that a function $\varrho: M \rightarrow \mathbb{R}$ be a Kähler potential
for I is

$$
\begin{equation*}
\omega_{I}=-i \partial_{I}{\overline{\partial_{I}} \varrho=-i d \bar{\partial}_{I} \varrho=-\frac{i}{2} d(d-i I d) \varrho=-\frac{1}{2} d I d \varrho ~}_{2} \tag{2.1}
\end{equation*}
$$

On the orbit \mathcal{O}, the complex symplectic form of Kirillov, Kostant and Souriau is given by $\omega_{c}\left(\xi_{A}, \xi_{B}\right)_{X}=\langle X,[A, B]\rangle=-\left\langle\xi_{A} B\right\rangle$.

We will be looking for hyperKähler structures with Kähler potential ϱ and such that $\omega_{c}=\omega_{J}+i \omega_{K}$. This will be done by computing the Riemann metric g defined by ϱ via (2.1) and then using this to determine an endomorphism J of $T_{X} \mathcal{O}$ via $\omega_{J}=g(\cdot, J \cdot)$. The constraints on ϱ will come from the two conditions that g is positive definite and that $J^{2}=-1$.

3. - Highest roots and minimal orbits.

Choose a Cartan subalgebra \mathfrak{h} of $\mathfrak{g}^{\mathrm{C}}$. Fix a system of roots Δ with positive roots Δ_{+}. We write \mathfrak{g}_{β} for the root space of $\beta \in \Delta$. Choose a Cartan basis $\left\{E_{\beta}, H_{\beta}, F_{\beta}: \beta \in \Delta_{+}\right\}$, which we may assume is compatible with the real structure σ, in the sense that $\sigma\left(E_{\beta}\right)=-F_{\beta}$ and $\sigma\left(H_{\beta}\right)=-H_{\beta}$. One important property of the Cartan basis is that for each $\beta, \operatorname{Span}_{\mathrm{C}},\left\{E_{\beta}, H_{\beta}, F_{\beta}\right\}$ is a subalgebra of $\mathfrak{g}^{\mathrm{C}}$ isomorphic to $\mathfrak{\xi l}(2, \mathrm{C})$.

The Lie algebra $\mathfrak{s l}(2, \mathrm{C})$ has Cartan basis

$$
E=\left(\begin{array}{ll}
0 & 1 \tag{3.1}\\
0 & 0
\end{array}\right), \quad H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

The irreducible representations of $\mathfrak{s l}(2, \mathrm{C})$ are the symmetric powers $S^{k}=$ $S^{k} \mathrm{C}^{2}$ of the fundamental representation $S^{1}=\mathrm{C}^{2}$. The representation S^{k} has dimension $k+1$ and E, H and F act as
(3.2) $\quad \varphi_{E}=\left(\begin{array}{lllll}0 & 1 & & & \\ & 0 & 2 & & \\ & & \ddots & \ddots & \\ & & & 0 & k \\ & & & & 0\end{array}\right), \quad \varphi_{H}=\left(\begin{array}{lllll}k & & & & \\ & k-2 & & & \\ & & \ddots & & \\ & & & 2-k & \\ & & & & -k\end{array}\right)$

$$
\text { and } \varphi_{F}=\left(\begin{array}{ccccc}
0 & & & & \\
k & 0 & & & \\
& \ddots & \ddots & & \\
& & 2 & 0 & \\
& & & 1 & 0
\end{array}\right)
$$

respectively. In particular, $\left(\varphi_{E}\right)^{k+1}=0$ and $\left(\varphi_{E}\right)^{k}$ has rank one, with image the k-eigenspace of φ_{H}.

Let $\alpha \in \Delta_{+}$be a highest root; this is characterised by the condition [E_{α}, E_{β}] $=0$ for all $\beta \in \Delta_{+}$. We define $\mathcal{O}_{\text {min }}$ to be the adjoint orbit of E_{α} under the action of G^{C}. Define $\mathfrak{\xi l}(2, \mathrm{C})_{\alpha}:=\operatorname{Span}_{\mathrm{C}}\left\{E_{\alpha}, H_{\alpha}, F_{\alpha}\right\}$.
 composes as

$$
\mathfrak{g}^{\mathrm{C}} \cong \mathfrak{S l}(2, \mathrm{C})_{\alpha} \oplus \mathfrak{f}^{\mathrm{C}} \oplus\left(V \otimes S^{1}\right),
$$

where $\mathfrak{f}^{\mathrm{C}}$ is the centraliser of $\mathfrak{\mathfrak { l }}(2, \mathrm{C}), V$ is $a \mathfrak{f}^{\mathrm{C}}$-module.
(ii) The action of the compact group G on the nilpotent orbit $\mathcal{O}_{\min }$ has cohomogeneity one.

Proof. - (i) Consider the action of ad E_{α} on $\mathfrak{g}^{\mathrm{C}}$. For $\beta \in \Delta_{+}$, we have $\left[E_{\alpha}, F_{\beta}\right] \in \mathfrak{g}_{\alpha-\beta}$. If $\beta \neq \alpha$, then we have two cases: (a) if $\alpha-\beta$ is not a root then $\mathfrak{g}_{\alpha-\beta}=\{0\}$ and $\left[E_{\alpha}, F_{\beta}\right]=0$; (b) if $\alpha-\beta$ is a root, then the condition that α is a highest root implies $\alpha-\beta \in \Delta_{+}$, since otherwise $\alpha-\beta=-\gamma$ for some $\gamma \in \Delta_{+}$and then [E_{α}, E_{γ}] is non-zero, which for a highest root α is impossible. We therefore have that $\left(\operatorname{ad} E_{\alpha}\right)^{2}$ is zero on the complement of $\mathfrak{F l}(2, \mathrm{C})_{\alpha}$ and the decomposition follows.
(ii) At E_{α} the tangent space to $\mathcal{O}_{\text {min }}$ is

$$
\operatorname{ad}_{E_{\alpha}} \mathfrak{g}^{\mathrm{C}}=\operatorname{Span}_{\mathrm{C}}\left\{E_{\alpha}, H_{\alpha}\right\}+\operatorname{Span}_{\mathrm{C}}\left\{E_{\alpha-\beta}: \beta \in \Delta_{+}\right\} .
$$

The real Lie algebra \mathfrak{g} is the real span of $\left\{E_{\beta}-F_{\beta}, i H_{\beta}, i\left(E_{\beta}+F_{\beta}\right)\right\}$. Thus the tangent space $\operatorname{ad}_{E_{\alpha}} \mathfrak{g}$ to the G-orbit is

$$
\operatorname{Span}_{\mathbb{R}}\left\{i E_{\alpha}, H_{\alpha}, i H_{\alpha}\right\}+\operatorname{Span}_{\mathbb{R}}\left\{E_{\alpha-\beta}, i E_{\alpha-\beta}: \beta \in \Delta_{+}\right\}
$$

and we see that it has codimension one in $T_{E_{\alpha}} \mathcal{O}_{\min }$, the complement being $\mathbb{R} E_{\alpha}$. As G is compact, this implies that G acts with cohomogeneity one.

As in [8], it is possible to use this result to show that $\mathcal{O}_{\text {min }}$ is minimal with respect to the partial order on nilpotent orbits given by inclusions of closures. This explains the name $\mathcal{O}_{\min }$, but will not be needed in the subsequent discussion.

4. - Kähler potentials in cohomogeneity one.

Let $\varrho: \mathcal{O}_{\text {min }} \rightarrow \mathbb{R}$ be a smooth function invariant under the action of the compact group G. The group G acts with cohomogeneity one, and the function $\eta(X)=\|X\|^{2}=\langle X, \sigma X\rangle$ is G-invariant and distinguishes orbits
of G. We may therefore assume that ϱ is just a function of η, i.e., $\varrho=\varrho(\eta)$.

We wish to consider ϱ as a Kähler potential for the complex manifold $\left(\mathcal{O}_{\min }, I\right)$. The corresponding Kähler form is given by (2.1):

$$
\begin{equation*}
\omega_{I}=-\frac{1}{2} d\left(\varrho^{\prime} I d \eta\right)=-\frac{1}{2} \varrho^{\prime} d I d \eta-\frac{1}{2} \varrho^{\prime \prime} d \eta \wedge I d \eta \tag{4.1}
\end{equation*}
$$

where $\varrho^{\prime}=d \varrho / d \eta$, etc.
Lemma 4.1. - The Kähler form defined by $\varrho(\eta)$ is

$$
\begin{equation*}
\omega_{I}\left(\xi_{A}, \xi_{B}\right)=2 \operatorname{Im}\left(\varrho^{\prime}\left\langle\xi_{A}, \sigma \xi_{B}\right\rangle+\varrho^{\prime \prime}\left\langle\xi_{A}, \sigma X\right\rangle\left\langle\sigma \xi_{B}, X\right\rangle\right) . \tag{4.2}
\end{equation*}
$$

Proof. - The exterior derivative of η is

$$
\begin{equation*}
d \eta\left(\xi_{A}\right)_{X}=\langle[A, X], \sigma X\rangle+\langle X, \sigma[A, X]\rangle=2 \operatorname{Re}\left\langle\xi_{A}, \sigma X\right\rangle \tag{4.3}
\end{equation*}
$$

so $\operatorname{Id} \eta\left(\xi_{A}\right)_{X}=2 \operatorname{Im}\left\langle\xi_{A}, \sigma X\right\rangle$ and hence

$$
(d \eta \wedge I d \eta)\left(\xi_{A}, \xi_{B}\right)=-4 \operatorname{Im}\left(\left\langle\xi_{A}, \sigma X\right\rangle\left\langle\sigma \xi_{B}, X\right\rangle\right)
$$

Using the Jacobi identity we find that the exterior derivative of $I d \eta$ is given by

$$
\begin{aligned}
d I d \eta\left(\xi_{A}, \xi_{B}\right)_{X}= & \xi_{A}\left(\operatorname{Id} \eta\left(\xi_{B}\right)\right)-\xi_{B}\left(\operatorname{Id} \eta\left(\xi_{A}\right)\right)-\operatorname{Id} \eta\left(\left[\xi_{A}, \xi_{B}\right]\right) \\
= & 2 \operatorname{Im}\left\langle\xi_{B}, \sigma \xi_{A}\right\rangle+2 \operatorname{Im}\langle[B,[A, X]], \sigma X\rangle \\
& -2 \operatorname{Im}\left\langle\xi_{A}, \sigma \xi_{B}\right\rangle-2 \operatorname{Im}\langle[A,[B, X]], \sigma X\rangle \\
& +2 \operatorname{Im}\langle[[A, B], X], \sigma X\rangle \\
= & -4 \operatorname{Im}\left\langle\xi_{A}, \sigma \xi_{B}\right\rangle .
\end{aligned}
$$

Putting these expressions into (4.1) gives the result.
Using the relation $g\left(\xi_{A}, \xi_{B}\right)=\omega_{I}\left(I \xi_{A}, \xi_{B}\right)$, we can now obtain the induced metric on $\mathcal{O}_{\text {min }}$. In general, this metric will be indefinite; the signature may be determined by considering $\operatorname{Span}_{\mathbb{R}}\{X, \sigma X\}$ and its orthogonal complement with respect to the Killing form.

Proposition 4.1. - The pseudo-Kähler metric defined by $\varrho(\eta)$ is

$$
\begin{equation*}
g\left(\xi_{A}, \xi_{B}\right)=2 \operatorname{Re}\left(\varrho^{\prime}\left\langle\xi_{A}, \sigma \xi_{B}\right\rangle+\varrho^{\prime \prime}\left\langle\xi_{A}, \sigma X\right\rangle\left\langle\sigma \xi_{B}, X\right\rangle\right) \tag{4.4}
\end{equation*}
$$

This is positive definite if and only if $\varrho^{\prime}>\max \left\{0,-\eta \varrho^{\prime \prime}\right\}$.

5. - HyperKähler metrics.

Given a function $\varrho(\eta)$ on $\mathcal{O}_{\text {min }}$ we have obtained a metric g. Let us assume that g is non-degenerate. Using the definition of ω_{c} and its splitting into real and imaginary parts, we get endomorphisms J and K of $T_{X} \mathcal{O}_{\text {min }}$ via

$$
g\left(\xi_{A}, \xi_{B}\right)=\omega_{J}\left(J \xi_{A}, \xi_{B}\right)=-\operatorname{Re}\left\langle J \xi_{A}, B\right\rangle,
$$

etc. This implies that

$$
\begin{equation*}
J_{X} \xi_{A}=-2 \varrho^{\prime}\left[X, \sigma \xi_{A}\right]-2 \varrho^{\prime \prime}\left\langle\sigma \xi_{A}, X\right\rangle[X, \sigma X] . \tag{5.1}
\end{equation*}
$$

and $K=I J$. Note that (5.1) implies $J I=-K$.
Suppose that $J^{2}=-1$ and g is positive definite. Then we have I, J and K satisfying the quaternion identities, and with ω_{I}, ω_{J} and ω_{K} closed two-forms. By a result of Hitchin [10], this implies that I, J and K are integrable and that g is a hyperKähler metric.

Proposition 5.1. - The nilpotent orbit of $\mathfrak{\xi l}(2, \mathrm{C})$ has a one-parameter family of hyperKähler metrics with $S U(2)$-invariant Kähler potential and compatible with the Kostant-Kirillov-Souriau complex symplectic form ω_{c}.

Proof. - The algebra $\mathfrak{\xi l}(2, \mathrm{C})$ has only one nilpotent orbit $\mathcal{O}=\mathcal{O}_{\text {min }}$ and this has real dimension 4 . Using the action of $S U(2)$ we may assume that $X=t E$, where $t>0$ and E is given by (3.1). Then $T_{X} \mathcal{O}$ is spanned by H and E. We have $J_{X} H=-4 \varrho^{\prime} t E$ and $J_{X} E=2 t\left(\varrho^{\prime}+\eta \varrho^{\prime \prime}\right) H$, which implies $J^{2}=-\mathrm{Id}$ if and only if $8 t^{2}\left(\varrho^{\prime 2}+\eta \varrho^{\prime} \varrho^{\prime \prime}\right)=1$. Now $\eta(E)=4$, so we get the following ordinary differential equation for ϱ :

$$
2\left(\eta \varrho^{\prime 2}+\eta^{2} \varrho^{\prime} \varrho^{\prime \prime}\right)=1
$$

The left-hand side of this equation is $\left(\eta^{2} \varrho^{\prime 2}\right)^{\prime}$, so $\varrho^{\prime}=\sqrt{\eta+c} / \eta$, for some real constant c. For this to be defined for all positive η, we need $c \geqslant 0$. Now $\varrho^{\prime \prime}=-(\eta+2 c) /\left(2 \eta^{2} \sqrt{\eta+c}\right)$, so the metric is

$$
\begin{equation*}
g\left(\xi_{A}, \xi_{B}\right)=\frac{1}{\eta^{2} \sqrt{\eta+c}} \operatorname{Re}\left(2 \eta(\eta+c)\left\langle\xi_{A}, \sigma \xi_{B}\right\rangle-(\eta+2 c)\left\langle\xi_{A}, \sigma X\right\rangle\left\langle\sigma \xi_{B}, X\right\rangle\right) \tag{5.2}
\end{equation*}
$$

which is positive definite.
This hyperKähler metric is of course well-known. We put it in standard form as follows. Using (4.3), we find $(\partial / \partial \eta)=E /(8 t)$ at $X=t E$. An $S U(2)$-invariant basis of $T_{X} \mathcal{O}$ is now given by $\left\{\partial / \partial \eta, \xi_{s_{1}}, \xi_{s_{2}}, \xi_{s_{3}}\right\}$, where

$$
s_{1}=\frac{1}{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad s_{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \quad s_{3}=\frac{1}{2}\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) .
$$

This basis is orthogonal with respect to (5.2) and in terms of the dual basis of one-forms is $\left\{d \eta, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}, g$ is

$$
\frac{1}{4 \eta^{2} \varrho^{\prime}} d \eta^{2}+\eta \varrho^{\prime}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+\frac{1}{\varrho^{\prime}} \sigma_{3}^{2} .
$$

Substituting $\eta=(r / 2)^{4}-c$, we get

$$
g=W^{-1} d r^{2}+\frac{r^{2}}{4}\left(\sigma_{1}^{2}+\sigma_{2}^{2}+W \sigma_{3}^{2}\right)
$$

with $W=1-16 c / r^{4}$, which are the Eguchi-Hanson metrics [9].
Theorem 5.1. - For $\mathfrak{g}^{\mathrm{C}} \neq \mathfrak{\mathfrak { l }}(2, \mathrm{C})$, the minimal nilpotent orbit $\mathcal{O}_{\text {min }}$ admits a unique hyperKähler metric with G-invariant Kähler potential compatible with the complex symplectic form ω_{c}.

Proof. - Let α be a highest root. Using the action of G, we may assume that $X=t E_{\alpha}$, for some $t>0$. On $\xi_{A} \in \mathfrak{\xi l}(2, \mathrm{C})_{\alpha}$, the condition $J^{2}=-\mathrm{Id}$ gives $8 t^{2}\left(\varrho^{\prime 2}+\eta \varrho^{\prime} \varrho^{\prime \prime}\right)=1$, as in Proposition 5.1. Putting $\lambda^{2}=\eta\left(E_{\alpha}\right)$, we have $t^{2}=\eta(X) / \lambda^{2}$ and hence $\varrho^{\prime}=\sqrt{\lambda^{2} \eta+c} / 2 \eta$. Now for ξ_{A} Killing-orthogonal to $\mathfrak{s l}(2, \mathrm{C})$, we have

$$
J \xi_{A}=-2 \varrho^{\prime}\left[X, \sigma \xi_{A}\right]=-2 t \varrho^{\prime}\left[E_{\alpha}, \sigma \xi_{A}\right]
$$

and hence

$$
J^{2} \xi_{A}=-\left(4 \eta \varrho^{\prime 2} / \lambda^{2}\right) \operatorname{ad}_{E_{\alpha}} \operatorname{ad}_{F_{\alpha}} \xi_{A}=-\left(1+\frac{c}{\lambda^{2} \eta}\right) \operatorname{ad}_{E_{\alpha}} \operatorname{ad}_{F_{\alpha}} \xi_{A}
$$

As η is not constant, the condition $J^{2}=-\mathrm{Id}$ implies $c=0$ and we have a unique hyperKähler metric.

The proof enables us to write down J explicitly for $\mathcal{O}_{\text {min }}$ in $\mathfrak{g}^{\mathrm{C}} \neq$ $\mathfrak{\xi l}(2, \mathrm{C})$:

$$
J_{X} \xi_{A}=-\frac{\lambda}{2 \eta^{3 / 2}}\left(2 \eta\left[X, \sigma \xi_{A}\right]-\left\langle\sigma \xi_{A}, X\right\rangle[X, \sigma X]\right)
$$

The number λ^{2} is a constant depending only on the Lie algebra $\mathfrak{g}^{\mathrm{C}}$, with values $2 n(\mathfrak{s l}(n, \mathrm{C}), \mathfrak{s p}(n-1, \mathrm{C}), \mathfrak{s p}(n+2, \mathrm{C})), 8\left(G_{2}\right), 18\left(F_{4}\right), 24\left(E_{6}\right), 36\left(E_{7}\right), 70$ $\left(E_{8}\right)$.

Remark 5.1. - Theorem 5.1 only assumes that @ is a Kähler potential. However, the uniqueness result implies that this potential is in fact
hyperKähler (cf. [13]). This corresponds to Proposition 5.1, where ϱ is a hyperKähler potential only when $c=0$.

Finally, let us observe that the form of the potential determines the nilpotent orbit.

Proposition 5.2. - If a nilpotent orbit \mathcal{O} has a Kähler potential @ that is only a function of $\eta=\|X\|^{2}$ and which defines a hyperKähler structure compatible with ω_{c}, then \mathcal{O} is a minimal nilpotent orbit.

Proof. - Choose $X \in \mathcal{O}$, such that $\operatorname{Span}_{C}\{X, \sigma X,[X, \sigma X]\}$ is a subalgebra isomorphic to $\mathfrak{H l}(2, \mathrm{C})$; this is always possible by a result of Borel (cf. [11]). Let $X=t E$, for $t>0$, and write $\mathfrak{g}^{\mathrm{C}}=\mathfrak{g l}(2, \mathrm{C}) \oplus \mathfrak{m}$. The proofs of Proposition 5.1 and Theorem 5.1 imply that $\varrho^{\prime}=\lambda \eta^{-1 / 2} / 2$ and $J^{2} \xi_{A}=-\operatorname{ad}_{E} \operatorname{ad}_{F} \xi_{A}$ on \mathfrak{m}. Let $S^{k}, k>0$, be an irreducible $\mathfrak{\xi l}(2, \mathrm{C})$-summand of \mathfrak{m}. Then ad_{E} and ad_{F} act via the matrices φ_{E} and φ_{F} of (3.2), so $\operatorname{ad}_{E} \operatorname{ad}_{F}$ acts as a diagonal matrix with entries $k, 2(k-1), 3(k-2), \ldots,(k-1) 2, k$ and 0 . As ξ_{A} is in the image of ad_{E}, in order to have $J^{2} \xi_{A}=-\xi_{A}$, we need all the non-zero eigenvalues of $\operatorname{ad}_{E} \mathrm{ad}_{F}$ to be 1 . This forces $k=1$.

Let $\mathfrak{g}(i)$ be the i-eigenspace of ad_{H} on $\mathfrak{g}^{\mathrm{C}}$. Then $\mathfrak{p}=\bigoplus_{i \geqslant 0} \mathfrak{g}(i)$ is a parabolic subalgebra, so we may choose a Cartan subalgebra of \mathfrak{g}^{C} lying in \mathfrak{p} and a root system such that the positive root spaces are also in \mathfrak{p}. The discussion above shows that ad_{E} is zero on all these positive root spaces, and so E is a highest root vector. Therefore $\mathcal{O}=\mathcal{O}_{\text {min }}$.

REFERENCES

[1] D. V. Alekseevsky, Compact quaternion spaces, Funktsional. Anal. i Prilozhen., 2, no. 2 (1968), 11-20, English translation: Functional Anal. Appl., 2 (1968), 106114.
[2] D. V. Alekseevsky - V. Cortés, Homogeneous quaternionic Kähler manifolds of unimodular group, Bolletino U. M. I., 11-B (1997), no. Suppl. fasc. 2, 217-229.
[3] R. Bielawski, Invariant hyperKähler metrics with a homogeneous complex structure, Math. Proc. Camb. Phil. Soc., 122 (1997), 473-482.
[4] F. E. Burstall - J. H. Rawnsley, Twistor theory for Riemannian symmetric spaces, with applications to harmonic maps of Riemann surfaces, Lecture Notes in Mathematics, vol. 1424, Springer-Verlag, 1990.
[5] E. Cartan, Sur une classe remarquable d'espace de riemann, Bull. Soc. Math. France, 54 (1926), 214-264 (part 1).
[6] E. Cartan, Sur une classe remarquable d'espace de riemann, Bull. Soc. Math. France, 55 (1927), 114-134 (part 2).
[7] A. S. Dancer - A. F. Swann, HyperKähler metrics of cohomogeneity one, J. Geom. and Phys., 21 (1997), 218-230.
[8] A. S. Dancer - A. F. Swann, Quaternionic Kähler manifolds of cohomogeneity one, International, J. Math., 10, no. 5 (1999), 541-570.
[9] T. Eguchi - A. Hanson, Asymptotically flat self-dual solutions to Euclidean gravity, Phys. Lett. B, 74 (1978), 249-251.
[10] N. J. Hitchin, Monopoles, minimal surfaces and algebraic curves, Les presses de l'Université de Montréal, Montréal, 1987.
[11] P. Z. Kobak - A. F. Swann, HyperKähler potentials in cohomogeneity two, J. reine angew. Math., 531 (2001), 121-139.
[12] P. B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Differential Geom., 32 (1990), 473-490.
[13] A. F. Swann, HyperKähler and quaternionic Kähler geometry, Math. Ann., 289 (1991), 421-450.
[14] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech., 14 (1965), 1033-1047.

Piotr Kobak: Instytut Matematyki, Uniwersytet Jagielloński ul. Reymonta 4, 30-059 Kraków, Poland. E-mail: kobak@im.uj.edu.pl
Andrew Swann: Department of Mathematics and Computer Science University of Southern Denmark, Odense University, Campusvej 55 DK-5230 Odense M, Denmark. E-mail: swann@imada.sdu.dk

[^0]l'1 luglio 1999

[^0]: Pervenuta in Redazione

