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The HyperKähler Geometry Associated
to Wolf Spaces.

PIOTR KOBAK - ANDREW SWANN

Sunto. – Sia G un grupo di Lie compatto e semplice. Sia Omin la più piccola orbita nil-
potente non-banale nell’algebra di Lie complessa SC . Si presenta una costruzione
diretta di teoria di Lie delle metriche iperKahler su Omin con potenziale Kahleriano
G-invariante e compatibili con la forma simplettica complessa di Kostant-Kiril-
lov-Souriau. In particolare si ottengono le metriche iperKahler dei fibrati associati
sugli spazi di Wolf (spazi simmetrici quaternionali a curvatura scalare positiva)..

1. – Introduction.

One of the glories of homogeneous geometry is Cartan’s classification of the
compact Riemannian symmetric spaces [5, 6]. Many manifolds that play a central
rôle in geometry are symmetric and it is fascinating to look for patterns in the pre-
sentations G/H . One obvious family is provided by the sphere S n4SO(n11)/
SO(n), complex projective space CP(n)4U(n11) /(U(n) U(1) ), quaternionic
projective space HP(n)4Sp(n11) /(Sp(n) Sp(1) ) and the Cayley projective
plane F4 /Spin (9). Another consists of the Hermitian symmetric spaces: these
are of the form G/(U(1) L) (see [4]). However, the most surprising is the fami-
ly of quaternionic symmetric spaces W(G) »4G/(SP(1) K), which has the fea-
ture that there is precisely one example for each compact simple simply-con-
nected Lie group G . The manifolds in this last family have become known as
Wolf spaces following [14]. Alekseevsky [1] proved that they are the only ho-
mogeneous positive quaternionic Kähler manifolds (cf. [2]).

Wolf showed that the quaternionic symmetric spaces may be constructed
by choosing a highest root a for SC . The corresponding root vector Ea is a nil-
potent element in SC . In [13] it was shown that there is a fibration of the nilpo-
tent adjoint orbit Omin4G C QEa over the Wolf space W(G).

Nilpotent orbits O in SC have a rich and interesting geometry. Firstly, they
are complex submanifolds of SC with respect to the natural complex structure
I . Secondly, the construction of Kirillov, Kostant and Souriau endows them
with a G C-invariant complex symplectic form v c . It is natural to ask whether
one can find a metric making the orbit hyperKähler, i.e., can one find a Rie-
mannian metric g on O, such that the real and imaginary parts of v c are
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Kähler forms with respect to complex structures J and K satisfying IJ4K . By
identifying O with a moduli space of solutions to Nahm’s equations, Kronhei-
mer [12] showed that there is indeed such a hyperKähler metric on O. This
hyperKähler structure is invariant under the compact group G , and has the
important additional property that it admits [13] a hyperKähler potential r: a
function that is simultaneously a Kähler potential with respect to I , J and K .
Using r , one can define an action of H* on O such that the quotient is a quater-
nionic Kähler manifold. It is in this way that one may obtain the Wolf space
W(G) from Omin . In contrast to the semi-simple case [3], currently one does not
know how many invariant hyperKähler metrics a given nilpotent orbit admits.

The aim of this paper is to study the hyperKähler geometry of Omin in an
elementary way. We look for all hyperKähler metrics on Omin with a G-inva-
riant Kähler potential and which are compatible with the complex symplectic
structure. Note that we do not restrict our attention to metrics with hyper-
Kähler potentials. We derive a simple formula for the a priori unknown com-
plex structure J . The orbit Omin is particularly straight-forward to study in this
way, since G acts with orbits of codimension one. This means that the metrics
we obtain are already known, they are covered by the classification [7], but it is
interesting to see how these metrics can be constructed directly from their po-
tentials. In agreement with the classification, the hyperKähler structure is
found to be unique, unless S4ac (2), in which case one obtains a one-dimen-
sional family of metrics, the Eguchi-Hanson metrics.

Acknowledgements. We are grateful for financial support from the EPSRC

of Great Britain and KBN in Poland.

2. – Definitions.

On the simple complex Lie algebra SC , let aQ , Qb be the negative of the Kil-
ling form and let s be a real structure giving a compact real form S of SC . An
element X of SC is said to be nilpotent if (adX )k40 for some integer k . Let O be
the orbit of a nilpotent element X under the adjoint action of G C . At X� O, the
vector field generated by A in SC is j A4 [A , X]. Using the Jacobi identity it is
easy to see that these vector fields satisfy [j A , j B ]4j 2[A , B] , for A , B�SC .
The orbit O is a complex submanifold of the complex vector space SC and so
has a complex structure I given by Ij A4 ij A4j iA .

On a hyperKähler manifold M with complex structures I , J and K and me-
tric g , we define Kähler two-forms by v I (X , Y)4g(X , IY), etc., for tangent
vectors X and Y . The condition that a function r : MKR be a Kähler potential
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for I is

v I42i¯I¯I r42 id¯I r42
i

2
d(d2 iId) r42

1

2
dI dr .(2.1)

On the orbit O, the complex symplectic form of Kirillov, Kostant and Souriau is
given by v c (j A , j B )X4 aX , [A , B]b42aj A Bb.

We will be looking for hyperKähler structures with Kähler potential r and
such that v c4v J1 iv K . This will be done by computing the Riemann metric
g defined by r via (2.1) and then using this to determine an endomorphism J of
TX O via v J4g(Q , J Q). The constraints on r will come from the two conditions
that g is positive definite and that J 2421.

3. – Highest roots and minimal orbits.

Choose a Cartan subalgebra T of SC . Fix a system of roots D with positive
roots D 1 . We write Sb for the root space of b�D . Choose a Cartan basis
]Eb , Hb , Fb : b�D 1(, which we may assume is compatible with the real struc-
ture s , in the sense that s (Eb )42Fb and s (Hb )42Hb . One important pro-
perty of the Cartan basis is that for each b , SpanC , ]Eb , Hb , Fb( is a subalge-
bra of SC isomorphic to aX (2 , C).

The Lie algebra aX (2 , C) has Cartan basis

E4g0
0

1
0
h , H4g1

0
0
21
h , F4g0

1
0
0
h .(3.1)

The irreducible representations of aX (2 , C) are the symmetric powers S k4
S k C2 of the fundamental representation S 14C2 . The representation S k

has dimension k11 and E , H and F act as

W E4

.
`
`
`
´

0 1
0 2

Q Q
Q Q Q

Q

0 k
0

ˆ
`
`
`
˜

, W H4

.
`
`
`
´

k
k22

Q Q
Q

22k
2k

ˆ
`
`
`
˜

(3.2)

and W F4

.
`
`
`
´

0
k 0

Q Q
Q Q Q

Q

2 0
1 0

ˆ
`
`
`
˜
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respectively. In particular, (W E )k1140 and (W E )k has rank one, with image
the k-eigenspace of W H .

Let a�D 1 be a highest root; this is characterised by the condition
[Ea , Eb ]40 for all b�D 1 . We define Omin to be the adjoint orbit of Ea under
the action of G C . Define aX (2 , C)a »4SpanC]Ea , Ha , Fa(.

PROPOSITION 3.1. – (i) Under the action of aX (2 , C)a the Lie algebra SC de-
composes as

SC
`aX (2 , C)a5 WC5 (V7S 1 ) ,

where WC is the centraliser of aX (2 , C), V is a WC-module.

(ii) The action of the compact group G on the nilpotent orbit Omin has
cohomogeneity one.

PROOF. – (i) Consider the action of ad Ea on SC . For b�D 1 , we have
[Ea , Fb ]�Sa2b . If bca , then we have two cases: (a) if a2b is not a root then
Sa2b4]0( and [Ea , Fb ]40; (b) if a2b is a root, then the condition that a
is a highest root implies a2b�D 1 , since otherwise a2b42g for some
g�D 1 and then [Ea , Eg ] is non-zero, which for a highest root a is impossible.
We therefore have that (ad Ea )2 is zero on the complement of aX (2 , C)a and
the decomposition follows.

(ii) At Ea the tangent space to Omin is

adEa
SC4SpanC]Ea , Ha(1SpanC]Ea2b : b�D 1( .

The real Lie algebra S is the real span of ]Eb2Fb , iHb , i(Eb1Fb )(. Thus the
tangent space adEa

S to the G-orbit is

SpanR]iEa , Ha , iHa(1SpanR]Ea2b , iEa2b : b�D 1(

and we see that it has codimension one in TEa
Omin , the complement being REa .

As G is compact, this implies that G acts with cohomogeneity one. r

As in [8], it is possible to use this result to show that Omin is minimal with
respect to the partial order on nilpotent orbits given by inclusions of closures.
This explains the name Omin , but will not be needed in the subsequent
discussion.

4. – Kähler potentials in cohomogeneity one.

Let r : OminKR be a smooth function invariant under the action of
the compact group G . The group G acts with cohomogeneity one, and
the function h(X)4VXV

24 aX , sXb is G-invariant and distinguishes orbits
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of G . We may therefore assume that r is just a function of h , i.e.,
r4r(h).

We wish to consider r as a Kähler potential for the complex manifold
(Omin , I). The corresponding Kähler form is given by (2.1):

v I42
1

2
d(r 8 Idh)42

1

2
r 8 dI dh2

1

2
r 9 dhRIdh ,(4.1)

where r 84dr/dh , etc.

LEMMA 4.1. – The Kähler form defined by r(h) is

v I (j A , j B )42 Im (r 8 aj A , sj B b1r 9 aj A , sXb asj B , Xb) .(4.2)

PROOF. – The exterior derivative of h is

dh(j A )X4 a[A , X], sXb1 aX , s [A , X]b42 Re aj A , sXb(4.3)

so Idh(j A )X42 Im aj A , sXb and hence

(dhRIdh)(j A , j B )424 Im (aj A , sXb asj B , Xb) .

Using the Jacobi identity we find that the exterior derivative of Idh is given
by

dI dh(j A , j B )X4j A (Idh(j B ) )2j B (Idh(j A ) )2Idh( [j A , j B ] )

42 Im aj B , sj A b12 Im a[B , [A , X] ], sXb

22 Im aj A , sj B b22 Im a[A , [B , X] ], sXb

12 Im a[ [A , B], X], sXb

42 4 Im aj A , sj B b .

Putting these expressions into (4.1) gives the result. r

Using the relation g(j A , j B )4v I (Ij A , j B ), we can now obtain the indu-
ced metric on Omin . In general, this metric will be indefinite; the signature may
be determined by considering SpanR]X , sX( and its orthogonal complement
with respect to the Killing form.

PROPOSITION 4.1. – The pseudo-Kähler metric defined by r(h) is

g(j A , j B )42 Re (r 8 aj A , sj B b1r 9 aj A , sXb asj B , Xb) .(4.4)

This is positive definite if and only if r 8Dmax ]0, 2hr 9(. r
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5. – HyperKähler metrics.

Given a function r(h) on Omin we have obtained a metric g . Let us assume
that g is non-degenerate. Using the definition of v c and its splitting into real
and imaginary parts, we get endomorphisms J and K of TX Omin via

g(j A , j B )4v J (Jj A , j B )42Re aJj A , Bb ,

etc. This implies that

JX j A422r 8 [X , sj A ]22r 9 asj A , Xb [X , sX] .(5.1)

and K4IJ . Note that (5.1) implies JI42K .
Suppose that J 2421 and g is positive definite. Then we have I , J and K

satisfying the quaternion identities, and with v I , v J and v K closed two-forms.
By a result of Hitchin [10], this implies that I , J and K are integrable and that
g is a hyperKähler metric.

PROPOSITION 5.1. – The nilpotent orbit of aX (2 , C) has a one-parameter fa-
mily of hyperKähler metrics with SU(2)-invariant Kähler potential and
compatible with the Kostant-Kirillov-Souriau complex symplectic form v c .

PROOF. – The algebra aX (2 , C) has only one nilpotent orbit O 4 Omin

and this has real dimension 4. Using the action of SU(2) we may assume that
X4 tE , where tD0 and E is given by (3.1). Then TX O is spanned by H and E .
We have JX H424r 8 tE and JX E42 t(r 81hr 9 ) H , which implies J 242Id
if and only if 8 t 2 (r 821hr 8r 9 )41. Now h(E)44, so we get the following or-
dinary differential equation for r:

2(hr 821h 2 r 8r 9 )41 .

The left-hand side of this equation is (h 2 r 82 )8 , so r 84kh1c/h , for some
real constant c . For this to be defined for all positive h , we need cF0. Now
r 942(h12c) /(2h 2kh1c), so the metric is

(5.2) g(j A , j B )4
1

h 2kh1c
Re (2h(h1c)aj A , sj B b2(h12c)aj A , sXb asj B , Xb) ,

which is positive definite. r

This hyperKähler metric is of course well-known. We put it in standard
form as follows. Using (4.3), we find (¯/¯h)4E/(8 t) at X4 tE . An SU(2)-inva-
riant basis of TX O is now given by ]¯/¯h , j s1

, j s2
, j s3

(, where

s14
1

2
g 0
21

1
0
h , s24

1

2
g0

i
i
0
h , s34

1

2
gi

0
0
2i
h .
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This basis is orthogonal with respect to (5.2) and in terms of the dual basis of
one-forms is ]dh , s 1 , s 2 , s 3(, g is

1

4h 2 r 8
dh 21hr 8 (s 2

11s 2
2 )1

1

r 8
s 2

3 .

Substituting h4 (r/2 )42c , we get

g4W 21 dr 21
r 2

4
(s 1

21s 2
21Ws 3

2 ) ,

with W41216c/r 4 , which are the Eguchi-Hanson metrics [9].

THEOREM 5.1. – For SC
caX (2 , C), the minimal nilpotent orbit Omin

admits a unique hyperKähler metric with G-invariant Kähler potential
compatible with the complex symplectic form v c .

PROOF. – Let a be a highest root. Using the action of G , we may assume
that X4 tEa , for some tD0. On j A�aX (2 , C)a , the condition J 242Id gives
8 t 2 (r 821hr 8r 9 )41, as in Proposition 5.1. Putting l 24h(Ea ), we have
t 24h(X) /l 2 and hence r 84kl 2 h1c/2h . Now for j A Killing-orthogonal to
aX (2 , C), we have

Jj A42 2r 8 [X , sj A ]422 tr 8 [Ea , sj A ]

and hence

J 2 j A42 (4hr 82 /l 2 ) adEa
adFa

j A42g11 c

l 2 h
h adEa

adFa
j A .

As h is not constant, the condition J 242Id implies c40 and we have a uni-
que hyperKähler metric. r

The proof enables us to write down J explicitly for Omin in SC
c

aX (2 , C):

JX j A42
l

2h 3/2
(2h[X , sj A ]2 asj A , Xb[X , sX] ) .

The number l 2 is a constant depending only on the Lie algebra SC , with values
2n (aX (n , C), a] (n21, C), a[ (n12, C)), 8 (G2), 18 (F4), 24 (E6), 36 (E7), 70
(E8).

REMARK 5.1. – Theorem 5.1 only assumes that r is a Kähler potential.
However, the uniqueness result implies that this potential is in fact
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hyperKähler (cf. [13]). This corresponds to Proposition 5.1, where r is a
hyperKähler potential only when c40.

Finally, let us observe that the form of the potential determines the nilpo-
tent orbit.

PROPOSITION 5.2. – If a nilpotent orbit O has a Kähler potential r that is
only a function of h4VXV

2 and which defines a hyperKähler structure com-
patible with v c , then O is a minimal nilpotent orbit.

PROOF. – Choose X� O, such that SpanC]X , sX , [X , sX]( is a subalgebra
isomorphic to aX (2 , C); this is always possible by a result of Borel (cf. [11]).
Let X4 tE , for tD0, and write SC4aX (2 , C)5Y . The proofs of Proposi-
tion 5.1 and Theorem 5.1 imply that r 84lh21/2 /2 and J 2 j A42adE adF j A on
Y . Let S k , kD0, be an irreducible aX (2 , C)-summand of Y . Then adE and adF

act via the matrices W E and W F of (3.2), so adE adF acts as a diagonal matrix
with entries k , 2(k21), 3(k22), R , (k21) 2 , k and 0 . As j A is in the image of
adE , in order to have J 2 j A42 j A , we need all the non-zero eigenvalues of
adE adF to be 1 . This forces k41.

Let S(i) be the i-eigenspace of adH on SC . Then ]45
iF0

S(i) is a parabolic

subalgebra, so we may choose a Cartan subalgebra of SC lying in ] and a root
system such that the positive root spaces are also in ] . The discussion above
shows that adE is zero on all these positive root spaces, and so E is a highest
root vector. Therefore O 4 Omin . r
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