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Diamonds in Thin Lie Algebras.

M. AVITABILE - G. JURMAN (¥)

Sunto. — In un’algebra di Lie graduata thin, la classe in cut compare il secondo dia-
mante e la caratteristica del campo soggiacente determinano se l'algebra stessa ab-
bia 0 meno dimensione finita ed in tal caso forniscono anche un limite superiore a
tale dimensione.

Introduction.

During the last few years there has been a growing interest in studying
some narrowness conditions on p-groups and (graded) Lie algebras. The best
known condition is having finite coclass, but other ones can be considered. A
rather general condition is finiteness of width, that is, the existence of a con-
stant that bounds the orders, or dimensions, of the lower central factors.

Although these conditions were initially born in a group-theoretical envi-
ronment, they have been generalized to the class of graded Lie algebras over
fields of arbitrary characteristic: in this case, order of the lower central factors
reads as dimension of the homogeneous components. A strong narrowness
condition is thinness.

A graded Lie algebra L = ‘@11” is thin if L, has dimension 2 and generates

L as an algebra and if L satisfies the covering property: for each integer i > 1
and for each non-trivial element z e L;, one has L;, = [L4, z].

The covering property, combined with the dimension of L;, implies that
every homogeneous component L, of L has dimension at most 2. A component
of dimension two is called a diamond. When all the components L; except the
top one are one-dimensional, L is a graded Lie algebra of maximal class. These
are studied in [CMN], [CN], [J2].

When this is not the case, there is at least one more two-dimensional homo-
geneous component of L. Let L; be the next one (we say that the second dia-
mond occurs in weight k): define the ideal L* = i@kLi' As a first observation, it

is proved in [CMNS] that % is odd when the quotient L/L* is metabelian.

(*) Both authors are member of INJAM-GNSAGA, Italy. We are grateful to A. Ca-
ranti and M. F. Newman for suggesting the problem and reading various versions of the
manuscript.
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In this paper we will study to what extent the number k restricts the di-
mension of the entire algebra.

When k =3 there are examples of infinite-dimensional thin Lie algebras
over every field . Apart from the characteristic two case they arise as loop al-
gebras of a simple algebra of type A;. These are described in [CMNS] for
char (I') = 5 and in [C1] for char (F) = 3. The same construction extends to the
characteristic zero case. When the characteristic is two the situation is differ-
ent, but still examples can be found: some of them are described in the paper
[GMY].

Something similar happens for k¥ =5 when the characteristic is not two.
Again the example built in [CMNS] starting from a simple algebra of type A,
where char (IF) is at least 7 can be extended to the characteristic zero case. The
papers [CM] and [C] deal with the cases char (F) =3 and 5 respectively.

No more infinite-dimensional Lie algebras are known in characteristic zero
and we will prove below that there are no more, while in the modular case fur-
ther examples can be found. Denote by ¢ a power of the characteristic p of the
underlying field IF. When k =2q — 1 we have the (—1)-algebras built in [CM]
starting from a graded Lie algebra of maximal class with parameter g; note
that this construction method works even in characteristic two, provided the
parameter of the starting algebra is bigger than two. For k = ¢, in the odd
characteristic case, there are algebras related to the Nottingham group (see
[C] and [C2]) and, finally, in characteristic two when k =q —1 and ¢ > 8, we
find the exceptional family of algebras described in [J].

We will show that for all other values of k& the thin Lie algebra L is
finite-dimensional.

Theorem 1, whose complete proof appears in the papers [CJ] and [J], justi-
fies this claim when the quotient L/L* is not metabelian.

We prove an analogous theorem (Theorem 2) which takes care of the case
when the quotient L/L* is metabelian; we give explicit bounds for the dimen-
sion of the algebras in terms of k& and the characteristic of the underlying field.
The examples above show that in this case we can assume k =5 and even k =7
for odd characteristic.

Note that the paper [CMNS] dealt with the same problem for thin Lie al-
gebras associated with thin pro-p-groups. In that case, the second diamond al-
ways occurs in class less than the characteristic of the field and it was proved
that, if 5 <k < p then the associated Lie algebra has class at most k¥ +2. In
particular, the structure of pro-p-groups associated with the thin Lie algebras
built in this paper has been investigated in [M]. A discussion of pro-p-groups
whose associated Lie algebra has second diamond in class 3 or 5 can be found
in [KL-GP].

We conclude, in Section 3, with a final remark on deriving the characteris-
tic of the field from the value of k.
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Although none of the results relies on machine computations, many numer-
ical examples have been worked out by using the p-Quotient Program devel-
oped at the Australian National University (ANU pQ, see [HNO]) in order to
get the information required to construct the theory presented here. This
software shows the structure of some finite-dimensional quotients of the alge-
bras involved and suggests Jacobi expansions needed to prove the state-
ments.

1. — The theorems.

For notation and background material, we refer mainly to the papers
[CMN] and [CMNS]: in particular, all iterated commutators are left-normed
and exponential notation is used as shorthand

[yx"] = [yx...x].

The generalized Jacobi identity
n S i i
[ulya"]1] = 'Eo(_l) ( _)[uac Yy ']
i= )
is often used without specific mention.
We will also use Lucas’ Theorem (see [L], [KW]) several times. Let a and b

be two non-negative integers, and p a prime. Write @ and b in p-adic
form,

a=ay+ap+..+a,_1p" +a,p"
b=by+bp+...+b,_1p" 1+0b,p",
so that 0 <aq;, b;<p—1, for all 7, then

a n
() f5) i

Let L = @1 L; be a thin graded Lie algebra over a field IF with second diamond

in class k. Choose a minimal generating set for L; by taking a non-trivial ele-
ment ¥ in the two-step centralizer Cy, (L) and x ¢ 'y, so that L, = (x, ). Then
L/L* is a graded Lie algebra of maximal class, so we can apply the theory de-
veloped in [CMN]. Suppose that the quotient L/L"* is not metabelian. Then the
characteristic of IF is a positive number p and the set

A={aeN:2<a<k-1,Cy(L,) #Cy(Ly)}

is not empty. Let m and M be respectively the minimum and the maximum of
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A,andcallb=m —2 and t =k — 1 — M: in view of the theory of graded Lie al-

gebras of maximal class, b must be of the form 27 — 2 for some power r = p”" of

the characteristic. We refer to r as the parameter of the algebra, while £ must

be of the form 27 —p®—1 where s ranges in the set { -, 0,1, ..., h}.
Then, the claim reads as follows.

THEOREM 1 ([CJ], [J]). — Let L be a graded thin Lie algebra with second di-
amond in class k and with L/L* not metabelian.

Then L has positive characteristic p. Let r = p" be its parameter and let t
be defined as above.

Then the following holds:

e t<2r—1,
® when t=2r—2 and p is odd,
L has class at most k+r—1;
® when t=2r—2 and p is 2, let n=(k+1)/8r;
— when n 18 not integer,
L has class at most k + 4r — 2;

— when n 1s integer but not a power of 2,
L has class at most k+ 4nr —1;

® when t=2r—p°—1 with se {1, ..., h},
L has class at most k+r—1, and even
L has class at most k for p®=2.

The proof of the above result is in the paper [CJ] for the odd characteristic
case and in [J] for the case of characteristic two.

So from now on we can take L/L* to be metabelian. This includes the char-
acteristic zero case.

THEOREM 2. — Let L be a graded thin Lie algebra with second diamond in
(odd) class k and L/L* metabelian. Let k=T in odd characteristic and k =5
if the characteristic is 0 or 2.

Then the following holds:

® for characteristic 0,
L has class at most k + 2;
® for positive characteristic p,
— when k= —1 modulo p (for odd p) or modulo 4 (when p = 2), write
k=2nq—1 where q is a p-power and (n, p) =1 then
* ifn=1
there exist infinite-dimensional Lie algebras L (see [CM]);
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* if m>1

o for odd characteristic,
L has class at most k+q—1 ((CM]);

o for characteristic 2,
L has class at most 2loe®1+1_g.

— when k=0 (mod p >2), write k=nq where q is a p-power and (n,p)=1;
then

* ifn=1

there exist infinite-dimensional Lie algebras L (see [C]);
x ifn>1

L has class at most k+ q —1;

— when k# —1, 0,
L has class at most k + 2.

If k=1 modulo p the bound can be tmproved. In this case L has class at
most k.

2. — The proof.

The following result was originally proved in [CMNS] for I = IF,, the field
with p elements, with p > 5, but nothing changes in the proof if F is any field of
characteristic p > 5.

LEMMA 1. — Under the hypotheses of Theorem 2, if the characteristic of the
field T is greater than k (including zero), then L has class at most
k+2.

A first immediate consequence is that we can always suppose, in the modu-
lar case, that k = max {7, p}. The same proof works in characteristic zero; this
proves completely the claim for the characteristic zero case.

From now on suppose char (IF) =p > 0.

Denote by v an element of weight k¥ — 1. The additional hypothesis L/L*
metabelian means that

Fy = Cp, (Ly) = Cp (Ly) = ... = Cp, (Ly,_5),

which implies that we can choose v = [yx’“‘Z]. Now define A =(k—1)/2 and
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v = [yx*®"27!] so that
[v - tel]l=v.

Since Lj = ([vx],[vy]), in class k+1 we have a spanning set with four
elements

[vwa], [vaey ], [vye], [vyy].
Two standard calculations show relations among them, namely
0=[v '[yayll = —[vyyl,

and
2 (A ) .
0 = [[yx*Ilyx*]] = ZO( —l)l( ) [yax** iyat 1]
1= 1

= (=1 YAlvyx] + (= 1) [vay],
that, together with the covering property, imply
1) [vey] = Alvyx]  [vax] = uloyx],

for some uel'.

Suppose k= —1 modulo p if p is odd, or modulo 4 if p =2, i.e. k=2qn —1
for some power q of p = char (IF) and some % coprime with p: it is equivalent to
saying that A= —1 (mod p).

The following lemma deals with the odd characteristic case:

LemMA 2 [Proposition 1 of [CM]]. — With the above hypotheses, if n>1,
then L has class at most k+q—1.

So assume p = 2. Let 5 be the integer [log,(k) |, so that we can write k as
27+ 4+ 3, where 0 <4&+ 3 <2". Now, in class k + 1, the relations (1) are
the following:

[vyyl =0,
[vey] = [vyx],
[vex] = ulvyx].

First of all, we show by induction that the elements of weight k + s are cen-
tralized by y when 1 <s <27 —2. For s =1, 2 the result follows from standard
arguments, expanding [v[yxy]] and [v “3[yx°y]] respectively. Then suppose
s >2 and expand the following Jacobi identity for elements in class £+ 1+ s
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for 3<s<2"-2:
0= [v—(Z"—Z—S)[yxZW—Zy]]

— [?] —(2’7—2—3)[?/902’7—2] Z/]

22
21— 2 : S .
_ EO( i )[v—(27—2—s)xzy9€2’—2—1y]

) ,
= ( )[vywéy]

-2

+( 2" -2 )[ —
VXYL
2"—1-s v Y

o (P B3 PRy | V2%
C\\2—2-5 15 vy

21— 1 .
= 91— [vye®y]

= [vyx*y].

Now add the hypothesis that £+ 1 is not a power of two: this implies
£<2172-1.Leta=2"—2:then k +2 <2a + 2, in view of the above restric-
tion on the range of £, so it makes sense to expand the following Jacobi identi-
ty in class 2a + 2:

0=[lyx*lyx*]]

. 20+2-k
(o T

+ '[?}90 x2a+lflc]
(k—l—a) v

— a a . 20+2-k
(PSR LS
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But 20 +1 — k <27 — 2 and thus the element [vyx2**!~*] is central: then the
class of L is at most 2/ee®]+1 _ 3 a9 claimed.
Now we can assume Az —1: thus in (1) we can redefine x as

u
x— ——y,
l+1y
reducing to the case
[vex] =0.

Again, the covering property implies L, ; = {[vyx]) and in class k + 1 we have
the following situation

2a) [vwx] = [vyy] =0,
(2b) [vay] = Alvyx].

If £ = 1 modulo p for p odd and modulo 4 for p = 2, then 4 = 0 (mod p), and
by the covering property L, ,; = {0}.

This exhausts the characteristic two case, so assume p > 2.

The two expansions in class k + 2

0 = [vlyxy]] = 2[vyxy] — [veyy],
and
0 = [[yx"~ *1lyaxay]] = Slvyaey] — [veyy],

imply [veyy] = [vyxy] =0 and L, , = {[vyxx]). Note that the second identity
above holds since we are assuming k= 7. We refer to [CMNS] for the case
k =5. Finally, move to class k + 3:

0 = [valyxy]]
= 2[vaeyxy] — [vexyy] — [veyyx]
= 2[vyxxy],

so that L, , 3 = ([vyxxx]).

If k = 0 modulo p, then we write k = nq with (n, p) = 1. As observed in the
Introduction, » must be odd and there exist infinite-dimensional examples
when n =1, so write n as 2h + 1, with h =1.

We show that L, ;= ([vyx']) for 1 <1< gq: to do this, we prove by induc-
tion that

[vyz'y] =0,

where 0 </<¢q— 1. The cases [ <2 come from previous calculations, so sup-
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pose the equation is satisfied for [=0—1 and prove it for [=0. The
expansion

0 = [v[yx’y]]

byl — (= 1) [oyay]

= [vyxy] — blowyx
=(1-bA— (=1D)")[vyxy],

holds for any b < g, since p >2 and n > 1; the coefficient
b
1-bA—(-1’=1+ > + (=11 (mod p)

vanishes either when b is an even multiple of p, or when b is odd and congru-
ent to —4 modulo p.

Take a power p' of the characteristic and an integer ¢ in the range
2<p'+@<k—>b and expand the following Jacoby identity:

0= [yxk—¢—pt[ymb+pt+¢—2y]]

. b+p'+o—2
=(—1)7’+¢‘2( Py )[vyw”y]
pito-2
. b+p'+¢—2
3) +(—1)p+¢_1( Py )[v%y%b_ly]
pi+e—1
: b+pi+¢—2 b+p'+¢—2
=(—1)’”¢"2(( Py )—/1( Py ))[vywby]
plto-2 pite—1

= (=17 2yloyalyl.

In the former case, write b = Sp¢ where 0 (mod p) and let t =g and ¢ =0 in
equation (8); then p!+ ¢ satisfies the required bounds and the coefficient
is

y = (ﬁpt+pt—2)_i(ﬁpt+pt—2)El.

p'-2 p'-1
The latter case requires a distinction.
When p >3, write b+4 as fp? where f#0 (mod p), and take t=g and ¢ =2

in equation (8). The number p’+ ¢ still satisfies the constraints and #
becomes

(ﬁpt+pt—4) l(ﬁp“rpt—él
n= -
p! pl+1

When p = 3 the values of b to consider are those of the kind 39(2z + 1) + 2

) =p(1+41)=—pB#0 (mod p).
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for some non-negative integer z. Moreover, when p = 3 the coefficient 1 is 1.
Choose t=¢ and ¢ = —1 and evaluate #:

(2z2+1)+3 -1 3(2z+1)+3 -1
n= — =1-2=-1.
3 -3 3 —2

Now 3! + ¢ satisfies the required constraints unless g = 1. In this case choose
@ =1 and t =g, so that the coefficient » results

(3(22+2) + 1) (3(2z+2) +1
n= —

)E —(22+2).
2 3

This method fails when 2z +2 =0 (mod 3). When this occurs, write 2z + 2 =
3"y with 0 < @ and y#0 (mod 3), therefore b =3 "'y — 1. Taking ¢ =3°*! -2
and t =1 in equation (3), we obtain

3a+1y+3a+1_2 3a+1y+3a+1_2
n= - -7.

3a+1_1 3a+1

Thus, in every case, [vyx'y] is zero for every 0 <I<q—1. Now let

and expand the following identity in class k + ¢:
0 = [[yx”yx"]]

=(—1>“(V)[vyac‘1]+(—1>a“( !

a o+

o () (. o
a a+1

=(—1)”‘1(( hqg+q—1 )_l(thrq—l))[WM]
(h—1)g+q—1 hq

= (=11 (h = Dlvya?].

1)[%@/%"1]

The coefficient 7 — 1 =h + 1/2 is not zero since p is coprime to n=2h+1,
therefore the component of weight k + g of L vanishes. The above case was the
last one for characteristic three.

So assume p >3 for the final cases.
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If k=a modulo p, where ae {2, ..., p—2} and p >3, then the expan-
sion

0 = [[yxllyx"]]
k
— _1 k—3
o,

)[vymx] + (—1)k‘2( b
3 k

2) [vaeyxx],

gives the relation

[veyxx] =

[vyxxx],

which, together with the one obtained by commuting (20) twice with x
[veyxx] = Alvyaxxx],

yields
0= (l — % ) [vyxax] = (k + 1)[vyxaxx].

Since k + 1#0, we obtain
[vyxax] =0

and thus L, 3= {0}.

3. — A final comment.

Suppose we are given a modular graded thin Lie algebra of infinite dimen-
sion over a field of unknown odd characteristic, whose second diamond has
weight k> 5 and whose structure is known up to elements in weight k¥ + 1. Is
it possible to find the characteristic of the field?

The above result yields that & is of the form ¢ or 2¢g — 1 for some prime
power q. The only ambiguous case occurs when both k£ and (k + 1)/2 are prime
powers. In this situation, the answer can be given by looking at the elements
just after the second diamond: if [vay] = —[vyx], then the characteristic is the
only prime factor of the prime power (k + 1)/2 and the algebra is a (—1)-alge-
bra, otherwise p is the only prime factor of the number k and the algebra is of
Nottingham type.

In fact, when k =2¢ — 1, then 1 = ¢ — 1 and it cannot happen that A + 1 is
both a power of a prime p and a multiple of a different prime r.
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