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Harmonic Functions on Classical Rank one Balls.

PHILIPPE JAMING (%)

Sunto. — In questo articolo studieremo le relazioni fra le funzioni armoniche nella pal-
la iperbolica (sia essa reale, complessa o quaternionica), le funzione armoniche eu-
clidee in questa palla, e le funzione pluriarmoniche sotto certe condizioni di cresci-
ta. In particolare, estenderemo al caso quaternionico risultati anterior: dell’autore
(nel caso reale), e di A. Bonami, J. Bruna e S. Grellier (nel caso complesso).

1. — Introduction.

In this paper, we study the links between harmonic functions on the hyper-
bolic balls (real, complex or quaternionic), the euclidean harmonic functions on
these balls and pluriharmonic functions. In particular we investigate whether
growth conditions may separate these classes.

More precisely, let F =R, C or H (the quaternions) and let » be an inte-
ger,n =2 (n =3 if F = R). Let B, be the euclidean ball in ", let A be the eucli-

dean laplacian operator on B, and let N = frai be the normal derivation opera-

”
tor. For k e \N* a function u of class ¥ is said to be k-hamonic if A*% = 0, in
particular for k =1 this are the euclidean harmonic functions.

The ball B, can also be endowed with the hyperbolic geometry. Let Dy be

the associated Laplace-Beltrami operator. Let o = n—_l, n, 2n + 1 according
to F=R, C or H. 2

It is well known that if u is euclidean harmonic or more generally k-harmo-
nic for k e N* with a boundary distribution, then every normal derivative of u,
N*u, has also a boundary distribution. We will show that if « is a Dy-harmonic
function with a boundary distribution, then for every integer k < o, N*u has
also a boundary distribution.

Next, we define a pluriharmonic function as a function that is euclidean
harmonic over every Ii-line where I is seen as R? with d = dimg F. This exten-
ds a classical definition from the case IF = C to the two other cases and seems
to be the most pertinent definition for our study.

(*) The author wishes to thank A. Bonami, E. Damek and A. Hulanicki for valuable
conversations and advices. Author partially supported by the European Commission
(TMR 1998-2001 Network Harmonic Analysis).
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It is shown in [7] for F = R and % odd and in [2] for IF = C, that if u is Dy-
harmonic with a boundary distribution, then N¢u« has a boundary distribution
if and only if u is also euclidean harmonic. Note that for IF = R, ¢ is an integer
if n is odd, whereas for »n even, g is a half-integer. In this last case, although
one might give a meaning to N ¢, the above result is no longer true. Actually, if

n
F =R and #» is even, we will show that if % is Dg-harmonic then w is also 5"

harmonic (up to a change of variables), implying that % behaves more alike the
euclidean-harmonic functions. In particular, as has already been shown in [7]
by different methods, if % has a boundary distribution, then N*u has also a
boundary distribution for every k. So, in even dimension, Dy-harmonic fun-
ctions behave like euclidean harmonic functions.

Further, in the case I = R, the only functions that are both Dy-harmonic
and euclidean harmonic (and more generally k-harmonic with k£ =1) are the
constants. In the case F = C, it is well known that the only functions that are
both D~-harmonic and k-harmonic with k¥ =1 are the pluriharmonic functions
(see [11]), in particular they are already euclidean harmonie.

We would also like to mention that in the complex case, this result appears
as a particular case of a theorem by Ewa Damek & al (see [3]) stating that, in a
Siegel tube domain, pluriharmonic functions satisfying some growth condition
are characterized by only the invariant laplacian and some other elliptic opera-
tor. Moreover, here no assumptions on boundary values is needed and the se-
cond elliptic operator can be chosen as the euclidean laplacian.

In the case IF = H (as in the case IF = R), a major difference occurs, namely
that the pluri-harmonic functions are no longer Dp-harmonic (except for the
constant functions). Further there exist functions that are both Dy-harmonic
and 2-harmonic, and we will show that those Dy-harmonic functions that are 2-
harmonic but not 1-harmonic are linked to the pluriharmonic functions, and
that this class is orthogonal on every sphere rS** =1, 0 <7 <1 to the Dy-har-
monic functions that are 1-harmonic. To conclude, if % is 2-harmonic with a
boundary distribution, then N*« has also a boundary distribution. We will
show that, among the Dy-harmonic functions the converse is also true: let u be
a Dy-harmonic with a boundary distribution, then if N?« has also a boundary
distribution, then u is 2-harmonic.

The article is organised as follows: in the next section we give the setting of
our problem, and we make clear the above mentionned links between the dif-
ferent notions of harmonicity in the real and the complex case. In section 3 we
prove that for % Dy-harmonic with a boundary distribution, N*« has a bounda-
ry distribution for k¥ <. In the last section we deal with the quaternionic
case.
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2. — Setting and main results.

2.1. Gauss’ Hypergeometric function.

A number of hypergeometric functions will appear throughout. We use the
classical notation ,F;(a, b, c; x) to note

= Ta+k) Ib+k) Ic) z*
ZFl(a,b’C’x)_kgo Ma) 1) Itk K

whith ¢ = 0, —1, —2, ... This can also be defined as being the solution of the
differential equation

a2 d
Q- ol tfe—(a+b+D)al 2 —abu=0
da? dax

that is regular in 0. We refer to [4] for the theory of such functions.

2.2. Classical rank one balls.

Let us recall some facts about symetric spaces of rank 1 of the non-compact
type and their realizations as the euclidean unit ball. This facts can be found
for instance in [5] and their adaptation to the ball model are then straightfor-
ward computations.

Let F=R, C or H and let x— % (x € ) be the standard involution on F,
put |x| =27 and d = dimg I.

Consider " *! as a right vector field over I and define the quadratic form
Q(x) = |2y |*+ ... + |, |*— @, 1|® for &= (2, ..., 2, 1) €""L Then the
connected component of the identity G of the group of all F-linear transforma-
tions on ™ *! which preserve @ and which are of determinant one (except for
the case IF'=H) is given as follows:

1. if F =R then G =S0,(n, 1),
2. if F=C then G=S8SU(n, 1),
3. if F = H then G = Sp(n, 1).
Let G = KAN be an Iwasawa decomposition for G. Then

cht 0 sht
A=daq=1 0 [, , 0 |:teR
sht 0 cht
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and
f r 62 62 N \
1+y+ — —Yy— — n
Y 5 Y 5 & g
62 62
+ — 1—y— — " — n—1
N={n=| "2 vty Eu|, 6=y B |
& —& 1 0 yel, y=—y
\ \ En _‘f::n 0 1, )

(where 6% = |E|5+ ...+ |&|2). Put A, = {@;: t>0}. The Cartan decomposi-
tion of G is given by G = KA, K.
Let M be the centralizer of A in K, 1.e.

M = mm,c=

S OO

0 0
kE 0|:meSO(n—1,1),celf, |¢|?=1
0 ¢

If = (2, ..., ®,) and y = (yy, ..., ¥,,) are in ", set (x, y) =97 +... +
x,%, and ||x|? = (2, ). Then the unit ball B, = {x e F": [|?* <1} and its boun-
dary S" ! (the unit sphere in ") are identified with G/K and K/M. More pre-
cisely, an element of G/K is identified with the couple (q;, &), t=0,EeS" 1=
K/M which is indentified with the point (sht. &, cht) in the hyperboloid
Q(xy, ..., ®,, 2, ,1) = —1. This point is in turn identified with the point
(tht) £e B, (see figure 1).

(sht&,cht)

/

(tht§,1)

Fig. 1. — The identification of G/K with B,,.
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It is then easily seen that G acts transitively on B, and on S™! as
follows:

g'(xl’ RN xn) = (ylyni-%—lh . )ynyn+1)

where (Y1, -y Yns Yn+1) = 9(2%1, ..., ©,, 1). The balls B, with that action of G
are the classical rank 1 spaces of the non-compact type (or the real, complex
and quaternionic hyperbolic balls depending on F =R, C or H).

Recall that d = dimg F. Let y be the positive simple root of (G, A), and
my=dn—-1), my=d—1 be the multiplicities of y and 2y respectively. Let

Q=%+m2, or H.

The Laplace-Beltrami operator on G/K is given by

d? d 1 1
— + (mycotht + 2mycoth2¢) — + _
2 ! 2 sh22¢

_ L
dt dt  sh’t

w1 [oF

where L, and L, are tangential operators (see e.g. [10] for precise expres-
sions). Thus, on B,, the G-invariant laplacian is given by

1-— 2
Dy = 47; [(1—7'2)N2+(m1+m2—1+(m2—1)7"2)N]+
e
1— 72 (1 -2y
72 Ait 4p? 42

0 . . .
where r= ||, N = r— and 4, 4, are two tangential operators having as ei-
v

genvectors the spherical harmonics.

EXAMPLE. — ¢ If F = R then A4, = 0 while 4, = 4, the tangential part of the
euclidean laplacian so that
1—7? 1—7r?2
N 3 ( ) y

r2)N2+ (n—-2—-7r2)N]+ - o
r

oIf F=C design by £ ;= z_aa z_ai. Then 4,=L£=-—
Z

Z 2(06 ]£L £ ;L ;) the Kohn laplacmn and A,=4T? with

2i<j

T=Im E za—,so that

i

1—p2 1—p2 1—2)2
LI r) N 2D N]+ —— e LT
42 y2

DC:

(the notation for N is not the same as in [2]).
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The Poisson kernel associated to Dy is given by
1 — P )@
|1 - <9€, g) |2

with e B, and & e S" 1, The Poisson integral of a distribution f on S"~1 is
then defined in the usual way and written Pg[f].

Pz, &) = (

DEFINITION. — Functions w on B, such that Dyu=0 will be called
Dg-harmonic.

If F = C, these are the Jli-harmonic functions, whereas if F = R, the author
called them J(C-harmonic in [7] (however a different identification of B, with
G/K is used there).

2.3. Boundary distribution.

We focus in this article on functions that have a boundary distribution in
the following sense:

DEFINITION. — A function u on B, has a boundary distribution if the
limit

im [ u(r0) () do(@)

Sndfl
exists for every @ e C*(S™ 1),

If u is Dg-harmonic then % has a boundary distribution if and only if u =
Pr[£] for some distribution f on S"~1. To see this, one may use Lewis’ theo-
rem [9] stating that the Dg-harmonic functions that are Poisson integrals of di-
stributions are exactly those Dp-harmonic functions that have a polynomial
growth and then prove as in [7] (F = R), [1] (F = C) that the Dy-harmonic fun-
ctions that have a polynomial growth are exactly those that have a boundary
distribution. Alternatively, one may use the fact that a Dy-harmonie function
is the Poisson integral of an hyperfunction x and that « has a boundary distri-
bution if and only if the hyperfunction u is actually a distribution.

We here study the boundary behavior of normal derivatives N*u of Dy-
harmonic functions « that have a boundary distribution. In particular, we ge-
neralize lemma 2.1 in [2] in the complex case and Theorem 8 in [7] in the real
case and give a unified proof independent of =R, C or H. We prove the
following:
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THEOREM 1. — Let u be a Dyp-harmonic function with a boundary distribu-
tion. Let Y be a tangential operator that commutes with N. Let k be an inte-
ger and v= N Yu. Then

—if k<o, v has a boundary distribution,

—if k=, for every @ e C*(S"1)

f v(rf) P(8) do(8) =0 (log

S'n,d -1

=)
1—r)"

REMARK. — If Y is tangential and if » has a boundary distribution, then Yu
has also a boundary distribution. The operators 4, 4, and their products gi-
ve examples of tangential operators that commute with N.

24. Links between plurtharmonic, k-harmonic and euclidean harmonic
Sfunctions.

We will next clarify a few relations beetween different notions of harmoni-
city on B,.

To start with, we extend the definition of pluriharmonic in the complex ca-
se to the general case. The most relevant in our context is:

DEFINITION. — Let u be a function of class C* on B,.

For a, bel™, define u, , on I' identified with R? as 2+ u(ax + b). Then u
ts satd to be plurtharmonic if for every a, beli™, u, , is harmonic on its
domain.

Let ke N*, then u is said to be k-harmonic if u is of class C** on B, and if
A*y = 0.

REMARK. — If % is pluriharmonie, then u is also harmonic. In particular if «
is pluriharmonic with a boundary distribution, then all its derivatives also have
a boundary distribution.

Let us first consider the cases of R and C for which references [7] and [2]
are available.

Assume first that F = R. If « is pluriharmonic, then « is an affine function,

2
in particular % =0 and 4,4 =0. Further, if » is also Dy-harmonic, then
r

Nu =0 and the only affine functions such that Nu =0 are the constant
functions.
Assume now that u is both euclidean and Dy-harmonie (in particular, » is
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continuous). But, the radial-tangential expression of the euclidean laplacian
is:

1
A=—2[N2+(n—2)N+Ag]
r

thus, u satisfies
A1-r>)N2u+nm—-2)1—-r®> ) Nu+ 1 -r®)A,u=0.

Comparing with the radial-tangential expression of Dy, one gets further that
Nu =0 t.e. u is homogeneous of degree 0. But the only continuous homogene-
ous functions are constant.

Finally, if F =R then o = ”T_l thus the condition k¥ = ¢ in Theorem 1 has

the above meaning only when » is odd. Moreover, Proposition 3 bellow shows
that the behaviour of Dg-harmonic functions is different in even and odd di-
mension. In [7](}) the equivalence of 1, 4 and 5 in the following proposition has
been proved:

PROPOSITION 2. — Assume n 1s odd and let w be a Dy-harmonic. The follo-
wing are equivalent:
1. u is pluriharmonic (i.e. constant),
2. u 1s euclidean harmonic,

3. u s k-harmonic for some k= 1.
Further, if uw has a boundary distribution, this three conditions are equi-
valent to the following:

4. for every @ e C*(S" 1),

n-1 1
f N7z u(rf) (&) do(8) =o (10g 1_r ) :

Snfl
5 NTu (i.e. N°u) has a boundary distribution.

The situation in the case n even is different. Recall from Helgason [6] that
every Dg-harmonic function has a spherical harmonic expansion of the
form

M w(rt) = 3 fir)rtu (@)
where u; is a spherical harmonic of degree [ and fl(r)=2F1<l,1—§,l+§,"r2).

(1) Where o has to be replaced by 20 because of the different identification of B,
with G/K.
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Then, if » is even, 1 — %, thus f; is a polynomial of degree % — 1. But then, a

simple computation shows that A%« =0 for k = %, that is:

PROPOSITION 3. — For n even, every Dy-harmonic function is g-hm’monia

COROLLARY 4. — If n is even and if fe C*(S" 1) then Pr[f]1e C*(B,). Fur-
ther, if u is Dg-harmonic and has a boundary distribution, then, for every k,
N*u has a boundary distribution.

Assume now that F=C (o =n). In this case, pluriharmonic functions are
both euclidean harmonic and D--harmonic. The converse is also true (see [11],
Theorem 4.4.9). Moreover, we will show that if « is k-harmonic and D--harmo-
nic, then u is pluriharmonic, a fact for which we have not found any reference.
Our proof is again based on the fact from [6] that every D--harmonic function
has a spherical harmonic expansion of the form:

@) w@y= % oFi(py g Pt qtn, 7)) o)
where u, , is a spherical harmonic of degree p in z and ¢ in z. Moreover, this
series converges uniformly over compact sets of B,.

Now, write f, ,(v) =2F1(p, q, p+q+n, r?). If we further ask for u to be
euclidean harmonic or more generally k-harmonic, then applying 4* to (2) im-
plies that

z T}f,qf;),q(/r) up,q(Z) = 0
p,qeN

1
2

where T, , = (N2 +2n(p + q) N). Thus, for every p, ¢ such that Up, =0,

r

T;;C, ofp, (1) =0 for 0 <7 <1. But, the only functions ¢ that are regular in 0
such that T,’,ﬂ ¢® = 0 are polynomials of degree at most k. Thus f, , has to be a
polynomial. Note that a hypergeometric function ,F;(a, b, ¢, x) (with ¢ > 0) is
a polynomial if and only if ¢ <0 or b < 0. Thus %, , =0 unless p =0 or ¢ =0 t.e.
the sum in (2) is reduced to summing over {(p, 0): pe N} and {(0, ¢): ge N},
that is, % is pluriharmonic.

Further, in [2], pluriharmonic functions have been characterized among
Dc-harmonic functions with a boundary distribution. This gives equivalence of
1, 4 and 5 of the following:

PropoSITION 5. — Let u be an Dc-harmonic function. The following are
equivalent:
1. u is pluriharmonic,
2. u s euclidean harmonic,

3. u is k-harmonic for some ke N*
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Further, if uw has a boundary distribution, this three conditions are equi-
valent to the following:

4. N"u (i.e. N°u) has a boundary distribution,

5. for every @ e C*(S*" 1),
: )
s

We will prove a similar result in the quaternionic case (o =2n + 1). How-
ever, the result will be more elaborate, as the class of «pluriharmonie» fun-
ctions and the class of functions that are both euclidean and Dy-harmonic do
no longer coincide. We postpone the description of results to section 4.

f N"u(rl) ®(&) do(&) =0 (log

an 1

3. = Proof of theorem 1.

Let us prove Theorem 1 by induction on k. For k = 0 this is just the hypo-
thesis on .
If u is Dg-harmonie, then

2

1_
(1= 72 N2u+ (my +my— 1+ (myg— 1) r2) Nu+ Ayu+ ——— A,u=0.

If we apply N*~! and isolate terms in N**! and N*, we obtain
(1-r2) Ny -2k —1) r2N*u+ (my + my— 1+ (mgy— 1) r2) NFy =

TZ’“EI (k—l
j=2

. )ziNk“-fu my—1) 7 Z( . )2J'N’f-fu—
j =

k—1
1- k—1\ . )
_NkflAlu_ r 22( ) )2-72N’“1‘7A2u.
Jj=1

J

Let Y be a tangential operator that commutes with N then

B A—rHNEIYyu+ (my+me—1+4 (my—2k+1)r2) NiYu =

Sk -1\ A Sk -1\ . _
P2 §,( , )2]Nk+1-qu—(m2—1)r2§,( . )ZJNk-JYu—
=2\ J =1\ j

12 ol (k- 1\ .
N1 A 0 — 4T 1Y A, u + 12 ( _ )21—2N’f—1-JYAzu.
=1\
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By the induction hypothesis, all the terms in the right member of (3) have a
boundary distribution. If we fix @ e C*(S""!) and write

Y(r) = f N*Yu(rg) @(Z) do(§)

Sm‘lfl
we get that
4) (M) =1 —r2) Ny, + (mg+me— 1+ (my+1—2k)r2) yp,

has a limit L when r—1. p
But, solving the differential equation (4) (N = Td—) leads to
i

»
pan = LI g g [ e
k r ; (1+S)g+1—k

_ o) ek -1
W (1 S) ¢ dS .
Thus, if k <p, y,(r) has limit 2£ wheras if k=0, y,(r) has logarithmic
growth. = ¢

4. - Boundary behavior of 27 + 1" derivative in the quaternionic case.

In this section we will restrict our attention to the case F = H, and we will
compare plurtharmonic functions, euclidean harmonic functions and Dy-
harmonic functions. Our study will rely on the spherical harmonic expan-
ston of Dy-harmonic functions, therefore we will recall the theory of spherical
harmonics adapted to the analysis on S~ 1, the unit spheve of H", as can be
Sfound in [8].

4.1. Spherical harmonics in the case IF = .

Let A={(p,q)eN*:peN, g—pe2N}.

Denote by wy, ..., w, the standard coordinates on H", w, = x, + ix, ., +
%o + s + ka3, + Where x,€ R (1 < s <4n). The polar coordinates are given as
follows:

w; = rcos E(cos @ + y sin D)
W, =10 sin &

where = [(w, .|, w,), OSES%, 0<®P<2m yeH with |y|*=1 and
N(y) =0, o, H with >, |os |2 =1. It is easy to see that an M-invariant fun-
s=2

ction onAH” depends only on r, ¥, =w; +w; and 1, = |w, |
Let K denote the equivalence classes of irreducible unitary representa-
tions of K and Ky, = {(r, V,) € K: dim V¥ = 0} where V¥ denotes the subspa-



696 PHILIPPE JAMING

ce of V, consisting of M-fixed vectors. Since G is of rank one, dim V¥ =1 if
(z, V;) € Ky;. The Peter-Weyl theorem implies that

LZ(SWdfl) — Z Vr
te Ky
as a representation space of K. The actual parametrization of 7 e K,, and the
spherical harmonics that span V¥ are given by (see [8]) the following formula:

sin((p+1) ®)
qu’q:Tq#COSqSZFI(
sin”" @

- +q+2
pzq’_p ;I , 2(n—1); —tanzé),

for p, qe .

The corresponding matrix coefficient (z, @, ,, @, ,) is an M-invariant sphe-
rical function on K. The span of these coefficients are nothing but the spheri-
cal harmonics when restricted to S™~1. We will write H(p, q) ((p, q) € A) for
the set of spherical harmonics obtained in this way.

We will use the fact that {H(p, ¢):(p, q) € A} provides a complete ortho-
normal set of joint eigenfunctions of A4, and A4,. More precisely, for

®p,q€HP, @),
1
ZA2§0p,q= _p(p+2) P, q

and

1
(A1+ ng) @pq=—9q+4n—-2) ¢, ..

For convenience, for {eB,\{0} we write

== (e £2).
EIRNE ]

4.2. Spherical harmowics expansion of Dy-harmonic hunctions.

Let % be Dy-harmonic. By the Peter-Weyl theorem, # has an expansion
into spherical harmonics

w@ = 2 ¥, M@, O
p,qeA

where r =& and

Yp,o(1) = fu(k. &) b, (k.0 dk.
K
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Then, using the radial-tangential expression of Dy and the fact that 4, 4,
are self-adjoint, we get

(=72 r2y) (1) + (g +my+ (my —2) ¥%) 1, () —

[q(q +4n—2) = r?p(p+2)] 9, (1) =0.

Let us look for solutions of the form qup’q(rz). The function F, , sati-

sfies

» q

1
(l—wt;ﬂ@%+w+2n—qHEMU%—me—ﬂ)—Mp+2ﬂF@Aw=0.

As v, , is regular in 0, this leads to

—p—2 p+
Fp,q(w:zFl(q . ,pzq,q+2n;t).

This may be summarized in the following lemma (Helgason - [6]):

LEMMA 6. — Every Dy-harmonic function w admits a decomposition into
spherical harmonics of the form

5) w(r) = E o

(q—p—Z pt+q
», Qe

S ,q-F2n;Tz)Vq¢pﬁ(©
where ¢, ;e H(p, q).

4.3. Euclidean-harmonic, k-harmonic and pluriharmonic Dy-harmonic
Sfunctions.

If u is euclidean harmonic on B, and Dy-harmonic then the same proof as
for the complex case in section (2.4) implies that the only spherical harmonics
that can occur in (5) are those for which 2F1< q—;;—Z , p—;rq, q+2n; 7’2) is
constant. But an hypergeometric function ,F;(a, b, ¢, x) is constant if and
only if @ =0 or b =0, so that the only spherical harmonics that occur in (5) are
those for g=p+2 or g=p=0.

Let us now turn to pluriharmonic functions. Recall that a function » on B,
is pluriharmonic if for every a, b e H", the function u, ,: R* = H— I defined
by u,, ,(2) =u(az + b) is harmonic on its domain.

With this definition, the only pluriharmonic spherical harmonics are the

functions in H(p, p), peN. But ,F, (-1, p, p +2n; r?) = (1 - %rz), S0
p+2n

that the Dy extension from S™~! to B, of a function in H(p, p) is no longer
pluriharmonic, unless p = 0. So as in the real case, the only pluriharmoic fun-
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ctions that are Dy-harmonic are the constants. This leads us to the following
notion:

DEFINITION. — We will say that a function w is the Dy-partner of a plu-
ritharmonic function if u has a spherical harmonic expansion

+ o
6) W) = > (1 P VZ) (1)
p=1 p+2n
In this case, a direct computation shows that 42« = 0, that is, the Dy-par-
tners of pluriharmonic functions are Dy-harmonic functions that are 2-harmo-
nic but not 1-harmonic. Moreover, the same proof as for the caracterization of
Dc-harmonic functions that are k-harmonic shows that every Dy-harmonic
function that is k-harmonic is already 2-harmonic, and thus a sum of a 1-har-
monic function and of a Dy-partner of a pluriharmonic function.
Finally,

2n
p+2n

TZ+p

(1— L 1”2)7”’2(1—1”2)7””—!—
p+2n

r

2n
=(1-r®rt+ ——— JsPTE1gs,
,l,,Z(nfl)O

From this fact, the definition of a Dy-partner of a pluriharmonic function,
given a priori in terms of a spherical harmonics expansion, can be reformula-
ted via an integral operator:

LEMMA 7. — A function u is a Dy-partner of a plurtharmonic function if
and only 1if there exists a pluriharmonic function v such that

r

2n
(7 w(rl) = (1 —r2)v(rd) + mfsz"‘lv(sg) ds .
r 0
Moreover, uw has a boundary distribution if and only if v has a boundary
distribution.

ProoF. — If v has a boundary distribution, formula (7) immediatly implies

that « has also a boundary distribution.
For the converse, differentiating (7) leads to the differential equation

0
Ta—v+(1+(2n—3)72)v=2(n—1)u+Nu.
/s
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Solving this equation in v leads to

@&  u(rf) =

( 21— 3 2)
exp| — r r

2 ot 1) utst) + Nutsty exp

0

_332)ds.

But if % has a boundary distribution, then by Theorem 1, Nu has also a boun-
dary distribution. Thus (8) implies that v has a boundary distribu-
tion. m

REMARK. — Note also that, according to the fact that spherical harmonics
for different parameters are orthogonal, the class of Dy-partners of plurihar-
monic functions and the class of Dy-harmonic and euclidean harmonic fun-
ctions are orthogonal on every sphere 7S~ 1 0 <r<1 (thus on B,).

4.4. Boundary behavior of the 2n + 1" derivative.

We will now establish the following theorem:

THEOREM 8. — Let u be a Dy-harmonic function. Then the following are
equivalent:
1. u is k-harmonic for some k = 2,
2. u 1s 2-harmonic,

3. u s the sum of an euclidean harmonic function and of the Dy-par-
tner of a plurtharmonic function.
Further of w has a boundary distribution, then the three above assertions
are also equivalent to the following:
4. N*"*Yy has a boundary distribution,

5. for every @ e C”(S*1),

fNZ”'”u(VC) ¢(§)do(§)=o(log ! )
gid-1 1-r

Moreover, in this case, both the euclidean part and the pluriharmonic par-
tner part of u have a boundary distribution.

Proor. — The equivalence of 1, 2 and 3 has already been established.
Now let u be a Dy-harmonic function with a boundary distribution and
assume 3. Write u =u; + uy where u; is Dy and euclidean harmonic and
Uy is a Dy-partner of a pluriharmonic function. Then by orthogonality
of u; and of u, on every sphere, it is obvious that u; and u, both have
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boundary distributions. In particular, N?“*!u, has a boundary distribu-
tion.

Further, Lemma 7 implies first that u, is the Dy-partner of a pluriharmo-
nic function with a boundary distribution and then that N2" "1y, also has a
boundary distribution. So 3 implies 4. The implication 4 = 5 is obvious. Let us
prove 5 = 3. Let u be Dy-harmonic with a boundary distribution.

Lemma 6 tells us that # admits an expansion in spherical harmonics

) wrd) = X f, 0 rie, @
P, pea
where ¢, ,e H(p, q) and f, , is the hypergeometric function
—p—2 p+
f;’:q(x)ZZFl(q g ’pzq’q_’_zn’x)

Moreover the sum 9, as well as its derivatives converge uniformly on compact
subsets of B,, in particular

A0 gy olee o N B e = [ Nruerd) o, ,(©) do().
Sn,—l
We will need the three following facts (see [4]):

1) oF'1(a, b, ¢; ) has a limit when x— 1 if and only if at least one of the
following holds:

a) a<0, p) b<0, or v) Re(c—a—5b)>0 and ¢=0, -1, =2, ...;

i) oFy(a, b, c; x) BC(logll

o dF INa+ k) I(b+ k) I'(c)
—F ;@) = Fila+k,b+k,c+k;
) e (a, b, c;x) T (a+k,b+k,c+k;x)

) in the cases not covered by .

But hypothesis 5 says that the right hand member of 10 has a limit when
r— 1. Thus, property ¢ii) implies that, if ¢, ,# 0, then

p+tq

—p-2
QFI(%MVHL +2n+1,q+4n+1,x)

has a limit when «— 1. Thus properties 7) and ) imply that ¢, , =0 unless
((p, ) € A):

& %ﬁ < 0 (property 1,), that is ¢ = p + 2 — the euclidean harmonic
part — or p =q — the pluriharmonic partner —

& PTHI =0 (property i), that is if (p,q)=(0,0) the constant part of u.

& or p—q<0 (property i,), that is again p =q.
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Summarizing, » has a spherical harmonies expansion

urd) = 2, 17 2, L@+ g0 0@+ (1— P r2) r*g, @&
p=0 p=1 p+

2n
where ¢, ,e H(p, p), ¢, ,+2€ H(p, p+2), thus u is of the desired form.

The fact that both parts have a boundary distribution results directly from
the orthogonality mentioned above and Lemma 7. =

5. — Further remarks on pluriharmonic functions.

1. The notion of pluriharmonicity is not invariant under Sp(n, 1).
Indeed, at 0, Dy and A coincide. Moreover, a pluriharmonic function is eu-
clidean harmonic at 0, thus Dy-harmonic at 0. Thus, if the notion of plurihar-
monicity was invariant under the action of Sp(n, 1), pluriharmonie functions
would be Dy-harmonic which, as we have seen, is not the case.

2. A theorem of Forelli in the case I = C asserts that a function u is plu-
riharmonic if and only if, for every £ e S?" 1, the function uz: 2—>u(2¢) is har-
monic (see [11], theorem 4.4.9). In case F=H such a theorem can mnot
hold.

Indeed, as the slices 2, ze C, £ e S* ! are invariant under the action of
Sp(n, 1), this would imply the invariance of the notion of pluriharmonicity, a
contradiction with the previous fact.
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