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Bollettino U. M. I.
(8) 4-B (2001), 703-709

Heat Diffusion on Homogeneous Trees
(Note on a Paper by Medolla and Setti) (*).

WOLFGANG WOESS

Sunto. – Medolla e Setti [6] studiano l’andamento della diffusione del calore generata
dal Laplaciano discreto su un albero omogeneo e dimostrano che il calore è asinto-
ticamente concentrato in «anelli» che viaggiano verso l’infinito a velocità lineare e
la cui larghezza divisa per kt tende all’infinito, dove t è il tempo. Qui si spiega co-
me un risultato più preciso si ottiene come corollario della legge dei grandi numeri
e del teorema del limite centrale per la passeggiata aleatoria sull’albero. Inoltre, si
dà una dimostrazione breve e diretta di questi teoremi per la diffusione del calore
stessa.

1. – Introduction.

The homogeneous tree T4Tq (qF2) is the unique connected, infinite
graph without circuits where each vertex has q11 neighbours. Equipped
with its graph metric d (where d(x , y) is the number of edges on the
unique shortest path between x and y�T), it is in many respects a perfect
discrete analogue of the hyperbolic plane with the Poincaré metric. The
discrete Laplacian on T is the operator L 4I2P, where I denotes the
identity operator and P4 (p(x , y) )x , y�T is defined by

p(x , y)4
1

q11
, if d(x , y)41, and p(x , y)40, otherwise ,

and acts on functions f : TKR by Pf(x)4!
y

p(x , y) f(y). (We use matrix

notation for our linear operators, so that p(x , y)4Pd y (x).) The associated
heat operator Ht4 (ht (x , y) )x , y�T is

Ht4exp (2t L)4e 2t !
k40

Q t k

k!
P k , tF0 .

It is very well known and easily seen that the elements p (k) (x , y) of
P k depend only on k and the distance d(x , y), and analogously or ht (x , y).

(*) Mathematics Subject Classification: 58 G 11, 60 J 60.
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Together with P, also Ht is stochastic (all row sums equal one). We set
Y4 (q21) /(q11) and s 244q/(q11)2.

Medolla and Setti [MS] use the asymptotic estimate of Cowling, Meda and
Setti [CMS] and honest analytic computations to show that for each x�T

!
y : Nd(x , y)2YtNGr(t)

ht (x , y)K1 as tKQ ,

whenever r (Q) is a positive function satisfying lim
tKQ

r (t) t 21/24Q.

The purpose of this note is to explain the following stronger state-
ment.

THEOREM 1. – For every a , b�R , aEb,

!
y : aktGd(x , y)2YtGbkt

ht (x , y)K
1

k2p
s
a

b

e 2u 2 /2 du as tKQ .

This is a central limit theorem for the heat diffusion process (Xt )tF0 on T:
defined on a suitable probability space (V , A, Pr), this is the T-valued conti-
nuous-time Markov process whose transition semigroup is ]Ht : tF0(. That
is, Pr[Xs1 t4yNXs4x]4ht (x , y) for x , y�T. Theorem 1 says that d(Xt , X0 ) is
asymptotically normal with mean tY and variance t, when tKQ.

The results of [MS] and Theorem 1 can be understood as discrete-space-
analogues of properties of heat diffusion on Riemannian symmetric spaces,
compare with Anker and Setti [AS] and Babillot [B]. The present «probabili-
stic» note is addressed to analysts who might (or should) want to know how
Theorem 1 (and, as a corollary, the result of [MS]) is proved probabilistically.
(Being «probabilistic» does not mean that the proofs themselves are true only
almost surely!)

The transition matrix P governs a discrete-time T-valued Markov chain
(Zn )n�N0

with Pr [Zn114yNZn4x]4p(x , y). This is the simple random walk
on T. It has been studied extensively; in particular, the following law of large
numbers and central limit theorem are well known.

THEOREM 2 (Sawyer [S], 1978; Sawyer and Steger [SS], 1987).

d(Zn , Z0 )

n
KY almost surely , and

d(Zn , Z0 )2nY

skn
KN(0 , 1 ) in law ,

where N(0 , 1 ) is the standard normal distribution.

Compare also with result stated by Levit and Molchanov [LM] without
proof. Since the proof of Theorem 2 in [S] and [SS] may appear more compli-
cated than it really is in the case of simple random walk (because they cover a
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much more general situation), in § 3 a direct and short proof of Theorem 1 will
be given. This may also contribute to shed more light on those features of the
underlying structure that are responsible for the result.

Before that, let us briefly explain.

2. – How Theorem 1 can be deduced from Theorem 2.

The diffusion process (Xt ) can be constructed from the random walk (Zn ) in
the following way: the walker, instead of moving randomly from vertex to ver-
tex in discrete time (one step per time unit), waits at each point for an expo-
nential (mean and variance 1) random time before performing the next step.
That is, we consider a sequence of independent and identically distributed
(i.i.d.) non-negative random variables (Tn )n�N, also independent of (Zn ), with
Pr [TnFu]4e 2u and set t n4T11R1Tn, t 040. Now, given tD0, define
the random number n(t)4max]n : t nG t(. Then we obtain (a model of) the
diffusion process by setting Xt4Zn(t) .

These facts are well known in the theory of Markov processes, see e.g. Re-
snick [7], § 5.10.

In particular, t n /nK1 almost surely by the law of large numbers, when
tKQ. Since t n(t)G tEt n(t)11 , we also get that t n(t) /tK1 and n(t)KQ almost
surely, and the law of large numbers for (Zn ) implies

d(Xt , X0 )

t
4

d(Zn(t) , Z0 )

n(t)

n(t)

t n(t)

t n(t)

t
KY almost surely .

Next, as Zn and t n are independent, the central limit theorem for d(Zn , Z0 )
[Theorem 2] and the one for t n [the classical CLT] imply

d(Zn , Z0 )2Yt n

kn
4s

d(Zn , Z0 )2Yn

skn
2Y

t n2n

kn
KN(0 , s 21Y2 )4N(0 , 1 )

in law, when nKQ. Now decompose

d(Xt, X0)2tY

kt
4
kn(t)

kt
us

d(Zn(t), Z0)2Yn(t)

skn(t)
2Y

t n(t)2n(t)

kn(t)
2Y

t2t n(t)

kn(t)
v .

Since 0G t2t n(t)ETn(t)11, which has finite second moment, we get that
(t2t n(t) ) /kn(t)K0 almost surely, and since n(t) /tK1 almost surely, the cen-
tral limit theorem for d(Xt , X0 ) follows.
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3. – A direct proof of Theorem 1.

The diffusion process (Xt ) has two basic and well known properties:
(1) it is of nearest neighbour type: if x , y�T and [x4x0 , x1 , R , xk4y] is

the unique shortest path in T connecting x and y, then the diffusion starting at
x must pass almost surely through each xi in order to reach y.

(2) it is transient: d(Xt , X0 )KQ almost surely, when tKQ. This follows

from the fact that the Green kernel s
0

Q

ht (x , y) dt is finite.

As a consequence, it converges to the boundary (space of ends) of T. We
briefly recall the construction of the latter. A ray is an infinite path
[x0 , x1 , x2 , R] of successive neighbours in T without repeated vertices (each
finite sub-path is shortest). Two rays are called equivalent, if they differ only
by finitely many vertices. An end of T is an equivalence class of rays. We write
¯T for the space of all ends. Let T×4TN¯T. If x�T and j�T× then there is a
unique ray representing j that starts at x, denoted by xj. Analogously, if y�
T, then xy denotes the shortest path from x to y. We now choose a reference
vertex o�T.

From now on we assume without loss of generality that X04o.
For v , w�T×, their confluent vRw with respect to o is defined by ovO

ow4 o(vRw). This is a vertex, unless v4w�¯T. With the new (ultra-)me-
tric

u(v , w)4exp (2d(vRw , o) ) , if vcw , and u(v , v)40 ,

T× becomes a compact space, and T itself is open and dense.

LEMMA 1. – There is a ¯T-valued random variable XQ such that XtKXQ

almost surely in the topology of ¯T , when tKQ.

PROOF. – Let V 8 be the set of elements v�V for which the trajectory
(Xt (v) )tF0 satisfies (1) and (2). Then Pr (V 8 )41. Let v�V 8, and suppose that
Xt (v) has two different accumulation points j and h. By (2), both are in ¯T.
Let y4jRh. If t 8E t 9 are such that u(Xt 8 (v), j)Ee 2d(y , o) and u(Xt 9 (v), h)E
e 2d(y , o) then (using that u is an ultrametric) Xt 8 (v)RXt 9 (v)4y. By (1), there
must be s� [t 8 , t 9 ] such that Xs (v)4y. But t 8, and hence also s, can be arbi-
trarly large, in contradiction with (2). r

Considering the distances d(x , o) corresponds to computing with polar
coordinates. We now change to «horospheric coordinates». We choose and
fix a point j in T, and define T×*4T×0]j( and ¯* T4¯T0]j(. If h�¯* T
then there is a unique two-sided infinite path [R , x21 , x0 , x1 , x2 , R], denoted
jh, such that [x0 , x1 , x2 , R] represents the end h and [x0 , x21 , x22 , R]
represents j. Again, given v , w�T×*, their confluent v w with respect
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to j is defined by vjOwj4 (v w) j. Again, this is a vertex, unless
v4w�¯* T.

For x�T, its height with respect to j is hor (x)4d(x , x o)2d(x o , o).
This is an integer (not necessesarily positive). The level sets Hk4]x�
T : hor (x)4k( are the horocycles.

LEMMA 2. – The process Yt4hor (Xt ) is an integer-valued Markov process
with the following properties:

(i) independent increments: whenever 0G t0E t1ERE tr , the random
variables Yt1

2Yt0
, R , Ytr

2Ytr21
are independent.

(ii) additivity: For sE t , the distribution of Yt2Ys coincides with that
of Yt2s .

(iii) Yt has expected value Yt and variance t.

PROOF. – Recall that an automorphism of T is a self-isometry of T with re-
spect to the graph metric. The action of each automorphism extends conti-
nuously to ¯T. Let G be the group of automorphisms that fix the end j. Then
Ht is G-invariant, that is, ht (gx , gy)4ht (x , y) for every g�G. Also, hor (gy)2
hor (gx)4hor (y)2hor (x), and the map gO hor (gx)2hor (x) is independent
of x�T and a homomorphism GK (Z , 1). Therefore, the probability
Pr [ hor (Xt )4 lNXs4x] depends only on t2s and hor (x). From here, (i) and
(ii) are straightforward.

(iii) is a computational exercise. As a hint, let m be the the distribution of
the integer-valued random variable hor (Z1 ), given that Z040. That is, m has
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support ]21, 1(, with m(1)4q/(q11) and m(21)41/(q11). Then the di-
stribution of Yt is

m t4e 2t!
k40

Q t k

k!
m (k) ,

where m (k) is the k-th convolution power of m. r

Thus, (Yt )tF0 is a continuous-time analogue of a sum of i.i.d. integer valued
random variables, and the characteristic function W t of Yt (the Fourier tran-
sform of m t) satisfies W t4W 1

t . We have the law of large numbers and central li-
mit theorem as stated in Theorem 1, with Yt in the place of d(Xt , o). Thus, the
following Lemma provides the last step in our proof of Theorem 1.

LEMMA 3. – As tKQ , the process d(Xt , o)2Yt converges almost surely to
the almost surely finite random variable 2d(o , XQ o).

PROOF. – Let h�¯* T, and suppose that xt�T and (xt )tF0 converges to h in
the topology of ¯T, when tKQ. Then there must be t0 such that xt o4h o
for all tF t0. (In particular, hor (xt )KQ.) But then

d(xt , o)4hor (xt )12d(o , h o) for all tF t0 .

Now observe that Pr [XQ4j]40, since the distribution n of XQ on T is equi-
distribution, that is,

n(]h�¯T : u(h , j)Ee 2n()4n(]h�¯T : d(hRj , o)Fn11()4
1

(q11) q n

for n�N. This means that XQ�¯* T almost surely, and given v�V such that
XQ (v)�¯* T, we can apply the above argument to xt4Xt (v).

As a matter of fact, we have shown that almost surely, there is a (random)
t0 such that d(Xt , o)4Yt12d(o , XQ o) for all tF t0 . r

Three final remarks are due here. First, this proof of Theorem 1 is model-
led after Cartwright, Kaimanovich and Woess [3], who studied in detail ran-
dom walks on the group of automorphims of T that fix a given boundary point.
Second, a (weaker) variant of Lemma 3 had already been used by Sawyer [8] in
proving the law of large numbers for isotropic random walks on T. Third, Me-
dolla and Setti [MS] also indicate l p-estimates for the heat kernel when pc1:
it seems that these estimates do not allow a short probabilistic proof such as
the one for the case p41 outlined here.
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