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Cubic Differential Forms and the Group Law
on the Jacobian of a Real Algebraic Curve.

J. HUISMAN (*)

Sunto. – In un precedente articolo [6] abbiamo descritto, in modo esplicito, la legge di
gruppo sulla componente neutrale dell’insieme dei punti reali della Jacobiana di
una quartica liscia. In questo articolo generalizziamo tale risultato a curve di ge-
nere superiore, dando una descrizione della legge di gruppo sulla componente neu-
trale dell’insieme dei punti reali della Jacobiana di una curva liscia, in termini di
forme differenziali cubiche. Applicando tale risultato alle curve canoniche, si ottie-
ne una descrizione geometrica esplicita della legge di gruppo, intersecando la cur-
va con opportune ipersuperfici cubiche.

Summary. – In an earlier paper [6], we gave an explicit geometric description of the
group law on the neutral component of the set of real points of the Jacobian of a
smooth quartic curve. Here, we generalize this description to curves of higher
genus. We get a description of the group law on the neutral component of the set of
real points of the Jacobian of a smooth curve in terms of cubic differential forms.
When applied to canonical curves, one gets an explicit geometric description of this
group law by intersecting the curve with cubic hypersurfaces.

1. – Introduction.

In an earlier paper [6], we gave an explicit geometric description of the
group law on the neutral component of the set of real points of the Jacobian of
a smooth quartic curve. Here, we generalize this description to curves of high-
er genus. We get a description of the group law on the neutral component of
the set of real points of the Jacobian of a smooth curve in terms of cubic differ-
ential forms (Theorem 3.2). When applied to canonical curves, one gets an ex-
plicit geometric description of this group law by intersecting the curve with
cubic hypersurfaces (Corollary 4.1).

The paper is organized as follows. In Section 2, we will be more precise on
the object of the paper. In Section 3, we state and prove the result on the geo-
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metric description of the neutral component of the Jacobian. In Section 4, we
apply the preceding result to canonical curves. In Section 5, we compare the
present description of the neutral component of the Jacobian with previous
descriptions.

2. – The object.

Let C be smooth proper geometrically integral real algebraic curve. Let g
be its genus. We assume that gF3. A connected component of the set C(R) of
real points of C is called a real branch of C. By Harnack’s Inequality [3], the
number of real branches of C is less than or equal to g11. We assume
throughout the paper that C has at least g real branches. Choose, once and for
all, g mutually distinct real branches B1 , R , Bg of C and put

B4B1 3 Q Q Q3Bg .

The Jacobian Jac (C) of C is a real Abelian variety of dimension g. Its set of re-
al points Jac (C)(R) is a compact commutative real Lie group. We denote by
Jac (C)(R)0 the connected component of Jac (C)(R) that contains 0. Let O�B
be a base point. Define a map

t O : BK Jac (C)(R)

by

t O (P) 4clg!
i41

g

(Pi 2Oi )h ,

for all P�B , where cl denotes the class of a divisor. Since t O (O) 40 and since
B is connected, t O maps B into Jac (C)(R)0. Applying the general result of [5]
to the present situation, one has the following statement.

THEOREM 2.1. – The map t O : BK Jac (C)(R)0 is a bijection.

In particular, one gets, by transport of structure, a group law on B. The ob-
ject of this paper is to give a geometric description of this group law in terms
of cubic differential forms on C.

As it will be useful in the sequel as well, let us recall the principal result [4]
that lead to the statement of Theorem 2.1. For a divisor D on C and for a real
branch X of C , denote by degX (D) the degree of D on X.

THEOREM 2.2. – Let D be a divisor on C. Let d be its degree and let k be the
number of real branches X of C for which degX (D) is odd. If d1kD2g22
then D is nonspecial. r

We refer to [6] for a short proof of Theorem 2.2.
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For the convenience of the reader, we give a proof of Theorem 2.1 using
Theorem 2.2.

PROOF OF THEOREM 2.1. – Suppose that P , Q�B are such that t O (P) 4

t O (Q). Let D be the divisor !Pi and let E be the divisor !Qi on C. Then, D
and E are linearly equivalent. Now, D is of degree g and is of odd degree on
exactly g real branches of C. Since g1gD2g22, the divisor D is nonspecial
by Theorem 2. Then, by Riemann-Roch, the linear system NDN is 0-dimension-
al, Since D and E belong to NDN , one has D4E. It follows that P4Q. This
shows that t O is injective.

In order to show that t O is surjective, let d be an element of Jac (C)(R)0.
The element d1cl (!Oi ) is a real point of the degree g part PicC/R

g of the Pi-
card scheme of C over R. Since PicC/R

g (R) 4Picg (C) [1, Proposition 4.1.2 (i)],
there is a divisor D on C such that cl (D) 4d1cl (!Oi ). Since D is of degree g ,
we may assume that D is effective by Riemann-Roch. Since d� Jac (C)(R)0 ,
the divisor D has odd degree on the real branches B1 , R , Bg of C [1, § 4.1]. In
particular, there are points Pi �Bi , for i41, R , g , such that DFP1 1R1

Pg. Since D is of degree g , this inequality is, in fact, an equality. Let
P4 (P1 , R , Pg ) �B. Then, t O (P) 4cl (D2!Oi ) 4d. This shows surjectivity
of t O . r

3. – Cubic differential forms.

A cubic differential form on C is a global section v of the third tensor
power V73 of the sheaf V of differential forms on C. The divisor div (v) of v is
the divisor of v as a section of the invertible sheaf V73.

The following statement says that any 5g26 real points of C that are well
distributed over the real branches B1 , R , Bg of C , are in general position with
respect to cubic differential forms.

THEOREM 3.1. – Choose 5g26 real points Xj on C , for j4g11, R , 6g26,
such that each Xj belongs to one of the real branches Bi and such that each of
the Bi contains an odd number of the points Xj. Then, there is a nonzero cubic
differential form v on C such that

div (v) F !
j4g11

6g26

Xj .

Moreover, v is unique up to multiplication by a nonzero scalar. Further-
more, there are unique points Xj �Bj , for j41, R , g , such that

div (v) 4 !
j41

6g26

Xj .
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PROOF. – Let K be a canonical divisor on C. Let D be the divisor on C de-
fined by

D43K2 !
j4g11

6g26

Xj .

We have to show that h 0 (D) 41. The degree of D is equal to 3(2g22)2

(5g26) 4g. Moreover, D has odd degree on each of the real branches Bi . In-
deed, the degree of K is even at each real branch of C [1, Corollary 4.2.2]. It
follows, by Theorem 2.2, that D is nonspecial and, hence, that h 0 (D) 41. This
shows the existence and uniqueness of v.

Since the degree of div (v) is even on each of the real branches Bi [1, Corol-

lary 4.2.2], and since the degree of the divisor !
j4g11

6g26

Xj is odd on each of the re-

al branches Bi , there are points Xj �Bj , for j41, R , g such that

div (v) F !
j41

6g26

Xj .

Now, both divisors that intervene in this inequality are of degree 6g26.
Hence, the inequality is an equality. This also proves uniqueness of the points
Xj �Bj , for j41, R , g. r

Choose O�B and choose 2g26 real points Xj , for j4g11, R , 3g26, on
C such that each Xj belongs to one of the real branches Bi and such that each of
the Bi contains an even number of the points Xj. For example, one can choose
all Xj to be equal to O1 . According to Theorem 3.1, there is a nonzero cubic dif-
ferential form h on C such that

div (h) 4 !
i41

g

3Oi 1 !
j41

3g26

Xj ,

for some real points X1 , R , Xg in B1 , RBg , respectively.
Now, the geometric description of the group law of Jac (C)(R)0 is given in

the following statement. Recall from Theorem 2.1 that t O is a bijective map
from B onto Jac (C)(R)0 , and is defined by sending P�B to cl (!(Pi2Oi)).

THEOREM 3.2. – Let P , Q , R�B. Then,

t O (P)1t O (Q)1t O (R) 40
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in Jac (C)(R)0 if and only if there is a cubic differential form v on C such
that

div (v) 4 !
i41

g

(Pi 1Qi 1Ri )1 !
j41

3g26

Xj .

PROOF. – Suppose that t O (P)1t O (Q)1t O (R) 40 in Jac (C)(R)0. By Theo-
rem 3.1, there is a nonzero cubic differential form v on C such that

div (v) F !
i41

g

(Pi 1Qi 1Ri )1 !
j4g11

3g26

Xj .

Moreover, there are points Si �Bi , for i41, R , g , such that

div (v) 4 !
i41

g

(Pi 1Qi 1Ri 1Si )1 !
j4g11

3g26

Xj .

Then,

div (v2h) 4 !
i41

g

(Pi 2Oi )1 (Qi 2Oi )1 (Ri 2Oi )1 (Si 2Xi ) .

Taking divisor classes and using the hypothesis, one gets that

clg!
i41

g

(Si 2Xi )h40

in Jac (C)(R)0 , i.e., t X (S) 40, where X�B is the point (X1 , R , Xg ). By Theo-
rem 2.1, S4X and it follows that there is a cubic differential form v such
that

div (v) 4 !
i41

g

(Pi 1Qi 1Ri )1 !
j41

3g26

Xj .

In order to show the converse, suppose that there is a cubic differential
form v satisfying the above equation. Then,

div (v2h) 4 !
i41

g

(Pi 2Oi )1 (Qi 2Oi )1 (Ri 2Oi ) ,

i.e., t O (P)1t O (Q)1t O (R) 40 in Jac (C)(R)0. r

4. – Canonical curves.

In this section we apply Theorem 3.2 to canonical curves, i.e., we suppose
that C is canonically embedded in P g21. In particular, we assume here that C
is not hyperelliptic. Denote by f the embedding of C into P g21. By Noether’s
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Theorem, the natural map

f x : H 0 (P g21 , O(3) ) KH 0 (C , V73 )

is surjective.
Choose, as before, O�B and 2g26 real points Xj , for j4g11, R , 3g26,

on C such that each Xj belongs to one of the real branches Bi and such that
each of the Bi contains an even number of the points Xj . According to Theorem
3.1 and using Noether’s Theorem, there is a real cubic hypersurface G in P g21

not containing C such that

G QC4 !
i41

g

3Oi 1 !
j41

3g26

Xj .

for some real points X1 , R , Xg in B1 , RBg , respectively. Using Noether’s The-
orem again, Theorem 3.2 has as a consequence the following geometric de-
scription of the group law on Jac (C)(R)0.

COROLLARY 4.1. – Let P , Q , R�B. Then,

t O (P)1t O (Q)1t O (R) 40

in Jac (C)(R)0 if and only if there is a real cubic hypersurface H in P g21 not
containing C such that

H QC4 !
i41

g

(Pi 1Qi 1Ri )1 !
j41

3g26

Xj .(1)

REMARK 4.2. – If g43 then C is canonically embedded in P 2 as a quartic. In
particular, no cubic curve in P 2 can contain C. Hence, Corollary 4.1 is a true
generalization of Theorem 3.2 of [6].

EXAMPLE 4.3. – If g44 then C is canonically embedded in P 3 as a sextic
curve. Corollary 4.1 says that P1Q1R40 in B , for the induced group law on
B , if and only if there is a cubic surface in P 3 not containing C such
that

H QC4 !
i41

4

(Pi 1Qi 1Ri )1 !
j41

6

Xj .

REMARK 4.4. – If one wants to construct explicitly the group law on B , it
may be useful to choose a complementary subspace V’H 0 (P g21 , O(3) ) of the
kernel of f x , i.e., the restriction of f x to V is an isomorphism onto H 0 (C , V73 ).
Then, the statement of Corollary 4.1 can be sharpened as follows. For
P , Q , R�B , one has P1Q1R40 in B if and only if there is a cubic hyper-
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surface H in the linear system NVN such that the Equation (1) holds. Moreover,
H is unique.

As a consequence, one can explicitly construct the group law on B. For
P�B , let H�NVN be the unique cubic hypersurface such that

H QCF !
i41

g

(Oi 1Pi )1 !
j41

3g26

Xj .

There are unique points Qi �Bi , for i41, R , g such that

H QC4 !
i41

g

(Oi 1Pi 1Qi )1 !
j41

3g26

Xj .

Then, 2P4Q in B. For P , Q�B , there are, similarly, a unique cubic hyper-
surface H�NVN and an element R�B such that

H QC4 !
i41

g

(Pi 1Qi 1Ri )1 !
j41

3g26

Xj .

Then, P1Q42R in B.
It seems quite a miracle to me that the additive law 1 on B defined as

above gives rise to the structure of a commutative group on B.

5. – Comparison with other descriptions.

The current description of the neutral component of the Jacobian should
be seen as lying between the one of [2] and the one of [5]. Let us compare the
present description with the ones in [5, 2].

In [5], a real algebraic curve is embedded into P 2g , where g is the genus of
the curve. The group law of the neutral component of the Jacobian of the curve
is then described by intersecting the curve with linear hypersurfaces of P 2g.
The disadvantage of this description is that it embeds the curve in a projective
space of relatively high dimension. For example, it seems difficult to deter-
mine explicitly a system of generators of the ideal sheaf of the curve in P 2g ,
and, therefore, it seems difficult to do explicit computations with that descrip-
tion of the Jacobian.

In [2], the curve is birationally embedded into the projective plane. The Ja-
cobian is then described by intersecting the curve with plane curves of degree
g. The advantage of this description, of course, is that the curve is embedded
into a low-dimensional projective space. It certainly allows explicit computa-
tions on the Jacobian. However, if one is given a curve defined over a real
number field, that description fails, in general, to give a description of the
Mordell-Weil group of the curve.
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The present description of the neutral component of the Jacobian of a
canonical curve has the advantages of both descriptions above. Much is known
about the ideal sheaf of a canonical curve. And, moreover, as in the case of
genus 3 [6], if the curve is defined over a real number field, the present de-
scription allows to do computations in the Mordell-Weil group of the
curve.

Acknowledgement. I am grateful to Michele Lattarulo for the translation
of the abstract in Italian.
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