BOLLETTINO UNIONE MATEMATICA ITALIANA

M. Belhadj, J. J. Betancor

Entire elliptic Hankel convolution equations

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **6-B** (2003), n.3, p. 717–737.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2003_8_6B_3_717_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2003.

Entire Elliptic Hankel Convolution Equations (*).

M. Belhadj - J. J. Betancor

Sunto. – In questo lavoro caratterizziamo gli operatori di convoluzione di Hankel ellittici interi su distribuzioni temperate in termini della crescita delle loro trasformate di Hankel.

Summary. – In this paper we characterize the entire elliptic Hankel convolutors on tempered distributions in terms of the growth of their Hankel transforms.

1. - Introduction and preliminaries.

The Hankel transformation is usually defined by ([18])

$$h_{\mu}(f)(y) = \int_{0}^{\infty} (xy)^{-\mu} J_{\mu}(xy) f(x) x^{2\mu+1} dx, \quad y > 0.$$

Here J_{μ} denotes the Bessel function of the first kind and order μ . Throughout this paper we will assume that $\mu > -\frac{1}{2}$.

The Hankel transformation h_{μ} has been studied in spaces of distributions of slow growth by G. Altenburg [1]. Altenburg's investigation was inspired in the studies of A. H. Zemanian ([26] and [28]) about the variant $\Im C_{\mu}$ of the Hankel transformation defined through

$$\mathcal{H}_{\mu}(f)(y) = \int_{0}^{\infty} (xy)^{1/2} J_{\mu}(xy) f(x) dx, \quad y > 0.$$

It is clear that h_{μ} and \mathcal{H}_{μ} are closely connected.

G. Altenburg [1] introduced the space H constituted by all those complex valued and smooth functions ϕ on $(0, \infty)$ such that, for every $m, n \in \mathbb{N}$,

$$\gamma_{m,n}(\phi) = \sup_{x \in (0,\infty)} (1+x^2)^m \left| \left(\frac{1}{x} \frac{d}{dx} \right)^n \phi(x) \right| < \infty.$$

(*) Partially supported by DGICYT Grant PB 97-1489 (Spain).

On *H* it considers the topology associated with the family $\{\gamma_{m,n}\}_{m,n\in\mathbb{N}}$ of seminorms. Thus *H* is a Fréchet space and h_{μ} is an automorphism of *H* ([1, Satz 5]). According to [12, p. 85] the space *H* coincides with the space S_{even} constituted by all the even functions in the Schwartz space *S*. From [3, Theorem 2.3] it is immediately deduced that a function *f* defined on $(0, \infty)$ is a pointwise multiplier of *H*, write $f \in \mathcal{O}$, if, and only if, *f* is smooth on $(0, \infty)$ and, for every $k \in \mathbb{N}$, there exists $m \in \mathbb{N}$ for which $(1 + x^2)^{-n} \left(\frac{1}{x} \frac{d}{dx}\right)^k f(x)$ is bounded on $(0, \infty)$.

The dual space of H, is, as usual represented by H'. If f is a measurable function on $(0, \infty)$ such that $(1 + x^2)^{-n} f(x)$ is a bounded function on $(0, \infty)$, for some $n \in \mathbb{N}$, then f generates an element of H', that we continue calling f, by

$$\langle f, \phi \rangle = \int_0^\infty f(x) \,\phi(x) \,\frac{x^{2\mu+1}}{2^\mu \Gamma(\mu+1)} dx, \quad \phi \in H.$$

The Hankel transformation h'_{μ} is defined on H' as the transpose of h_{μ} -transformation of H. That is, if $T \in H'$ the Hankel transformation $h'_{\mu}T$ is the element of H' given through

$$\langle h'_{u} T, \phi \rangle = \langle T, h_{u} \phi \rangle, \quad \phi \in H.$$

Thus h'_{μ} is an automorphism of H' when on H' it considers the weak * or the strong topologies.

Also in [1] G. Altenburg considered, for every a > 0 the space \mathcal{B}_a constituted by all those functions ϕ in H such that $\phi(x) = 0$, $x \ge a$. \mathcal{B}_a is endowed with the topology induced on it by H. The Hankel transform $h_{\mu}(\mathcal{B}_a)$ of \mathcal{B}_a can be characterized by invoking [27, Theorem 1]. The union space $\mathcal{B} = \bigcup_{a>0} \mathcal{B}_a$ is equipped with the inductive topology. The dual spaces of \mathcal{B}_a , a > 0, and \mathcal{B} are denoted, as usual, by \mathcal{B}'_a , a > 0, and \mathcal{B}' , respectively.

In [24] K. Trimèche introduced, for every a > 0, the space $\mathcal{O}_{*,a}$ constituted by all those smooth and even functions ϕ on \mathbf{R} such that $\phi(x) = 0$, $|x| \ge a$. Also he considered the union space $\mathcal{O}_* = \bigcup_{a>0} \mathcal{O}_{*,a}$. According to [12, p. 85], the spaces \mathcal{B}_a , a > 0, and \mathcal{B} , coincides with the spaces $\mathcal{O}_{*,a}$, a > 0, and \mathcal{O}_* , respectively.

F. M. Cholewinski [10], D. T. Haimo [17] and I. I. Hirschman [19] investigated the convolution operation of the Hankel transformation h_{μ} on Lebesgue spaces. We say that a measurable function f is in $L_{1,\mu}$ when

$$\int_{0}^{\infty} |f(x)| x^{2\mu+1} dx < \infty.$$

If $f, g \in L_{1,\mu}$ the Hankel convolution $f \#_{\mu} g$ of f and g is defined by

$$(f\#_{\mu}g)(x) = \int_{0}^{\pi} f(y)(_{\mu}\tau_{x}g)(y) \frac{y^{2\mu+1}}{2^{\mu}\Gamma(\mu+1)} dy, \quad a.e. \quad x \in (0, \infty),$$

where the Hankel translated $_{\mu}\tau_{x}g$, $x \in (0, \infty)$, is given through

(1.1)
$$(_{\mu}\tau_{x}g)(y) = \int_{0}^{\infty} g(z) D_{\mu}(x, y, z) \frac{z^{2\mu+1}}{2^{\mu} \Gamma(\mu+1)} dz, \quad a.e. \quad y \in (0, \infty),$$

and being

$$D_{\mu}(x, y, z) = (2^{\mu} \Gamma(\mu+1))^{2} \int_{0}^{\infty} (xt)^{-\mu} J_{\mu}(xt)(yt)^{-\mu} J_{\mu}(yt)(zt)^{-\mu} J_{\mu}(zt) t^{2\mu+1} dt,$$

 $x, y, z \in (0, \infty).$

Here *a.e.* is understood respect to the Lebesgue mesure on $(0, \infty)$.

The Hankel transformation h_{μ} and the Hankel convolution $\#_{\mu}$ are related by ([19, Theorem 2.d])

$$h_{\mu}(f\#_{\mu}g) = h_{\mu}(f) h_{\mu}(g), \quad f, g \in L_{1,\mu}.$$

Since we think no confusion will appear, in the sequel we will write #, τ_x , $x \in (0, \infty)$, and D instead of $\#_{\mu}, \ _{\mu}\tau_x, \ x \in (0, \infty)$, and D_{μ} , respectively.

As it was mentioned the transformations \mathcal{H}_{μ} and h_{μ} are closely connected. After a straightforward manipulation it can be deduced from # a form for the convolution operation * for the Hankel transformation \mathcal{H}_{μ} .

The investigation of the * convolution on the distribution spaces was began by J. de Sousa-Pinto [23]. He considered the 0-order transformation \mathcal{H}_0 and compact support distributions on $(0, \infty)$. More recently in a series of papers J. J. Betancor and I. Marrero ([4], [5], [6], [7] and [21]) have extended the studies of J. de Sousa-Pinto. They defined the * convolution of the Hankel transformation \mathcal{H}_{μ} on Zemanian distribution spaces of slow growth ([21]) and rapid growth ([4]). J. J. Betancor and L. Rodríguez-Mesa ([9]) studied the hypoellipticity of Hankel * convolution on Zemanian distribution spaces.

The main aspects of the distributional theory developed by the * convolution can be transplanted to the # convolution. Our objective in this paper is to analyze the entire ellipticity of the # convolution operators on the spaces H and H'.

For every $x \in (0, \infty)$, the Hankel translated τ_x defines a continuous linear mapping from H into itself ([21, Proposition 2.1]). For every $T \in H'$ and $\phi \in H$

the Hankel convolution $T \# \phi$ of T and ϕ is defined by

$$(T \# \phi)(x) = \langle T, \tau_x \phi \rangle, \quad x \in (0, \infty).$$

By [21, Proposition 3.5], $T#\phi$ is a multiplier of H, for each $T \in H'$ and $\phi \in H$. In general $T#\phi$ is not in H when $T \in H'$ and $\phi \in H$. Indeed, if we define the functional T on H by

$$\langle T, \phi \rangle = \int_0^\infty \phi(x) \frac{x^{2\mu+1}}{2^\mu \Gamma(\mu+1)} dx, \qquad \phi \in H,$$

then $T \in H'$ and, for every $\phi \in H$,

$$(T\#\phi)(x) = \int_{0}^{\infty} (\tau_{x}\phi)(y) \frac{y^{2\mu+1}}{2^{\mu}\Gamma(\mu+1)} dy = \int_{0}^{\infty} \phi(y) \frac{y^{2\mu+1}}{2^{\mu}\Gamma(\mu+1)} dy, \quad x \in (0, \infty).$$

Hence $T \# \phi \notin H$ when $\int_{0}^{\pi} \phi(y) y^{2\mu+1} dy \neq 0$. According to [21, Proposition 4.2] we can characterize the subspace constituted by all those $T \in H'$ such that $T \# \phi \in H$, for every $\phi \in H$. Let $m \in \mathbb{Z}$. We say that a complex valued and smooth function ϕ on $(0, \infty)$ is in $O_{\mu, m, \#}$ if and only if, for every $k \in \mathbb{N}$,

$$w_{m,\mu}^k(\phi) = \sup_{x \in (0,\infty)} (1+x^2)^m \left| \Delta_{\mu}^k \phi(x) \right| < \infty,$$

where Δ_{μ} denotes the Bessel operator $x^{-2\mu-1}Dx^{2\mu+1}D$. $O_{\mu,m,\#}$ is a Fréchet space when it is endowed with the topology associated with the system $\{w_{m,\mu}^k\}_{k \in \mathbb{N}}$ of seminorms. It is clear that H is contained in $O_{\mu,m,\#}$. We denote by $\mathcal{O}_{\mu,m,\#}$ the closure of H in $O_{\mu,m,\#}$. By $\mathcal{O}_{\mu,\#}$ we represent the inductive limit space $\bigcup_{m \in \mathbb{Z}} \mathcal{O}_{\mu,m,\#}$. The dual space $\mathcal{O}'_{\mu,\#}$ of $\mathcal{O}_{\mu,\#}$ can be characterized as the subspace of H' of #-convolution operators on H ([5, Proposition 2.5]). Moreover, by defining on $\mathcal{O}'_{\mu,\#}$ the topology associated with the family $\{\eta_{m,k,\phi}\}_{m,k\in\mathbb{N},\phi\in H}$ of seminorms, where, for each $m, k \in \mathbb{N}$ and $\phi \in H$,

$$\eta_{m,k,\phi}(T) = w_{m,\mu}^k(T\#\phi), \qquad T \in \mathcal{O}'_{\mu,\#},$$

and by considering on \mathcal{O} the topology induced by the simple topology of the space $\mathcal{L}(H)$ of the linear and continuous mappings from H into itself, the Hankel transformation h'_{μ} is an isomorphism from $\mathcal{O}'_{\mu,\#}$ onto \mathcal{O} .

The Hankel convolution T#S of $T \in H'$ and $S \in \mathcal{O}'_{u,\#}$ is defined by

$$\langle T \# S, \phi \rangle = \langle T, S \# \phi \rangle, \quad \phi \in H.$$

Thus $T\#S \in H'$, for each $T \in H'$ and $S \in \mathcal{O}'_{\mu, \#}$.

In [9] J. J. Betancor and L. Rodríguez-Mesa investigated the hypoellipticity of the *-Hankel convolution equations on Zemanian spaces. Results as in [9] can be obtained for the #-Hankel convolutions. A distribution $S \in \mathcal{O}'_{\mu, \#}$ is said to be hypoelliptic in H' when the following property holds: $T \in \mathcal{O}_{\mu, \#}$ provided that $T \in H'$ and $T\#S \in \mathcal{O}_{\mu, \#}$. From [9, Proposition 3.3] it infers that $S \in \mathcal{O}'_{\mu, \#}$ is hypoelliptic in H' when, and only when, there exist b, B > 0 such that

$$|h'_{\mu}(S)(y)| \ge y^{-b}, \quad y \ge B.$$

Motivated by the celebrated paper of L. Ehrenpreis [14] and the investigations of Z. Zielezny [29], we study in this paper the entire elliptic Hankel convolution equations on H'.

By H_e we represent the space of even and entire functions. It is equipped, as usual, with the topology of the uniform convergence of the bounded sets of C.

We will say that $f \in H_e$ is in $\mathcal{E}H'$ if, and only if, for every $l, n \in N$, there exist C > 0 and $k \in N$ for which

 $|\tau_{z_1}\tau_{z_2}\ldots\tau_{z_n}(f)(z)| \leq$

$$C((1+|z|)(1+|z_1|)...(1+|z_n|))^k, \quad z, z_1, z_2, ..., z_n \in I_l,$$

where $I_l = \{ w \in C : |\operatorname{Im} w| \leq l \}.$

Here the complex Hankel translation operator τ_z , $z \in C$, must be understood as in [11]. If $f \in H_e$ and $f(z) = \sum_{k=0}^{\infty} a_k z^{2k}$, $z \in C$, then

$$(\tau_w f)(z) = \sum_{n=0}^{\infty} a_n \sum_{k=0}^{n} \binom{n}{k} \frac{\Gamma(n+\mu+1) \Gamma(\mu+1)}{\Gamma(n-k+\mu+1) \Gamma(k+\mu+1)} z^{2(n-k)} w^{2k}, \quad z, w \in \mathbb{C}.$$

Thus, the Hankel translation operator is extended to the complex plane.

A distribution $S \in \mathcal{O}'_{\mu, \#}$ will say to be entire elliptic in H' when the following property holds: $T \in \mathcal{E}H'$ provided that $T \in H'$ and $T\#S \in \mathcal{E}H'$.

We will start Section 2 proving that the space $\mathcal{O}'_{\mu, \#}$ of Hankel convolution operators of H is really not depending on μ . Also, in Section 2 we obtain a characterization for the entire elliptic elements of $\mathcal{O}'_{\mu, \#}$ in terms of the growth of their Hankel transforms. We will prove that $S \in \mathcal{O}'_{\mu, \#}$ is entire elliptic on H'if, and only if, there exist a, A > 0 such that

$$|h'_{\mu}(S)(y)| \ge e^{-ay}, \quad y \ge A.$$

Throughtout this paper by C we always represent a suitable positive constant that can change from a line to the other one.

2. – Entire elliptic Hankel convolution equations in H'.

We firstly prove that the space $\mathcal{O}'_{\mu, \#}$ of Hankel convolution operators is really not depending on μ .

Let $m \in \mathbb{Z}$, $m \leq 0$. We denote by $O_{m,\#}$ the space constituted by all those smooth functions ϕ on $(0, \infty)$ for which there exists an even and smooth function ψ such that $\psi(x) = \phi(x)$, $x \in (0, \infty)$, and that

$$\gamma_m^k(\phi) = \sup_{x \in (0,\infty)} (1+x^2)^m \left| D^k \phi(x) \right| < \infty$$

for every $k \in \mathbb{N}$. $O_{m, \#}$ is endowed with the topology associated with the family $\{\gamma_m^k\}_{k \in \mathbb{N}}$ of seminorms. Thus, $O_{m, \#}$ is a Fréchet space. By $\mathcal{O}_{m, \#}$ we understood the closure of \mathcal{O}_* in $O_{m, \#}$. It is clear that $\mathcal{O}_{m, \#}$ is a Fréchet space. Moreover, $\mathcal{O}_{m, \#}$ contains continuously $\mathcal{O}_{m+1, \#}$. The union space $\bigcup_{m \in \mathbb{Z}, m \leq 0} \mathcal{O}_{m, \#}$ is denoted by $\mathcal{O}_{\#}$ and it is contained in the space \mathcal{O} of the pointwise multipliers of H.

Note that, for every $m \in \mathbb{Z}$, $m \leq 0$, a function $\phi \in \mathcal{O}_{m,\#}$ if, and only if, ϕ can be extended to an even function ψ that is in the space S_m studied in [20] and [22]. Hence an even and smooth function ϕ on \mathbb{R} is in $\mathcal{O}_{m,\#}$ when, and only when, for every $k \in \mathbb{N}$, $\lim_{m \to \infty} (1 + x^2)^m D^k \phi(x) = 0$.

PROPOSITION 2.1. – Let $m \in \mathbb{Z}$, $m \leq 0$. The spaces $\mathcal{O}_{\mu, m, \#}$ and $\mathcal{O}_{m, \#}$ coincide topologically and algebraically.

PROOF. – Assume that $\phi \in \mathcal{O}_{\mu, m, \#}$. There exists a sequence $\{\phi_n\}_{n \in N}$ in \mathcal{O}_* such that $\phi_n \to \phi$, as $n \to \infty$, in $\mathcal{O}_{\mu, m, \#}$.

Let $k \in \mathbb{N}$. We choose a function $\alpha \in \mathcal{O}_{*,2k}$, such that $\alpha(x) = 1$, $x \in (-k, k)$. Then, since $\{\phi_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{O}_{\mu,m,\#}$, $\{\phi_n \alpha\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{O}_{*,2k}$. Hence, there exists $\psi \in \mathcal{O}_{*,2k}$ for which $\phi_n \alpha \rightarrow \psi$, as $n \rightarrow \infty$, in $\mathcal{O}_{*,2k}$. Since the convergence in $\mathcal{O}_{\mu,m,\#}$ implies the pointwise convergence on $(0, \infty)$, we conclude that ϕ admits an even and smooth extension to \mathbb{R} .

We can write

$$\left(\frac{1}{x}D\right)\phi(x) = x^{-2\mu-2} \int_{0}^{x} \Delta_{\mu}\phi(t) t^{2\mu+1} dt, \qquad x \in (0, \infty).$$

Hence, it obtains

$$\sup_{x \in (0,\infty)} (1+x^2)^m \left| \left(\frac{1}{x}D\right) \phi(x) \right| \leq C \sup_{x \in (0,\infty)} (1+x^2)^m \left| \varDelta_{\mu} \phi(x) \right|.$$

Moreover, since

$$\varDelta_{\mu}\phi(x) = D^2\phi(x) + \frac{2\mu+1}{x}D\phi(x), \qquad x \in (0, \infty),$$

we have that

(2.1)
$$\sup_{x \in (0,\infty)} (1+x^2)^m \left| D^2 \phi(x) \right| \le C \sup_{x \in (0,\infty)} (1+x^2)^m \left| \varDelta_\mu \phi(x) \right|$$

On the other hand, a straightforward manipulation allows to get

(2.2)
$$\int_{x}^{x+1} (x+1-t) D^2 \phi(t) dt = -D\phi(x) + \phi(x+1) - \phi(x), \qquad x \in (0, \infty).$$

Hence, we deduce from (2.1) and (2.2) that

(2.3)
$$\sup_{x \in (0,\infty)} (1+x^2)^m |D\phi(x)| \leq C\left(\sup_{x \in (0,\infty)} (1+x^2)^m |D^2\phi(x)| + \sup_{x \in (0,\infty)} (1+x^2)^m |\phi(x)|\right).$$

Also we have that

(2.4)
$$D \Delta_{\mu} \phi(x) = D^{3} \phi(x) + (2\mu + 1) x \left(\frac{1}{x}D\right)^{2} \phi(x), \quad x \in (0, \infty).$$

The family $\{w_{m,\mu}^k\}_{m,k\in \mathbb{N}}$ generates the topology of H. Then, we can find $k\in \mathbb{N}$ such that

$$\sup_{x \in (0,1)} \left| \left(\frac{1}{x} D \right)^2 \phi(x) \right| \leq \sup_{x \in (0,1)} \left| \left(\frac{1}{x} D \right)^2 (\phi(x) \ \alpha(x)) \right|$$
$$\leq C \sup_{x \in (0,2)} \left| D^k_\mu(\phi(x) \ \alpha(x)) \right|,$$

where $\alpha \in \mathcal{O}_{*,2}$ and $\alpha(x) = 1$, $|x| \leq 1$.

Hence from (2.1), (2.3) and (2.4), since $\sup_{x\in(0,\infty)}(1+x^2)^m\left|D\varDelta_{\mu}\phi(x)\right|<\infty$, it is deduced that

$$\sup_{x\in(0,\infty)}(1+x^2)^m \left|D^3\phi(x)\right| < \infty.$$

By repeating the above procedure we can prove that $\phi \in O_{m,\#}$.

Moreover, since $\phi_n \to \phi$, as $n \to \infty$, in $O_{\mu, m, \#}$, the above arguments allows us to conclude that $(1 + x^2)^m |D^k \phi(x)| \to 0$, as $x \to \infty$, for every $k \in N$. Thus we show that $\phi \in \mathcal{O}_{m, \#}$. Suppose now that $\phi \in \mathcal{O}_{m,\#}$. Let $k \in N$. It is not hard to see that

(2.5)
$$|\Delta_{\mu}^{k}\phi(x)| \leq C \sum_{j=0}^{2k} |D^{j}\phi(x)|, \quad x \geq 1.$$

Moreover, by choosing a function $a \in \mathcal{O}_{*,2}$, since $\{w_{l,\mu}^j\}_{l,j\in \mathbb{N}}$ generates the topology of H, we can find $l \in \mathbb{N}$ such that

(2.6)
$$\sup_{x \in (0,1)} (1+x^2)^m \left| D^k_{\mu} \phi(x) \right| \leq \sup_{x \in (0,1)} \left| D^k_{\mu} (\phi(x) \ \alpha(x)) \right|$$
$$\leq C \sum_{j=0}^l \sup_{x \in (0,2)} \left| D^j(\phi(x) \ \alpha(x)) \right|$$
$$\leq C \sum_{j=0}^l \sup_{x \in (0,\infty)} (1+x^2)^m \left| D^j \phi(x) \right|.$$

By combining (2.5) and (2.6) we obtain that $\phi \in O_{\mu, m, \#}$. Also, we can see that if $\{\phi_n\}_{n \in \mathbb{N}} \subset \mathcal{O}_*$ and $\phi_n \to \phi$, as $n \to \infty$, in $O_{m, \#}$, then $\phi_n \to \phi$, as $n \to \infty$, in $O_{\mu, m, \#}$. Hence we deduce that $\phi \in \mathcal{O}_{\mu, m, \#}$.

Thus we proved that $\mathcal{O}_{\mu, m, \#} = \mathcal{O}_{m, \#}$. Moreover (2.5) and (2.6) imply that the topology generated by $\{\gamma_m^k\}_{k\in \mathbb{N}}$ is stronger than the one induced by $\{w_{m, \mu}^k\}_{k\in \mathbb{N}}$. Then the open mapping theorem allows to conclude that the topologies defined by $\{\gamma_k^m\}_{k\in \mathbb{N}}$ and $\{w_{m, \mu}^k\}_{k\in \mathbb{N}}$ coincide.

Thus the proof is finished.

From Proposition 2.1 we infer that $\mathcal{O}_{\#} = \mathcal{O}_{\mu, \#}$. Hence the space of Hankel convolution operators $\mathcal{O}'_{\mu, \#}$, $\mu > -\frac{1}{2}$, coincides with the dual space $\mathcal{O}'_{\#}$ of $\mathcal{O}_{\#}$.

Althought, according to Proposition 2.1, the space of Hankel convolution operators is not depending on μ , the representation given in [21, Proposition 4.2] that involves the Bessel operator Δ_{μ} is very useful.

Our next objective is to obtain a characterization of the entire elliptic elements of $\mathcal{O}_{\#}$ involving the Hankel transformation.

Firstly some properties of the elements of $\mathcal{E}H'$ are established.

PROPOSITION 2.2. – Let $f \in \mathcal{E}H'$. Then, for every $l \in N$, there exists C > 0and $r \in N$, such that, for each 0 < R < l,

$$\left| \varDelta_{\mu}^{k} f(z) \right| \leq C \left(\frac{2}{R} \right)^{2k} k! \, \varGamma(\mu + k + 1)(1 + |z|)^{r} (1 + R)^{r}, \ z \in I_{l} \ and \ k \in \mathbb{N}.$$

PROOF. – Since f is an even and entire function, according to [11], we can write

$$(\tau_z f)(w) = \sum_{k=0}^{\infty} \frac{w^{2k}}{2^{2k} k! \, \Gamma(\mu + k + 1)} (\Delta_{\mu}^k f)(z), \qquad w, \, z \in C.$$

Hence, for every $k \in N$, R > 0 and $z \in C$, it has

(2.7)
$$(\varDelta^k_{\mu} f)(z) = \frac{2^{2k} k! \, \Gamma(\mu + k + 1)}{2\pi i} \int_{C_R} \frac{(\tau_z f)(w)}{w^{2k+1}} dw.$$

Here C_R denotes the circle having as a parametric representation to $w(t) = Re^{it}$, $T \in [0, 2\pi)$. Then, for every $l \in N$ and 0 < R < l, there exists C > 0 and $r \in N$, for which

$$|\Delta_{\mu}^{k} f(z)| \leq C \left(\frac{2}{R}\right)^{2k} k! \, \Gamma(\mu + k + 1)(1 + |z|)^{r} (1 + R)^{r}, \ z \in I_{l} \text{ and } k \in \mathbb{N}.$$

A consequence of Proposition 2.2 is the following one.

COROLLARY 2.3. – Let $f \in \mathcal{E}H'$. Then $f \in \mathcal{O}_{\#}$.

PROOF. – To see that $f \in \mathcal{O}_{\#}$ it is sufficient to use Proposition 2.2 and to argue as in the proof of Proposition 2.1.

By proceeding as in [16, Proposition 5.2] (see also [2, Proposition 3.5]) we can prove that if L is a continuous linear mapping from H_e into itself that commutes with Hankel translations, that is, $\tau_z L = L \tau_z$, for every $z \in C$, then there exists an even and entire function Φ of exponential type such that, for every $f \in H_e$,

$$Lf(z) = \sum_{k=0}^{\infty} a_k \varDelta_{\mu}^k f(z), \qquad z \in \mathbb{C},$$

where $\Phi(w) = \sum_{k=0}^{\infty} a_k w^{2k}, w \in C$.

In the sequel, if Φ is an even and entire function admiting the representation $\Phi(w) = \sum_{k=0}^{\infty} a_k w^{2k}$, $w \in C$, we will understand by $\Phi(\Delta_{\mu})$ the operator defined by

$$\Phi(\Delta_{\mu}) f = \sum_{k=0}^{\infty} a_k \Delta_{\mu}^k f, \quad f \in D_{\Phi}.$$

Here the domain D_{Φ} of $\Phi(\Delta_{\mu})$ is constituted by all those even and entire functions f such that the series $\sum_{k=0}^{\infty} a_k \Delta_{\mu}^k f(z)$ converges for every $z \in C$. In particular, if r > 0 and

$$\Phi_{r,\mu}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k (rz)^{2k}}{2^{2k} k! \, \Gamma(\mu+k+1)}, \qquad z \in C,$$

from Proposition 2.2 we deduce that $\delta H'$ is contained in $D_{\Phi_{r,\mu}}$. Note that the function $\Phi_{r,\mu}$, r > 0, is closely connected with the Bessel function J_{μ} of the first kind and order μ (see [25]).

PROPOSITION 2.4. – Let $f \in \mathcal{E}H'$. Then $\Delta_{\mu} f \in \mathcal{E}H'$. Moreover $\Phi_{r,\mu}(\Delta_{\mu}) f$ is in $\mathcal{E}H'$, for every r > 0.

PROOF. – Assume that $z_1, z_2, ..., z_n \in C$ with $n \in N$. By taking into account that the operators Δ_{μ} and $\tau_z, z \in C$, commute on H_e , (2.7) leads to

(2.8)
$$\tau_{z_1}\tau_{z_2}\ldots\tau_{z_n}(\varDelta_{\mu}f)(z) = \frac{2\Gamma(\mu+2)}{\pi i}\int_{C_1} \frac{(\tau_{z_1}\ldots\tau_{z_n}\tau_z f)(w)}{w^3}dw, \quad z \in \mathbb{C}.$$

Here C_1 denotes the circle with parametric representation $w = e^{it}$, $t \in [0, 2\pi)$.

Since $f \in \mathcal{E}H'$, $\Delta_{\mu}f$ is an even and entire function and, by (2.8), for every $n, l \in \mathbb{N}$ there exist C > 0 and $r \in \mathbb{N}$ such that

$$\begin{aligned} |\tau_{z_1}\tau_{z_2}\dots\tau_{z_n}(\varDelta_{\mu}f)(z)| &\leq \\ C((1+|z_1|)(1+|z_2|)\dots(1+|z_n|)(1+|z|))^r, \quad z_1, z_2, \dots, z_n, z \in I_l. \end{aligned}$$

Hence $\Delta_{\mu} f \in \delta H'$.

Let now r > 0. As it was mentioned $\mathcal{E}H'$ is contained in $D_{\Phi_{r,\mu}}$. Moreover, by Proposition 2.2, the series

$$\sum_{k=0}^{\infty} \frac{(-1)^k r^{2k}}{2^{2k} k! \, \varGamma(\mu+k+1)} \varDelta_{\mu}^k f(z)$$

is convergent in H_e . Hence, according to (2.7), we can write

$$\tau_{z_1}\tau_{z_2}\ldots\tau_{z_n}(\Phi_{r,\mu}(\Delta_{\mu})f)(z) = \sum_{k=0}^{\infty} \frac{(-1)^k r^{2k}}{2\pi i} \int_{C_{2r}} \frac{\tau_{z_1}\tau_{z_2}\ldots\tau_{z_n}\tau_z(f)(w)}{w^{2k+1}} dw,$$

for every $z, z_1, \ldots, z_n \in C$, where C_{2r} represents the circle with parametric representation $w = 2re^{it}$, $t \in [0, 2\pi)$. Then, since $f \in \mathcal{E}H'$, we conclude that $\Phi_{r,\mu}(\mathcal{A}_{\mu}) f \in \mathcal{E}H'$.

We now establish that the Hankel convolution maps $\mathcal{O}'_{\#} \times \mathcal{E}H'$ into $\mathcal{E}H'$.

PROPOSITION 2.5. – Let $S \in \mathcal{O}'_{\#}$ and $f \in \mathcal{E}H'$. Then $S \# f \in \mathcal{E}H'$.

PROOF. – According to [21, Proposition 4.2], for every $m \in N$ there exist $k \in N$ and continuous functions f_j on $(0, \infty)$ such that $(1 + x^2)^{m+1} x^{2\mu+1} f_j(x)$ is bounded on $(0, \infty)$, j = 0, 1, ..., k, and

$$\langle S, \phi \rangle = \sum_{j=0}^k \int_0^\infty f_j(x) \Delta^j_\mu \phi(x) x^{2\mu+1} dx, \quad \phi \in \mathcal{O}_{-m,\#}.$$

Let $l \in N$. Since $f \in \mathcal{E}H'$, by Proposition 2.2, there exist C > 0 and $r \in N$ for which

$$\left| \Delta_{\mu}^{j}(\tau_{z}f)(x) \right| \leq C((1+x)(1+|z|))^{r},$$

when $x \in (0, \infty)$, $j \in N$ and $z \in I_l$. Here C can be depending on j but r is not depending on j.

We choose $m \in N$ such that $f \in \mathcal{O}_{-m,\#}$ and that 2m + 1 > r. Then

$$(S\#f)(z) = \sum_{j=0}^{k} \int_{0}^{\infty} f_{j}(x) \tau_{z}(\Delta_{\mu}^{j}f)(x) x^{2\mu+1} dx, \qquad z \in (0, \infty).$$

Moreover, since for every j = 0, 1, ..., k the function $\tau_z(\Delta^j_{\mu}f)(x)$ is continuous on the set $\{(x, z): x \in (0, \infty), z \in C\}$, S # f can be continuously extended to C as an even function.

Let $j \in N$, $0 \leq j \leq k$. We can write

$$\frac{d}{dz}\tau_z(\Delta^j_\mu f)(x) = z^{-2\mu-1} \int_0^z w^{2\mu+1} \Delta_{\mu,w} \tau_w(\Delta^j_\mu f)(x) \, dw, \quad z \in \mathbb{C} \setminus \{0\}.$$

The last integral is extended on the segment from 0 to z.

Then if $l \in N$, for a certain $r \in N$ it has

$$\left| \frac{d}{dz} \tau_z(\varDelta^j_{\mu} f)(x) \right| \leq |z|^{-2\mu-1} \int_0^z |w|^{2\mu+1} |\tau_w(\varDelta^{j+1}_{\mu} f)(x)| |dw|$$

$$\leq C(1+|z|)^{r+1} (1+x)^r, \quad x \in (0, \infty) \text{ and } z \in I_l \setminus \{0\}.$$

Hence, S # f is a holomorphic function on $I_l \setminus \{0\}$ and

$$\frac{d}{dz}(S\#f)(z) = \sum_{j=0}^k \int_0^\infty f_j(x) \frac{d}{dz} \tau_z(\varDelta^j_\mu f)(x) x^{2\mu+1} dx, \quad z \in I_l \setminus \{0\}.$$

Since S#f is continuous on C, Riemann theorem implies that S#f is holomorphic on I_l . Arbitrariness of l allows to conclude that S#f is an entire function.

Also, for every $w \in C$, the function $\tau_w(S \# f)$ is even and entire.

By choosing a suitable representation (according to [21, Proposition 4.2]) for *S* and by proceeding as above we can see that, for every $l, n \in N$, there exist C > 0 and $s \in N$, for which

$$\left|\tau_{z_{1}}\tau_{z_{2}}\ldots\tau_{z_{n}}(S\#f)(z)\right| \leq$$

$$C((1+|z|)(1+|z_1|)...(1+|z_n|))^s, \quad z, z_1, z_2, ..., z_n \in I_l.$$

Thus we conclude that $S \# f \in \mathcal{E}H'$.

Next result will be very useful in the sequel. Similar results can be encountered in [9, Proposition 3.2] and [29, Lemma 1]

PROPOSITION 2.6. – Assume that $\{\xi_j\}_{j \in \mathbb{N}}$ is a sequence of positive real numbers being $\xi_0 > 1$ and $\xi_{j+1} - \xi_j > 1$, for every $j \in \mathbb{N}$, and that $\{a_j\}_{j \in \mathbb{N}}$ is a sequence of complex numbers for which there exists a positive real number γ verifying that $|a_j| = O(e^{-\gamma \xi_j})$, as $j \to \infty$. Then the series

$$\sum_{j=0}^{\infty} a_j \tau_{\xi_j} \delta$$

converges in the weak * topology of H', where δ denotes, as usual, the Dirac functional. Moreover, $h'_{\mu}\left(\sum_{j=0}^{\infty} a_j \tau_{\xi_j} \delta\right)$ is in $\delta H'$ if, and only if, for every $\eta > 0$, $|a_j| = O(e^{-\eta\xi_j})$, as $j \to \infty$.

PROOF. – Let $\phi \in H$. For every $n, m \in N, n > m$, we can write

$$\sum_{j=m}^{n} a_{j} \langle \tau_{\xi_{j}} \delta, \phi \rangle \bigg| \leq \sum_{j=m}^{n} |a_{j}| |\phi(\xi_{j})| \leq C \sum_{j=m}^{n} e^{-\gamma j}.$$

Hence, the series $\sum_{j=0}^{\infty} a_j \langle \tau_{\xi_j} \delta, \phi \rangle$ converges in *C*. Thus we proved that the series $\sum_{j=0}^{\infty} a_j \tau_{\xi_j} \delta$ converges in the weak * topology of *H'*.

According to [6, Lemma 2.1] we have that

$$h'_{\mu}\left(\sum_{j=0}^{\infty} a_{j}\tau_{\xi_{j}}\delta\right) = 2^{\mu}\Gamma(\mu+1)\sum_{j=0}^{\infty} a_{j}(.\xi_{j})^{-\mu}J_{\mu}(.\xi_{j}),$$

where the convergence of the last series is understood in the weak * topology of H'. Moreover, by taking into account [13, (5.3.a)] the last series defines a holomorphic function in the interior of the strip I_{γ} . Indeed, for every $n, m \in \mathbb{N}$, being n > m, it has

$$\left|\sum_{j=m}^n a_j(z\xi_j)^{-\mu} J_{\mu}(z\xi_j)\right| \leq C \sum_{j=m}^n e^{-(\gamma - |\operatorname{Im} z|)\xi_j}, \quad |\operatorname{Im} z| < \gamma.$$

We now define

$$F(z) = \sum_{j=0}^{\infty} a_j (z\xi_j)^{-\mu} J_{\mu}(z\xi_j), \qquad \left|\operatorname{Im} z\right| < \gamma.$$

Suppose that $|a_j| = O(e^{-\eta \xi_j})$, as $j \to \infty$, for each $\eta > 0$. Then, by proceeding as above, we can see that F is an even and entire function that is bounded in I_l , for each $l \in \mathbb{N}$. Since the series defining F converges in H_e , by [19, 2, (1)], we get

 $\tau_{z_1}\tau_{z_2}\ldots\tau_{z_n}(F)(z) =$

$$(2^{\mu}\Gamma(\mu+1))^{n}\sum_{j=0}^{\infty}a_{j}(z\xi_{j})^{-\mu}J_{\mu}(z\xi_{j})(z_{1}\xi_{j})^{-\mu}J_{\mu}(z_{1}\xi_{j})\dots(z_{n}\xi_{j})^{-\mu}J_{\mu}(z_{n}\xi_{j}),$$

for every $z, z_1, z_2, ..., z_n \in C$. By invoking again [13, (5.3.a)] we can see that $F \in \delta H'$.

Assume now that $F \in \mathcal{E}H'$. Let r > 0. By Proposition 2.4, $\Phi_{r,\mu}(\Delta_{\mu})F \in \mathcal{E}H'$. Moreover, for every $l \in N$ there exists $m \in N$ such that

$$(1+|z|)^{-m}\sum_{k=0}^{\infty}\frac{(-1)^{k}r^{2k}}{2^{2k}k!\,\Gamma(\mu+k+1)}\varDelta_{\mu}^{k}F(z)$$

converges uniformly in I_l .

According to [4, (3.1)], we can write, for every $\phi \in H$,

$$\begin{aligned} & 2^{\mu} \Gamma(\mu+1) \int_{0}^{\infty} (xy)^{-\mu} J_{\mu}(xy) \ \varPhi_{r,\mu}(\varDelta_{\mu}) \ F(x) \ \phi(x) x^{2\mu+1} dx \\ &= \int_{0}^{\infty} \varPhi_{r,\mu}(\varDelta_{\mu}) \ F(x) \ h_{\mu}(\tau_{y}(h_{\mu}\phi))(x) \ x^{2\mu+1} dx \\ &= \sum_{k=0}^{\infty} \frac{(-1)^{k} r^{2k}}{2^{2k} k! \ \Gamma(\mu+k+1)} \int_{0}^{\infty} \varDelta_{\mu}^{k} F(x) \ h_{\mu}(\tau_{y}(h_{\mu}\phi))(x) \ x^{2\mu+1} dx \\ &= \sum_{k=0}^{\infty} \frac{(-1)^{k} r^{2k}}{2^{2k} k! \ \Gamma(\mu+k+1)} \int_{0}^{\infty} F(x) \ \varDelta_{\mu}^{k} h_{\mu}(\tau_{y}(h_{\mu}\phi))(x) \ x^{2\mu+1} dx \\ &= \sum_{k=0}^{\infty} \frac{r^{2k}}{2^{2k} k! \ \Gamma(\mu+k+1)} \langle h_{\mu}'(F)(x), \ x^{2k} \tau_{y}(h_{\mu}\phi)(x) \rangle \\ &= \sum_{k=0}^{\infty} \frac{r^{2k}}{2^{2k} k! \ \Gamma(\mu+k+1)} \sum_{j=0}^{\infty} a_{j} \xi_{j}^{2k} \tau_{y}(h_{\mu}\phi)(\xi_{j}), \quad y \in (0, \infty). \end{aligned}$$

By invoking Proposition 2.4 and Corollary 2.3, $\Phi_{r,\mu}(\Delta_{\mu}) F$ is a multiplier of

H. From [1, Satz 5] it follows that, for every $\phi \in H$ and $l \in N$,

(2.9)
$$y \int_{0}^{\infty} (xy)^{-\mu} J_{\mu}(xy) \Phi_{r,\mu}(\Delta_{\mu}) F(x) \phi(x) x^{2\mu+1} dx \to 0$$
, as $y \to \infty$.

We now choose a function $\phi \in H$ such that $h_{\mu}(\phi)(x) \ge 0$, $x \in (0, \infty)$, $h_{\mu}(\phi)(x) = 0$, $x \notin (0, 1)$, and $h_{\mu}(\phi)(x) > \frac{1}{2}$, $x \in \left(0, \frac{1}{2}\right)$. Note that such a function can be easily found.

If $x, y \in (0, \infty)$ and x - y > 1, by using [15, 8.11, (31)] (see also [19, p. 308, (2)]) then

(2.10)
$$\tau_{y}(h_{\mu}\phi)(x) = \int_{x-y}^{x+y} D(x, y, z) h_{\mu}(\phi)(z) \frac{z^{2\mu+1}}{2^{\mu}\Gamma(\mu+1)} dz = 0.$$

On the other hand, according to again [15, 8.11, (31)], we can write

$$(2.11) \qquad \tau_{x}(h_{\mu}\phi)(x) = \int_{0}^{2x} D(x, x, z) h_{\mu}(\phi)(z) \frac{z^{2\mu+1}}{2^{\mu} \Gamma(\mu+1)} dz$$
$$= C \int_{0}^{2x} x^{-4\mu} z^{2\mu} (4x^{2} - z^{2})^{\mu-1/2} h_{\mu}(\phi)(z) dz$$
$$= C \int_{0}^{1} x^{-4\mu} z^{2\mu} (4x^{2} - z^{2})^{\mu-1/2} h_{\mu}(\phi)(z) dz$$
$$= C \int_{0}^{1/2x} u^{2\mu} (1 - u^{2})^{\mu-1/2} h_{\mu}(\phi)(2xu) du$$
$$\geqslant C \int_{1/8x}^{1/4x} u^{2\mu} (1 - u^{2})^{\mu-1/2} h_{\mu}(\phi)(2xu) du$$
$$\geqslant C \int_{1/8x}^{1/4x} u^{2\mu} (1 - u^{2})^{\mu-1/2} du$$
$$\geqslant Cx^{-2\mu-1}, \qquad x \ge \frac{1}{2}.$$

From (2.10) we deduce that

$$\begin{aligned} & 2^{\mu} \Gamma(\mu+1) \int_{0}^{\infty} (x\xi_{l})^{-\mu} J_{\mu}(x\xi_{l}) \ \varPhi_{r,\mu}(\varDelta_{\mu}) \ F(x) \ \phi(x) \ x^{2\mu+1} dx \\ &= \sum_{k=0}^{\infty} \frac{r^{2k}}{2^{2k} k! \ \Gamma(\mu+k+1)} \xi_{l}^{2k} a_{l} \tau_{\xi_{l}}(h_{\mu}\phi)(\xi_{l}) \\ &= \varPhi_{r,\mu}(i\xi_{l}) \ a_{l} \tau_{\xi_{l}}(h_{\mu}\phi)(\xi_{l}), \qquad l \in \mathbf{N}. \end{aligned}$$

Hence, (2.9) and (2.11) imply that

$$a_l \Phi_{r,u}(i\xi_l) \to 0, \quad \text{as } l \to \infty.$$

By taking into account $\Phi_{r,\mu}(iz) = 2^{\mu}(rz)^{-\mu} \mathbb{I}_{\mu}(rz), z \in C$ and r > 0, where \mathbb{I}_{μ} denotes the modified Bessel function of the first kind and order μ , from [26, (5), 6.2] (see also [25, p. 203, (2) and (3)]) it infers that

$$\Phi_{r,\mu}(ir\xi_l) \ge C(r\xi_l)^{-\mu - 1/2} e^{r\xi_l}, \qquad l \in \mathbb{N}$$

Hence, it is conclude that $|a_l| = O(e^{-r\xi_l})$, as $l \to \infty$, for every r > 0. Thus the proof is finished.

The last proposition allows us to obtain necessary conditions in order that a distribution $T \in \mathcal{O}'_{\#}$ is entire elliptic in H'.

PROPOSITION 2.7. – Let $S \in \mathcal{O}_{\#}$. If S is entire elliptic in H' then, there exist positive constants a and A such that

$$|h'_{\mu}(S)(y)| \ge e^{-ay}, \quad y > A.$$

PROOF. – Suppose that we can not find a, A > 0 for which (2.12) holds. Then there exists a sequence $\{\xi_j\}_{j \in N} \subset (0, \infty)$ such that $\xi_0 > 1, \xi_j - \xi_{j-1} > 1$, for every $j \in N \setminus \{0\}$, and $|h'_{\mu}(S)(\xi_j)| < e^{-j\xi_j}$, for each $j \in N$.

We define the distribution

$$T = 2^{\mu} \Gamma(\mu + 1) \sum_{j=0}^{\infty} (.\xi_j)^{-\mu} J_{\mu}(.\xi_j).$$

It is not hard to see that the series defining T converges in H'. Moreover, Proposition 2.6 implies that $T \notin \mathcal{E}H'$. On the other hand, by the interchange formula for the distributional Hankel transformation ([21, Proposition 4.5]), we have

$$\begin{aligned} h'_{\mu}(T \# S) &= h'_{\mu}(T) \ h'_{\mu}(S) \\ &= \sum_{j=0}^{\infty} h'_{\mu}(S)(\xi_j) \ \tau_{\xi_j} \delta. \end{aligned}$$

Hence,

$$T \# S = 2^{\mu} \Gamma(\mu + 1) \sum_{j=0}^{\infty} h'_{\mu}(S)(\xi_j)(.\xi_j)^{-\mu} J_{\mu}(.\xi_j),$$

and by taking into account Proposition 2.6, $T#S \in \mathcal{E}H'$.

Thus we conclude that S is not entire elliptic on H'.

In the next proposition we prove that the condition (2.12) implies the entire ellipticity of the element S of $\mathcal{O}'_{\#}$.

PROPOSITION 2.8. – Let $S \in \mathcal{O}'_{\#}$. If there exist a, A > 0 such that (2.12) holds for S, then S is entire elliptic on H'.

PROOF. – We first take a function $\phi \in H$ such that $\phi(x) = 1$, $x \leq A$, and $\phi(x) = 0$, x > A + 1. We define the function g by

$$g(x) = 0$$
, $0 < x \le A$, and $g(x) = \frac{1 - \phi(x)}{\Phi_{2a,\mu}(ix) h'_{\mu}(S)(x)}$, $x > A$.

It is clear that g is a smooth function on $(0, \infty)$. Moreover, by taking into account that $h'_{\mu}(S)$ is a multiplier of H ([21, Proposition 4.2]) and [28, (5) and (8), 6.2], we can see that g is a multiplier of H. Indeed, by using the Leibniz rule we can see that, for every $k \in \mathbb{N}$,

$$\left| \left(\frac{1}{x} \frac{d}{dx} \right)^k \left(\frac{1 - \phi(x)}{\Phi_{2a,\mu}(ix) h'_{\mu}(S)(x)} \right) \right|$$

has a polynomial growth at infinity. Hence the distribution $G = h'_{\mu}(g)$ is in $\mathcal{O}'_{\#}$ ([21, Proposition 4.2]).

Moreover,

(2.13)
$$\Phi_{2a,\mu}(\varDelta_{\mu})(S\#G) = \delta - \Phi,$$

where $\Phi = h_{\mu}(\phi)$. Indeed, let $\varphi \in H$. We can write

$$\begin{split} \langle \varPhi_{2a,\,\mu}(\varDelta_{\,\mu})(S\#G),\,\varphi\rangle \\ &= \sum_{k=0}^{\infty} \frac{(-1)^{k}(2a)^{2k}}{2^{2k}k!\,\Gamma(\mu+k+1)} \langle S\#\varDelta_{\,\mu}^{\,k}G,\,\varphi\rangle \\ &= \sum_{k=0}^{\infty} \frac{(-1)^{k}(2a)^{2k}}{2^{2k}k!\,\Gamma(\mu+k+1)} \langle h_{\mu}'(S)\,h_{\mu}'(\varDelta_{\,\mu}^{\,k}G),\,h_{\mu}(\varphi)\rangle \end{split}$$

732

$$\begin{split} &= \sum_{k=0}^{\infty} \frac{(2a)^{2k}}{2^{2k}k! \,\Gamma(\mu+k+1)} \int_{0}^{\infty} x^{2k} g(x) \, h_{\mu}'(S)(x) \, h_{\mu}(\varphi)(x) \, \frac{x^{2\mu+1}}{2^{\mu} \Gamma(\mu+1)} \, dx \\ &= \sum_{k=0}^{\infty} \frac{(2a)^{2k}}{2^{2k}k! \,\Gamma(\mu+k+1)} \int_{A}^{\infty} x^{2k} \, \frac{1-\phi(x)}{\Phi_{2a,\mu}(ix)} h_{\mu}(\varphi)(x) \, \frac{x^{2\mu+1}}{2^{\mu} \Gamma(\mu+1)} \, dx \\ &= \int_{0}^{\infty} (1-\phi(x)) \, h_{\mu}(\varphi)(x) \, \frac{x^{2\mu+1}}{2^{\mu} \Gamma(\mu+1)} \, dx \\ &= h_{\mu}(h_{\mu}\varphi)(0) - \int_{0}^{\infty} h_{\mu}(\phi)(x) \, \varphi(x) \, \frac{x^{2\mu+1}}{2^{\mu} \Gamma(\mu+1)} \, dx \\ &= \langle \delta, \, \varphi \rangle - \langle h_{\mu}(\phi), \, \varphi \rangle. \end{split}$$

Then (2.13) is established. Note that (2.13) implies also that $\Phi_{2a,\mu}(\Delta_{\mu})(S\#G)$ is in $\mathcal{O}'_{\#}$.

Also the series

$$\sum_{k=0}^{\infty} \frac{(-1)^k (2a)^{2k}}{2^{2k} k! \, \Gamma(\mu+k+1)} \varDelta^k_{\mu}(S\#G)$$

converges in the space $\mathcal{O}_{\#}'.$ Indeed, let $\varphi \in H.$ By proceeding as above we can see that

$$\left\langle h'_{\mu} \left(\sum_{k=0}^{n} \frac{(-1)^{k} (2a)^{2k}}{2^{2k} k! \, \Gamma(\mu+k+1)} \varDelta_{\mu}^{k} (S \# G) \right), \varphi \right\rangle = \sum_{k=0}^{n} \frac{(2a)^{2k}}{2^{2k} k! \, \Gamma(\mu+k+1)} \left\langle x^{2k} \, \frac{1-\phi(x)}{\varPhi_{2a,\mu}(ix)}, \varphi(x) \right\rangle.$$

Hence, it is sufficient to show that the series

$$\sum_{k=0}^{\infty} \frac{(2ax)^{2k}}{2^{2k}k! \, \Gamma(\mu+k+1)} \, \frac{1-\phi(x)}{\varPhi_{2a,\,\mu}(ix)}$$

converges in the topology of O. Let $s \in N$. By invoking [28, (5) and (8), 6.2] it obtains,

$$\begin{split} & \left| \left(\frac{1}{x} \frac{d}{dx} \right)^{s} \left(\sum_{k=0}^{n} \frac{(2ax)^{2k}}{2^{2k}k! \, \Gamma(\mu+k+1)} \frac{1-\phi(x)}{\varPhi_{2a,\mu}(ix)} - (1-\phi(x)) \right) \right| \\ &= \left| \left(\frac{1}{x} \frac{d}{dx} \right)^{s} \left(\left(\sum_{k=0}^{n} \frac{(2ax)^{2k}}{2^{2k}k! \, \Gamma(\mu+k+1)} \frac{1}{\varPhi_{2a,\mu}(ix)} - 1 \right) (1-\phi(x)) \right) \right| \\ &\leq \sum_{j=0}^{s} \binom{s}{j} \left| \left(\frac{1}{x} \frac{d}{dx} \right)^{k-j} (1-\phi(x)) \right| \left| \left(\frac{1}{x} \frac{d}{dx} \right)^{j} \left(\sum_{k=0}^{n} \frac{(2ax)^{2k}}{2^{2k}k! \, \Gamma(\mu+k+1)} \frac{1}{\varPhi_{2a,\mu}(ix)} - 1 \right) \right| \\ &\leq C \sum_{j=0}^{s} \left| \left(\frac{1}{x} \frac{d}{dx} \right)^{j} \left(\sum_{k=0}^{n} \frac{(2ax)^{2k}}{2^{2k}k! \, \Gamma(\mu+k+1)} \frac{1}{\varPhi_{2a,\mu}(ix)} - 1 \right) \right| \\ &\leq C (1+x^{2})^{l}, \ x \in (0,\infty) \ \text{and} \ n \in \mathbb{N}, \end{split}$$

for some $l \in N$ that is not depending on $x \in (0, \infty)$ and $n \in N$.

Let $\varepsilon > 0$ and $s \in N$. If *l* is the nonnegative integer that is associated to *s* as above, there exists $x_0 > 0$ such that, for every $n \in N$,

$$\sup_{x \ge x_0} \frac{1}{(1+x^2)^{l+1}} \left| \left(\frac{1}{x} \frac{d}{dx} \right)^s \left(\left(\sum_{k=0}^n \frac{(2ax)^{2k}}{2^{2k}k! \, \Gamma(\mu+k+1)} \, \frac{1}{\Phi_{2a,\mu}(ix)} - 1 \right) (1-\phi(x)) \right) \right| < \varepsilon.$$

Moreover, we can find $n_0 \in N$ for which

$$\sup_{0 < x < x_0} \frac{1}{(1+x^2)^{l+1}} \left| \left(\frac{1}{x} \frac{d}{dx} \right)^s \left(\left(\sum_{k=0}^n \frac{(2ax)^{2k}}{2^{2k}k! \, \Gamma(\mu+k+1)} \, \frac{1}{\Phi_{2a,\mu}(ix)} - 1 \right) (1-\phi(x)) \right) \right| < \varepsilon_1$$

provided that $n \ge n_0$.

Hence, we conclude that, for every $n \ge n_0$,

$$\sup_{0 < x < \infty} \frac{1}{(1+x^2)^{l+1}} \left| \left(\frac{1}{x} \frac{d}{dx} \right)^s \left(\left(\sum_{k=0}^n \frac{(2ax)^{2k}}{2^{2k}k! \, \Gamma(\mu+k+1)} \, \frac{1}{\Phi_{2a,\mu}(ix)} - 1 \right) (1-\phi(x)) \right) \right| < \varepsilon.$$

Thus, it is showed that

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{(2ax)^{2k}}{2^{2k}k! \, \Gamma(\mu+k+1)} \, \frac{1-\phi(x)}{\Phi_{2a,\,\mu}(ix)} = 1-\phi(x),$$

in the topology of \mathcal{O} .

Assume now that T#S = f where $T \in H'$ and $f \in \mathcal{E}H'$. According to (2.13) and by taking into account the series

$$\sum_{k=0}^{\infty} \frac{(-1)^k (2a)^{2k}}{2^{2k} k! \, \varGamma(\mu+k+1)} \varDelta^k_{\mu} (S \# G)$$

converges in $\mathcal{O}'_{\#}$ we can write

(2.14)
$$T = T \# (\Phi_{2a,\mu}(\Delta_{\mu})(S \# G)) + T \# \Phi$$
$$= \Phi_{2a,\mu}(\Delta_{\mu})((T \# S) \# G) + T \# \Phi$$
$$= \Phi_{2a,\mu}(\Delta_{\mu})(f \# G) + T \# \Phi.$$

By Propositions 2.4 and 2.5, $\Phi_{2a,\mu}(\Delta_{\mu})(f\#G)$ is in $\mathcal{E}H'$. Moreover, $T\#\Phi \in \mathcal{E}H'$. Indeed, by [4, (3.1)], we have

$$\begin{split} (T\#\Phi)(x) &= \left\langle T,\,\tau_x\,\Phi\right\rangle \\ &= \left\langle h'_\mu(T)(t),\,2^\mu\,\Gamma(\mu+1)(xt)^{-\mu}J_\mu(xt)\,\phi(t)\right\rangle, \quad x\in(0,\,\infty). \end{split}$$

For every $x \in C$, the series

$$(xt)^{-\mu}J_{\mu}(xt)\phi(t) = \sum_{k=0}^{\infty} \frac{(-1)^{k}(xt)^{2k}}{2^{2k+\mu}k! \, \Gamma(\mu+k+1)} \phi(t)$$

converges in \mathcal{B} . Then it deduces that

$$(T \# \Phi)(x) = \Gamma(\mu + 1) \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{2^{2k} k! \, \Gamma(\mu + k + 1)} \big\langle (h'_{\mu} T)(t), \, t^{2k} \phi(t) \big\rangle, \quad x \in (0, \, \infty).$$

Hence $T \# \Phi$ can be extended as an even and entire function.

By virtue of [6, Lemma 2.2], we get, for every $z, z_1, z_2, ..., z_n \in C$ and $n \in N$,

$$\begin{split} \tau_{z_1} \tau_{z_2} \dots \tau_{z_n} (T \# \Phi)(z) &= \\ & \langle h'_{\mu}(T)(t), \, (2^{\mu} \, \Gamma(\mu+1))^{n+1} \, (z_1 t)^{-\mu} J_{\mu}(z_1 t) (z_2 t)^{-\mu} J_{\mu}(z_2 t) \dots \\ & (z_n t)^{-\mu} J_{\mu}(z_n t) (z t)^{-\mu} J_{\mu}(z t) \, \phi(t) \rangle. \end{split}$$

Since $h'_{\mu} T \in \mathcal{B}'$ and $\phi \in \mathcal{B}$, there exist $r \in N$ and C > 0 for which

$$\left|\tau_{z_{1}}\tau_{z_{2}}\ldots\tau_{z_{n}}(T\#\Phi)(z)\right| \leq$$

$$C \max_{0 \leq k \leq r} \sup_{0 < t < A+1} \left| \left(\frac{1}{t} \frac{d}{dt} \right)^{k} ((z_{1} t)^{-\mu} J_{\mu}(z_{1} t)(z_{2} t)^{-\mu} J_{\mu}(z_{2} t) \dots (z_{n} t)^{-\mu} J_{\mu}(z_{1} t)(z_{2} t)^{-\mu} J_{\mu}(z_{1} t)(z_{2} t)^{-\mu} J_{\mu}(z_{2} t) \dots (z_{n} t)^{-\mu} J_{\mu}(z_{1} t)(z_{2} t)^{-\mu} J_{\mu}(z_{1} t)(z_{2} t)^{-\mu} J_{\mu}(z_{1} t)(z_{2} t)^{-\mu} J_{\mu}(z_{2} t) \dots (z_{n} t)^{-\mu} J_{\mu}(z_{1} t)(z_{2} t)^{-\mu} J_{\mu}(z_{2} t) \dots (z_{n} t)^{-\mu} J_{\mu}(z_{1} t)(z_{2} t)^{-\mu} J_{\mu}(z_{2} t) \dots (z_{n} t)^{-\mu} J_{\mu}(z_{n} t)(z_{n} t)^{-\mu} J_{\mu}(z_{n} t)^{-\mu}$$

for each $z, z_1, z_2, \ldots, z_n \in C$.

Therefore, according to [28, (7), 5.1] and [13, (5.3.a)], for each $n, l \in \mathbb{N}$, one has, for every $z, z_1, z_2, \ldots, z_n \in I_l$,

$$|\tau_{z_1}\tau_{z_2}\ldots\tau_{z_n}(T\#\Phi)(z)| \leq C((1+|z|)(1+|z_1|)\ldots(1+|z_n|))^{2r}.$$

Thus we prove that S is entire elliptic in H'.

We now give a distribution $S \in \mathcal{O}_{\#}'$ that is entire elliptic but it is not hypoelliptic in H'.

Let a > 0. We define the function $\phi(x) = 1/\Phi_{a,\mu}(ix), x > 0$. By taking into account [28, (5) and (8), 6.2] we can see that $\phi \in H$. Then, according to [1, Satz 5], $S = h_{\mu}(\phi) \in H$. By [21, Proposition 4.2] it follows that $S \in \mathcal{O}'_{\#}$. Moreover, for every $k \in \mathbb{N}, y^k h'_{\mu}(S)(y) = y^k \phi(y) \to 0$, as $y \to \infty$. By invoking [9, Proposition 3.3] we conclude that S is not hypoelliptic in H'.

Moreover, S is entire elliptic in H'. Indeed, according to [28, (5), 6.2], there exists C > 0 such that

$$|h'_u(S)(y)| = \phi(y) \ge Ce^{-y},$$

when y is large enough. Hence, from Proposition 2.8 one deduces that S is entire elliptic in H'.

REFERENCES

- [1] G. ALTENBURG, Bessel-Transformationen in Räumen von Grundfunktionen über dem Intervall $\Omega = (0, \infty)$ und deren Dualraumen, Math. Nachr., 108 (1982), 197-218.
- [2] M. BELHADJ J. J. BETANCOR, Hankel convolution operators on entire functions and distributions, J. Math. Anal. Appl., 276 (2002), 40-63.
- [3] J. J. BETANCOR I. MARRERO, Multipliers of Hankel transformable generalized functions, Comment. Math. Univ. Carolinae, 33 (3) (1992), 389-401.
- [4] J. J. BETANCOR I. MARRERO, The Hankel convolution and the Zemanian spaces B_u and B'_u, Math. Nachr., 160 (1993), 277-298.
- [5] J. J. BETANCOR I. MARRERO, Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japonica, 38 (6) (1993), 1141-1155.
- [6] J. J. BETANCOR I. MARRERO, Some properties of Hankel convolution operators, Canad. Math. Bull., 36 (4) (1993), 398-406.
- [7] J. J. BETANCOR I. MARRERO, On the topology of the space of Hankel convolution operators, J. Math. Anal. Appl., 201 (1996), 994-1001.
- [8] J. J. BETANCOR L. RODRÍGUEZ-MESA, Hankel convolution on distribution spaces with exponential growth, Studia Math., 121 (1) (1996), 35-52.
- [9] J. J. BETANCOR L. RODRÍGUEZ-MESA, On Hankel convolution equations in distribution spaces, Rocky Mountain J. Math., 29 (1) (1999), 93-114.

- [10] F. M. CHOLEWINSKI, A Hankel Convolution Complex Inversion Theory, Mem. Amer. Math. Soc., 58 (1965).
- [11] F. M. CHOLEWINSKI, Generalized Fock spaces and associated operators, SIAM J. Math. Anal., 15 (1) (1984), 177-202.
- [12] S. J. L. VON EIJNDHOVEN J. DE GRAAF, Some results on Hankel invariant distribution spaces, Proc. Kon. Ned. Akad. van Wetensch. A, 86 (1) (1983), 77-87.
- [13] S. J. L. VON ELJNDHOVEN M. J. KERKHOF, *The Hankel transformation and spaces of W-type*, Reports on Appl. and Numer. Analysis, 10, Dept. of Maths. and Comp. Sci., Eindhoven Univ. of Tech. (1988).
- [14] L. EHRENPREIS, Solution of some problem of division, Part IV. Invertible and elliptic operators, Amer. J. Maths., 82 (1960), 522-588.
- [15] A. ERDÉLYI, Tables of integral transforms, II, McGraw Hill, New York, 1953.
- [16] G. GODEFROY J.H. SHAPIRO, Operators with dense, invariant, cyclic vector manifolds, J. Functional Anal., 98 (1991), 229-269.
- [17] D. T. HAIMO, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc., 116 (1965), 330-375.
- [18] C. S. HERZ, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. USA, 40 (1954), 996-999.
- [19] I. I. HIRSCHMAN, JR., Variation diminishing Hankel transforms, J. Analyse Math., 8 (1960/61), 307-336.
- [20] J. HORVATH, Topological Vector Spaces and Distributions, I, Addison-Wesley, Reading, Massachusetts (1966).
- [21] I. MARRERO J. J. BETANCOR, Hankel convolution of generalized functions, Rendiconti di Matematica, 15 (1995), 351-380.
- [22] L. SCHWARTZ, Theorie des distributions, Hermann, Paris, 1978.
- [23] J. DE SOUSA-PINTO, A generalized Hankel convolution, SIAM J. Appl. Math., 16 (1985), 1335-1346.
- [24] K. TRIMÉCHE, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0, ∞), J. Math. Pures Appl., 60 (9) (1981), 51-98.
- [25] G. N. WATSON, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1959.
- [26] A. H. ZEMANIAN, A distributional Hankel transformation, SIAM J. Appl. Math., 14 (1966), 561-576.
- [27] A. H. ZEMANIAN, The Hankel transformations of certain distributions of rapid growth, J. SIAM Appl. Math., 14 (4) (1966), 678-690.
- [28] A. H. ZEMANIAN, Generalized integral transformations, Interscience Publishers, New York, 1968.
- [29] Z. ZIELEZNY, Hypoelliptic and entire elliptic convolution equations in subspaces of the spaces of distributions (I), Studia Math., 28 (1967), 317-332.

Departamento de Análisis Matemático, Universidad de La Laguna 38271 - La Laguna, Tenerife, Islas Canarias, España. E-mail: jbetanco@ull.es

Pervenuta in Redazione

il 26 novembre 2001 e in forma rivista il 25 maggio 2002