Bollettino

Unione Matematica Italiana

M. Belhadj, J. J. Betancor
Entire elliptic Hankel convolution equations

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 6-B (2003), n.3, p. 717-737.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_2003_8_6B_3_717_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2003.

Entire Elliptic Hankel Convolution Equations (*).

M. Belhadj - J. J. Betancor

Sunto. - In questo lavoro caratterizziamo gli operatori di convoluzione di Hankel ellittici interi su distribuzioni temperate in termini della crescita delle loro trasformate di Hankel.

Summary. - In this paper we characterize the entire elliptic Hankel convolutors on tempered distributions in terms of the growth of their Hankel transforms.

1. - Introduction and preliminaries.

The Hankel transformation is usually defined by ([18])

$$
h_{\mu}(f)(y)=\int_{0}^{\infty}(x y)^{-\mu} J_{\mu}(x y) f(x) x^{2 \mu+1} d x, \quad y>0
$$

Here J_{μ} denotes the Bessel function of the first kind and order μ. Throughout this paper we will assume that $\mu>-\frac{1}{2}$.

The Hankel transformation h_{μ} has been studied in spaces of distributions of slow growth by G. Altenburg [1]. Altenburg's investigation was inspired in the studies of A. H. Zemanian ([26] and [28]) about the variant \mathcal{H}_{μ} of the Hankel transformation defined through

$$
\mathcal{T}_{\mu}(f)(y)=\int_{0}^{\infty}(x y)^{1 / 2} J_{\mu}(x y) f(x) d x, \quad y>0 .
$$

It is clear that h_{μ} and $\mathscr{\mathscr { C }}_{\mu}$ are closely connected.
G. Altenburg [1] introduced the space H constituted by all those complex valued and smooth functions ϕ on $(0, \infty)$ such that, for every $m, n \in \boldsymbol{N}$,

$$
\gamma_{m, n}(\phi)=\sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}\left|\left(\frac{1}{x} \frac{d}{d x}\right)^{n} \phi(x)\right|<\infty .
$$

(*) Partially supported by DGICYT Grant PB 97-1489 (Spain).

On H it considers the topology associated with the family $\left\{\gamma_{m, n}\right\}_{m, n \in N}$ of seminorms. Thus H is a Fréchet space and h_{μ} is an automorphism of H ([1, Satz 5]). According to [12, p. 85] the space H coincides with the space $S_{\text {even }}$ constituted by all the even functions in the Schwartz space S. From [3, Theorem 2.3] it is immediately deduced that a function f defined on $(0, \infty)$ is a pointwise multiplier of H, write $f \in \mathcal{O}$, if, and only if, f is smooth on $(0, \infty)$ and, for every $k \in \boldsymbol{N}$, there exists $m \in \boldsymbol{N}$ for which $\left(1+x^{2}\right)^{-n}\left(\frac{1}{x} \frac{d}{d x}\right)^{k} f(x)$ is bounded on ($0, \infty$).

The dual space of H, is, as usual represented by H^{\prime}. If f is a measurable function on $(0, \infty)$ such that $\left(1+x^{2}\right)^{-n} f(x)$ is a bounded function on $(0, \infty)$, for some $n \in \boldsymbol{N}$, then f generates an element of H^{\prime}, that we continue calling f, by

$$
\langle f, \phi\rangle=\int_{0}^{\infty} f(x) \phi(x) \frac{x^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d x, \quad \phi \in H .
$$

The Hankel transformation h_{μ}^{\prime} is defined on H^{\prime} as the transpose of h_{μ}-transformation of H. That is, if $T \in H^{\prime}$ the Hankel transformation $h_{\mu}^{\prime} T$ is the element of H^{\prime} given through

$$
\left\langle h_{\mu}^{\prime} T, \phi\right\rangle=\left\langle T, h_{\mu} \phi\right\rangle, \quad \phi \in H .
$$

Thus h_{μ}^{\prime} is an automorphism of H^{\prime} when on H^{\prime} it considers the weak * or the strong topologies.

Also in [1] G. Altenburg considered, for every $a>0$ the space \mathcal{B}_{a} constituted by all those functions ϕ in H such that $\phi(x)=0, x \geqslant a . \mathscr{B}_{a}$ is endowed with the topology induced on it by H. The Hankel transform $h_{\mu}\left(\mathcal{B}_{a}\right)$ of \mathcal{B}_{a} can be characterized by invoking [27, Theorem 1]. The union space $\mathscr{B}=\bigcup_{a>0} \mathscr{B}_{a}$ is equipped with the inductive topology. The dual spaces of $\mathscr{B}_{a}, a>0$, and \mathscr{B} are denoted, as usual, by $\mathscr{B}_{a}^{\prime}, a>0$, and \mathscr{B}^{\prime}, respectively.

In [24] K. Trimèche introduced, for every $a>0$, the space $\mathscr{O}_{*, a}$ constituted by all those smooth and even functions ϕ on \boldsymbol{R} such that $\phi(x)=0,|x| \geqslant a$. Also he considered the union space $\mathscr{O}_{*}=\bigcup_{a>0} \mathscr{O}_{*, a}$. According to [12, p. 85], the spaces $\mathscr{B}_{a}, a>0$, and \mathscr{B}, coincides with the spaces $\mathscr{O}_{*, a}, a>0$, and \mathscr{O}_{*}, respectively.
F. M. Cholewinski [10], D. T. Haimo [17] and I. I. Hirschman [19] investigated the convolution operation of the Hankel transformation h_{μ} on Lebesgue spaces. We say that a measurable function f is in $L_{1, \mu}$ when

$$
\int_{0}^{\infty}|f(x)| x^{2 \mu+1} d x<\infty
$$

If $f, g \in L_{1, \mu}$ the Hankel convolution $f \#_{\mu} g$ of f and g is defined by

$$
\left(f \#_{\mu} g\right)(x)=\int_{0}^{\infty} f(y)\left({ }_{\mu} \tau_{x} g\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y, \quad \text { a.e. } x \in(0, \infty),
$$

where the Hankel translated ${ }_{\mu} \tau_{x} g, x \in(0, \infty)$, is given through

$$
\begin{equation*}
\left({ }_{\mu} \tau_{x} g\right)(y)=\int_{0}^{\infty} g(z) D_{\mu}(x, y, z) \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z, \quad \text { a.e. } y \in(0, \infty) \tag{1.1}
\end{equation*}
$$

and being

$$
\begin{array}{r}
D_{\mu}(x, y, z)=\left(2^{\mu} \Gamma(\mu+1)\right)^{2} \int_{0}^{\infty}(x t)^{-\mu} J_{\mu}(x t)(y t)^{-\mu} J_{\mu}(y t)(z t)^{-\mu} J_{\mu}(z t) t^{2 \mu+1} d t \\
x, y, z \in(0, \infty)
\end{array}
$$

Here a.e. is understood respect to the Lebesgue mesure on ($0, \infty$).
The Hankel transformation h_{μ} and the Hankel convolution $\#_{\mu}$ are related by ([19, Theorem 2.d])

$$
h_{\mu}\left(f \#_{\mu} g\right)=h_{\mu}(f) h_{\mu}(g), \quad f, g \in L_{1, \mu} .
$$

Since we think no confusion will appear, in the sequel we will write \#, τ_{x}, $x \in(0, \infty)$, and D instead of $\#_{\mu},{ }_{\mu} \tau_{x}, x \in(0, \infty)$, and D_{μ}, respectively.

As it was mentioned the transformations \mathcal{H}_{μ} and h_{μ} are closely connected. After a straightforward manipulation it can be deduced from \# a form for the convolution operation $*$ for the Hankel transformation \mathcal{C}_{μ}.

The investigation of the * convolution on the distribution spaces was began by J. de Sousa-Pinto [23]. He considered the 0 -order transformation \mathcal{C}_{0} and compact support distributions on $(0, \infty)$. More recently in a series of papers J. J. Betancor and I. Marrero ([4], [5], [6], [7] and [21]) have extended the studies of J. de Sousa-Pinto. They defined the * convolution of the Hankel transformation \mathcal{H}_{μ} on Zemanian distribution spaces of slow growth ([21]) and rapid growth ([4]). J. J. Betancor and L. Rodríguez-Mesa ([9]) studied the hypoellipticity of Hankel * convolution on Zemanian distribution spaces.

The main aspects of the distributional theory developed by the $*$ convolution can be transplanted to the \# convolution. Our objective in this paper is to analyze the entire ellipticity of the \# convolution operators on the spaces H and H^{\prime}.

For every $x \in(0, \infty)$, the Hankel translated τ_{x} defines a continuous linear mapping from H into itself ([21, Proposition 2.1]). For every $T \in H^{\prime}$ and $\phi \in H$
the Hankel convolution $T \# \phi$ of T and ϕ is defined by

$$
(T \# \phi)(x)=\left\langle T, \tau_{x} \phi\right\rangle, \quad x \in(0, \infty)
$$

By [21, Proposition 3.5], $T \# \phi$ is a multiplier of H, for each $T \in H^{\prime}$ and $\phi \in H$. In general $T \# \phi$ is not in H when $T \in H^{\prime}$ and $\phi \in H$. Indeed, if we define the functional T on H by

$$
\langle T, \phi\rangle=\int_{0}^{\infty} \phi(x) \frac{x^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d x, \quad \phi \in H
$$

then $T \in H^{\prime}$ and, for every $\phi \in H$,
$(T \# \phi)(x)=\int_{0}^{\infty}\left(\tau_{x} \phi\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y=\int_{0}^{\infty} \phi(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y, \quad x \in(0, \infty)$.
Hence $T \# \phi \notin H$ when $\int_{0}^{\infty} \phi(y) y^{2 \mu+1} d y \neq 0$. According to [21, Proposition 4.2] we can characterize the subspace constituted by all those $T \in H^{\prime}$ such that $T \# \phi \in H$, for every $\phi \in H$. Let $m \in \boldsymbol{Z}$. We say that a complex valued and smooth function ϕ on $(0, \infty)$ is in $O_{\mu, m, \#}$ if and only if, for every $k \in \boldsymbol{N}$,

$$
w_{m, \mu}^{k}(\phi)=\sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}\left|\Delta_{\mu}^{k} \phi(x)\right|<\infty
$$

where Δ_{μ} denotes the Bessel operator $x^{-2 \mu-1} D x^{2 \mu+1} D . O_{\mu, m, \#}$ is a Fréchet space when it is endowed with the topology associated with the system $\left\{w_{m, \mu}^{k}\right\}_{k \in N}$ of seminorms. It is clear that H is contained in $O_{\mu, m, \#}$. We denote by $\mathcal{O}_{\mu, m, \#}$ the closure of H in $O_{\mu, m, \#}$. By $\mathcal{O}_{\mu, \#}$ we represent the inductive limit space $\bigcup_{m \in Z} \mathcal{O}_{\mu, m, \#}$. The dual space $\mathcal{O}_{\mu, \#}^{\prime}$ of $\mathcal{O}_{\mu, \#}$ can be characterized as the subspace of H^{\prime} of \#-convolution operators on H ([5, Proposition 2.5]). Moreover, by defining on $\mathcal{O}_{\mu, \#}^{\prime}$ the topology associated with the family $\left\{\eta_{m, k, \phi}\right\}_{m, k \in N, \phi \in H}$ of seminorms, where, for each $m, k \in N$ and $\phi \in H$,

$$
\eta_{m, k, \phi}(T)=w_{m, \mu}^{k}(T \# \phi), \quad T \in \mathcal{O}_{\mu, \#}^{\prime},
$$

and by considering on \mathcal{O} the topology induced by the simple topology of the space $\mathscr{L}(H)$ of the linear and continuous mappings from H into itself, the Hankel transformation h_{μ}^{\prime} is an isomorphism from $\mathcal{O}_{\mu, \#}^{\prime}$ onto \mathcal{O}.

The Hankel convolution $T \# S$ of $T \in H^{\prime}$ and $S \in \mathcal{O}_{\mu}^{\prime}$,\# is defined by

$$
\langle T \# S, \phi\rangle=\langle T, S \# \phi\rangle, \quad \phi \in H .
$$

Thus $T \# S \in H^{\prime}$, for each $T \in H^{\prime}$ and $S \in \mathcal{O}_{\mu, \#}^{\prime}$.
In [9] J. J. Betancor and L. Rodríguez-Mesa investigated the hypoellipticity of the *-Hankel convolution equations on Zemanian spaces. Results as in
[9] can be obtained for the \#-Hankel convolutions. A distribution $S \in \mathcal{O}_{\mu}^{\prime}$, \# is said to be hypoelliptic in H^{\prime} when the following property holds: $T \in \mathcal{O}_{\mu}$,\# provided that $T \in H^{\prime}$ and $T \# S \in \mathcal{O}_{\mu, \#}$. From [9, Proposition 3.3] it infers that $S \in \mathcal{O}_{\mu, \#}^{\prime}$ is hypoelliptic in H^{\prime} when, and only when, there exist $b, B>0$ such that

$$
\left|h_{\mu}^{\prime}(S)(y)\right| \geqslant y^{-b}, \quad y \geqslant B
$$

Motivated by the celebrated paper of L. Ehrenpreis [14] and the investigations of Z. Zielezny [29], we study in this paper the entire elliptic Hankel convolution equations on H^{\prime}.

By \boldsymbol{H}_{e} we represent the space of even and entire functions. It is equipped, as usual, with the topology of the uniform convergence of the bounded sets of \boldsymbol{C}.

We will say that $f \in \boldsymbol{H}_{e}$ is in $£ H^{\prime}$ if, and only if, for every $l, n \in \boldsymbol{N}$, there exist $C>0$ and $k \in \boldsymbol{N}$ for which

$$
\begin{aligned}
& \left|\tau_{z_{1}} \tau_{z_{2}} \ldots \tau_{z_{n}}(f)(z)\right| \leqslant \\
& \qquad C\left((1+|z|)\left(1+\left|z_{1}\right|\right) \ldots\left(1+\left|z_{n}\right|\right)\right)^{k}, \quad z, z_{1}, z_{2}, \ldots, z_{n} \in I_{l},
\end{aligned}
$$

where $I_{l}=\{w \in \boldsymbol{C}:|\operatorname{Im} w| \leqslant l\}$.
Here the complex Hankel translation operator $\tau_{z}, z \in \boldsymbol{C}$, must be understood as in [11]. If $f \in \boldsymbol{H}_{e}$ and $f(z)=\sum_{k=0}^{\infty} a_{k} z^{2 k}, z \in \boldsymbol{C}$, then

$$
\left(\tau_{w} f\right)(z)=\sum_{n=0}^{\infty} a_{n} \sum_{k=0}^{n}\binom{n}{k} \frac{\Gamma(n+\mu+1) \Gamma(\mu+1)}{\Gamma(n-k+\mu+1) \Gamma(k+\mu+1)} z^{2(n-k)} w^{2 k}, \quad z, w \in \boldsymbol{C} .
$$

Thus, the Hankel translation operator is extended to the complex plane.
A distribution $S \in \mathcal{O}_{\mu, \#}^{\prime}$ will say to be entire elliptic in H^{\prime} when the following property holds: $T \in \delta H^{\prime}$ provided that $T \in H^{\prime}$ and $T \# S \in \delta H^{\prime}$.

We will start Section 2 proving that the space $\mathcal{O}_{\mu}^{\prime}$, \# of Hankel convolution operators of H is really not depending on μ. Also, in Section 2 we obtain a characterization for the entire elliptic elements of $\mathcal{O}_{\mu, \#}^{\prime}$ in terms of the growth of their Hankel transforms. We will prove that $S \in \mathcal{O}_{\mu}^{\prime}$, \# is entire elliptic on H^{\prime} if, and only if, there exist $a, A>0$ such that

$$
\left|h_{\mu}^{\prime}(S)(y)\right| \geqslant e^{-a y}, \quad y \geqslant A
$$

Throughtout this paper by C we always represent a suitable positive constant that can change from a line to the other one.

2. - Entire elliptic Hankel convolution equations in H^{\prime}.

We firstly prove that the space $\mathcal{O}_{\mu, \#}^{\prime}$ of Hankel convolution operators is really not depending on μ.

Let $m \in \boldsymbol{Z}, m \leqslant 0$. We denote by $O_{m, \#}$ the space constituted by all those smooth functions ϕ on $(0, \infty)$ for which there exists an even and smooth function ψ such that $\psi(x)=\phi(x), x \in(0, \infty)$, and that

$$
\gamma_{m}^{k}(\phi)=\sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}\left|D^{k} \phi(x)\right|<\infty
$$

for every $k \in \boldsymbol{N} . O_{m, \#}$ is endowed with the topology associated with the family $\left\{\gamma_{m}^{k}\right\}_{k \in N}$ of seminorms. Thus, $O_{m, \#}$ is a Fréchet space. By $\mathcal{O}_{m, \#}$ we understood the closure of \mathscr{O}_{*} in $O_{m, \#}$. It is clear that $\mathcal{O}_{m, \#}$ is a Fréchet space. Moreover, $\mathcal{O}_{m, \#}$ contains continuously $\mathcal{O}_{m+1, \#}$. The union space $\underset{m \in \boldsymbol{Z}, m \leqslant 0}{\bigcup} \mathcal{O}_{m, \#}$ is denoted by $\mathcal{O}_{\#}$ and it is contained in the space \mathcal{O} of the pointwise multipliers of H.

Note that, for every $m \in \boldsymbol{Z}, m \leqslant 0$, a function $\phi \in \mathcal{O}_{m, \#}$ if, and only if, ϕ can be extended to an even function ψ that is in the space S_{m} studied in [20] and [22]. Hence an even and smooth function ϕ on \boldsymbol{R} is in $\mathcal{O}_{m, \#}$ when, and only when, for every $k \in \boldsymbol{N}, \lim _{x \rightarrow \infty}\left(1+x^{2}\right)^{m} D^{k} \phi(x)=0$.

Proposition 2.1. - Let $m \in \boldsymbol{Z}, m \leqslant 0$. The spaces $\mathcal{O}_{\mu, m, \#}$ and $\mathcal{O}_{m, \#}$ coincide topologically and algebraically.

Proof. - Assume that $\phi \in \mathcal{O}_{\mu, m, \#}$. There exists a sequence $\left\{\phi_{n}\right\}_{n \in N}$ in \mathscr{D}_{*} such that $\phi_{n} \rightarrow \phi$, as $n \rightarrow \infty$, in $O_{\mu, m, \#}$.

Let $k \in \boldsymbol{N}$. We choose a function $\alpha \in \mathcal{O}_{*, 2 k}$, such that $\alpha(x)=1, x \in(-k, k)$. Then, since $\left\{\phi_{n}\right\}_{n \in N}$ is a Cauchy sequence in $O_{\mu, m, \#},\left\{\phi_{n} \alpha\right\}_{n \in N}$ is a Cauchy sequence in $\mathscr{O}_{*, 2 k}$. Hence, there exists $\psi \in \mathscr{D}_{*, 2 k}$ for which $\phi_{n} \alpha \rightarrow \psi$, as $n \rightarrow \infty$, in $\partial_{*, 2 k}$. Since the convergence in $O_{\mu, m, \#}$ implies the pointwise convergence on $(0, \infty)$, we conclude that ϕ admits an even and smooth extension to \boldsymbol{R}.

We can write

$$
\left(\frac{1}{x} D\right) \phi(x)=x^{-2 \mu-2} \int_{0}^{x} \Delta_{\mu} \phi(t) t^{2 \mu+1} d t, \quad x \in(0, \infty) .
$$

Hence, it obtains

$$
\sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}\left|\left(\frac{1}{x} D\right) \phi(x)\right| \leqslant C \sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}\left|\Delta_{\mu} \phi(x)\right| .
$$

Moreover, since

$$
\Delta_{\mu} \phi(x)=D^{2} \phi(x)+\frac{2 \mu+1}{x} D \phi(x), \quad x \in(0, \infty),
$$

we have that

$$
\begin{equation*}
\sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}\left|D^{2} \phi(x)\right| \leqslant C \sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}\left|\Delta_{\mu} \phi(x)\right| \tag{2.1}
\end{equation*}
$$

On the other hand, a straightforward manipulation allows to get

$$
\begin{equation*}
\int_{x}^{x+1}(x+1-t) D^{2} \phi(t) d t=-D \phi(x)+\phi(x+1)-\phi(x), \quad x \in(0, \infty) . \tag{2.2}
\end{equation*}
$$

Hence, we deduce from (2.1) and (2.2) that

$$
\begin{align*}
& \sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}|D \phi(x)| \leqslant \tag{2.3}\\
& \quad C\left(\sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}\left|D^{2} \phi(x)\right|+\sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}|\phi(x)|\right)
\end{align*}
$$

Also we have that

$$
\begin{equation*}
D \Delta_{\mu} \phi(x)=D^{3} \phi(x)+(2 \mu+1) x\left(\frac{1}{x} D\right)^{2} \phi(x), \quad x \in(0, \infty) . \tag{2.4}
\end{equation*}
$$

The family $\left\{w_{m, \mu}^{k}\right\}_{m, k \in N}$ generates the topology of H. Then, we can find $k \in \boldsymbol{N}$ such that

$$
\begin{aligned}
\sup _{x \in(0,1)}\left|\left(\frac{1}{x} D\right)^{2} \phi(x)\right| & \leqslant \sup _{x \in(0,1)}\left|\left(\frac{1}{x} D\right)^{2}(\phi(x) \alpha(x))\right| \\
& \leqslant C \sup _{x \in(0,2)}\left|D_{\mu}^{k}(\phi(x) \alpha(x))\right|
\end{aligned}
$$

where $\alpha \in \mathscr{O}_{*, 2}$ and $\alpha(x)=1,|x| \leqslant 1$.
Hence from (2.1), (2.3) and (2.4), since $\sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}\left|D \Delta_{\mu} \phi(x)\right|<\infty$, it is deduced that

$$
\sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}\left|D^{3} \phi(x)\right|<\infty .
$$

By repeating the above procedure we can prove that $\phi \in O_{m, \#}$.
Moreover, since $\phi_{n} \rightarrow \phi$, as $n \rightarrow \infty$, in $O_{\mu, m, \#}$, the above arguments allows us to conclude that $\left(1+x^{2}\right)^{m}\left|D^{k} \phi(x)\right| \rightarrow 0$, as $x \rightarrow \infty$, for every $k \in \boldsymbol{N}$. Thus we show that $\phi \in \mathcal{O}_{m, \#}$.

Suppose now that $\phi \in \mathcal{O}_{m, \#}$. Let $k \in \boldsymbol{N}$. It is not hard to see that

$$
\begin{equation*}
\left|\Delta_{\mu}^{k} \phi(x)\right| \leqslant C \sum_{j=0}^{2 k}\left|D^{j} \phi(x)\right|, \quad x \geqslant 1 . \tag{2.5}
\end{equation*}
$$

Moreover, by choosing a function $\alpha \in \mathscr{D}_{*, 2}$, since $\left\{w_{l, \mu}^{j}\right\}_{l, j \in N}$ generates the topology of H, we can find $l \in N$ such that

$$
\begin{align*}
\sup _{x \in(0,1)}\left(1+x^{2}\right)^{m}\left|D_{\mu}^{k} \phi(x)\right| & \leqslant \sup _{x \in(0,1)}\left|D_{\mu}^{k}(\phi(x) \alpha(x))\right| \tag{2.6}\\
& \leqslant C \sum_{j=0}^{l} \sup _{x \in(0,2)}\left|D^{j}(\phi(x) \alpha(x))\right| \\
& \leqslant C \sum_{j=0}^{l} \sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}\left|D^{j} \phi(x)\right| .
\end{align*}
$$

By combining (2.5) and (2.6) we obtain that $\phi \in O_{\mu, m, \#}$. Also, we can see that if $\left\{\phi_{n}\right\}_{n \in N} \subset \mathcal{O}_{*}$ and $\phi_{n} \rightarrow \phi$, as $n \rightarrow \infty$, in $O_{m, \#}$, then $\phi_{n} \rightarrow \phi$, as $n \rightarrow \infty$, in $O_{\mu, m, \#}$. Hence we deduce that $\phi \in \mathcal{O}_{\mu, m, \#}$.

Thus we proved that $\mathcal{O}_{\mu, m, \#}=\mathcal{O}_{m, \#}$. Moreover (2.5) and (2.6) imply that the topology generated by $\left\{\gamma_{m}^{k}\right\}_{k \in N}$ is stronger than the one induced by $\left\{w_{m, \mu}^{k}\right\}_{k \in N}$. Then the open mapping theorem allows to conclude that the topologies defined by $\left\{\gamma_{k}^{m}\right\}_{k \in N}$ and $\left\{w_{m, \mu}^{k}\right\}_{k \in N}$ coincide.

Thus the proof is finished.

From Proposition 2.1 we infer that $\mathcal{O}_{\#}=\mathcal{O}_{\mu, \#}$. Hence the space of Hankel convolution operators $\mathcal{O}_{\mu, \#}^{\prime}, \mu>-\frac{1}{2}$, coincides with the dual space $\mathcal{O}_{\#}^{\prime}$ of $\mathcal{O}_{\#}$.

Althought, according to Proposition 2.1, the space of Hankel convolution operators is not depending on μ, the representation given in [21, Proposition 4.2] that involves the Bessel operator Δ_{μ} is very useful.

Our next objective is to obtain a characterization of the entire elliptic elements of $\mathcal{O}_{\#}$ involving the Hankel transformation.

Firstly some properties of the elements of δH^{\prime} are established.

Proposition 2.2. - Let $f \in \mathcal{E} H^{\prime}$. Then, for every $l \in N$, there exists $C>0$ and $r \in \boldsymbol{N}$, such that, for each $0<R<l$,

$$
\left|\Delta_{\mu}^{k} f(z)\right| \leqslant C\left(\frac{2}{R}\right)^{2 k} k!\Gamma(\mu+k+1)(1+|z|)^{r}(1+R)^{r}, \quad z \in I_{l} \text { and } k \in \boldsymbol{N}
$$

Proof. - Since f is an even and entire function, according to [11], we can write

$$
\left(\tau_{z} f\right)(w)=\sum_{k=0}^{\infty} \frac{w^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)}\left(\Delta_{\mu}^{k} f\right)(z), \quad w, z \in \boldsymbol{C} .
$$

Hence, for every $k \in \boldsymbol{N}, R>0$ and $z \in \boldsymbol{C}$, it has

$$
\begin{equation*}
\left(\Delta_{\mu}^{k} f\right)(z)=\frac{2^{2 k} k!\Gamma(\mu+k+1)}{2 \pi i} \int_{C_{R}} \frac{\left(\tau_{z} f\right)(w)}{w^{2 k+1}} d w \tag{2.7}
\end{equation*}
$$

Here C_{R} denotes the circle having as a parametric representation to $w(t)=$ $R e^{i t}, T \in[0,2 \pi)$. Then, for every $l \in N$ and $0<R<l$, there exists $C>0$ and $r \in N$, for which

$$
\left|\Delta_{\mu}^{k} f(z)\right| \leqslant C\left(\frac{2}{R}\right)^{2 k} k!\Gamma(\mu+k+1)(1+|z|)^{r}(1+R)^{r}, \quad z \in I_{l} \text { and } k \in \boldsymbol{N}
$$

A consequence of Proposition 2.2 is the following one.
Corollary 2.3. - Let $f \in \mathcal{E} H^{\prime}$. Then $f \in \mathcal{O}_{\#}$.
Proof. - To see that $f \in \mathcal{O}_{\#}$ it is sufficient to use Proposition 2.2 and to argue as in the proof of Proposition 2.1.

By proceeding as in [16, Proposition 5.2] (see also [2, Proposition 3.5]) we can prove that if L is a continuous linear mapping from \boldsymbol{H}_{e} into itself that commutes with Hankel translations, that is, $\tau_{z} L=L \tau_{z}$, for every $z \in \boldsymbol{C}$, then there exists an even and entire function Φ of exponential type such that, for every $f \in \boldsymbol{H}_{e}$,

$$
L f(z)=\sum_{k=0}^{\infty} a_{k} \Delta_{\mu}^{k} f(z), \quad z \in \boldsymbol{C}
$$

where $\Phi(w)=\sum_{k=0}^{\infty} a_{k} w^{2 k}, w \in \boldsymbol{C}$.
In the sequel, if Φ is an even and entire function admiting the representation $\Phi(w)=\sum_{k=0}^{\infty} a_{k} w^{2 k}, w \in \boldsymbol{C}$, we will understand by $\Phi\left(\Delta_{\mu}\right)$ the operator defined by

$$
\Phi\left(\Delta_{\mu}\right) f=\sum_{k=0}^{\infty} a_{k} \Delta_{\mu}^{k} f, \quad f \in D_{\Phi} .
$$

Here the domain D_{Φ} of $\Phi\left(\Delta_{\mu}\right)$ is constituted by all those even and entire functions f such that the series $\sum_{k=0}^{\infty} a_{k} \Delta_{\mu}^{k} f(z)$ converges for every $z \in \boldsymbol{C}$. In particu-
lar, if $r>0$ and

$$
\Phi_{r, \mu}(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}(r z)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)}, \quad z \in \boldsymbol{C}
$$

from Proposition 2.2 we deduce that $\mathcal{\&} H^{\prime}$ is contained in $D_{\Phi_{r, \mu}}$. Note that the function $\Phi_{r, \mu}, r>0$, is closely connected with the Bessel function J_{μ} of the first kind and order μ (see [25]).

Proposition 2.4. - Let $f \in \mathcal{E} H^{\prime}$. Then $\Delta_{\mu} f \in \mathcal{E} H^{\prime}$. Moreover $\Phi_{r, \mu}\left(\Delta_{\mu}\right) f$ is in $\mathcal{8} H^{\prime}$, for every $r>0$.

Proof. - Assume that $z_{1}, z_{2}, \ldots, z_{n} \in \boldsymbol{C}$ with $n \in \boldsymbol{N}$. By taking into account that the operators Δ_{μ} and $\tau_{z}, z \in \boldsymbol{C}$, commute on \boldsymbol{H}_{e}, (2.7) leads to

$$
\begin{equation*}
\tau_{z_{1}} \tau_{z_{2}} \ldots \tau_{z_{n}}\left(\Delta_{\mu} f\right)(z)=\frac{2 \Gamma(\mu+2)}{\pi i} \int_{C_{1}} \frac{\left(\tau_{z_{1}} \ldots \tau_{z_{n}} \tau_{z} f\right)(w)}{w^{3}} d w, \quad z \in \boldsymbol{C} \tag{2.8}
\end{equation*}
$$

Here C_{1} denotes the circle with parametric representation $w=e^{i t}, t \in$ $[0,2 \pi)$.

Since $f \in \delta H^{\prime}, \Delta_{\mu} f$ is an even and entire function and, by (2.8), for every $n, l \in \boldsymbol{N}$ there exist $C>0$ and $r \in \boldsymbol{N}$ such that

$$
\begin{aligned}
& \left|\tau_{z_{1}} \tau_{z_{2}} \ldots \tau_{z_{n}}\left(\Delta_{\mu} f\right)(z)\right| \leqslant \\
& \quad C\left(\left(1+\left|z_{1}\right|\right)\left(1+\left|z_{2}\right|\right) \ldots\left(1+\left|z_{n}\right|\right)(1+|z|)\right)^{r}, \quad z_{1}, z_{2}, \ldots, z_{n}, z \in I_{l} .
\end{aligned}
$$

Hence $\Delta_{\mu} f \in \delta H^{\prime}$.
Let now $r>0$. As it was mentioned $\& H^{\prime}$ is contained in $D_{\Phi_{r, \mu}}$. Moreover, by Proposition 2.2, the series

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} r^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \Delta_{\mu}^{k} f(z)
$$

is convergent in \boldsymbol{H}_{e}. Hence, according to (2.7), we can write

$$
\tau_{z_{1}} \tau_{z_{2}} \ldots \tau_{z_{n}}\left(\Phi_{r, \mu}\left(\Delta_{\mu}\right) f\right)(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k} r^{2 k}}{2 \pi i} \int_{C_{2 r}} \frac{\tau_{z_{1}} \tau_{z_{2}} \ldots \tau_{z_{n}} \tau_{z}(f)(w)}{w^{2 k+1}} d w
$$

for every $z, z_{1}, \ldots, z_{n} \in \boldsymbol{C}$, where $C_{2 r}$ represents the circle with parametric representation $w=2 r e^{i t}, t \in[0,2 \pi)$. Then, since $f \in \delta H^{\prime}$, we conclude that $\Phi_{r, \mu}\left(\Delta_{\mu}\right) f \in \mathcal{E} H^{\prime}$.

We now establish that the Hankel convolution maps $\mathcal{O}_{\#}^{\prime} \times \delta H^{\prime}$ into $8 H^{\prime}$.

Proposition 2.5. - Let $S \in \mathcal{O}_{\#}^{\prime}$ and $f \in \mathcal{E} H^{\prime}$. Then $S \# f \in \delta H^{\prime}$.
Proof. - According to [21, Proposition 4.2], for every $m \in \boldsymbol{N}$ there exist $k \in$ \boldsymbol{N} and continuous functions f_{j} on $(0, \infty)$ such that $\left(1+x^{2}\right)^{m+1} x^{2 \mu+1} f_{j}(x)$ is bounded on ($0, \infty$), $j=0,1, \ldots, k$, and

$$
\langle S, \phi\rangle=\sum_{j=0}^{k} \int_{0}^{\infty} f_{j}(x) \Delta_{\mu}^{j} \phi(x) x^{2 \mu+1} d x, \quad \phi \in \mathcal{O}_{-m, \# \cdot} .
$$

Let $l \in \boldsymbol{N}$. Since $f \in \delta H^{\prime}$, by Proposition 2.2, there exist $C>0$ and $r \in \boldsymbol{N}$ for which

$$
\left|\Delta_{\mu}^{j}\left(\tau_{z} f\right)(x)\right| \leqslant C((1+x)(1+|z|))^{r},
$$

when $x \in(0, \infty), j \in \boldsymbol{N}$ and $z \in I_{l}$. Here C can be depending on j but r is not depending on j.

We choose $m \in \boldsymbol{N}$ such that $f \in \mathcal{O}_{-m, \#}$ and that $2 m+1>r$. Then

$$
(S \# f)(z)=\sum_{j=0}^{k} \int_{0}^{\infty} f_{j}(x) \tau_{z}\left(\Delta_{\mu}^{j} f\right)(x) x^{2 \mu+1} d x, \quad z \in(0, \infty)
$$

Moreover, since for every $j=0,1, \ldots, k$ the function $\tau_{z}\left(\Delta_{\mu}^{j} f\right)(x)$ is continuous on the set $\{(x, z): x \in(0, \infty), z \in \boldsymbol{C}\}, S \# f$ can be continuously extended to \boldsymbol{C} as an even function.

Let $j \in \boldsymbol{N}, 0 \leqslant j \leqslant k$. We can write

$$
\frac{d}{d z} \tau_{z}\left(\Delta_{\mu}^{j} f\right)(x)=z^{-2 \mu-1} \int_{0}^{z} w^{2 \mu+1} \Delta_{\mu, w} \tau_{w}\left(\Delta_{\mu}^{j} f\right)(x) d w, \quad z \in \boldsymbol{C} \backslash\{0\}
$$

The last integral is extended on the segment from 0 to z.
Then if $l \in \boldsymbol{N}$, for a certain $r \in \boldsymbol{N}$ it has

$$
\begin{aligned}
\left|\frac{d}{d z} \tau_{z}\left(\Delta_{\mu}^{j} f\right)(x)\right| & \leqslant|z|^{-2 \mu-1} \int_{0}^{z}|w|^{2 \mu+1}\left|\tau_{w}\left(\Delta_{\mu}^{j+1} f\right)(x)\right||d w| \\
& \leqslant C(1+|z|)^{r+1}(1+x)^{r}, \quad x \in(0, \infty) \text { and } z \in I_{l} \backslash\{0\} .
\end{aligned}
$$

Hence, $S \# f$ is a holomorphic function on $I_{l} \backslash\{0\}$ and

$$
\frac{d}{d z}(S \# f)(z)=\sum_{j=0}^{k} \int_{0}^{\infty} f_{j}(x) \frac{d}{d z} \tau_{z}\left(\Delta_{\mu}^{j} f\right)(x) x^{2 \mu+1} d x, \quad z \in I_{l} \backslash\{0\}
$$

Since $S \# f$ is continuous on \boldsymbol{C}, Riemann theorem implies that $S \# f$ is holomorphic on I_{l}. Arbitrariness of l allows to conclude that $S \# f$ is an entire function.

Also, for every $w \in \boldsymbol{C}$, the function $\tau_{w}(S \# f)$ is even and entire.

By choosing a suitable representation (according to [21, Proposition 4.2]) for S and by proceeding as above we can see that, for every $l, n \in \boldsymbol{N}$, there exist $C>0$ and $s \in \boldsymbol{N}$, for which

$$
\begin{aligned}
& \left|\tau_{z_{1}} \tau_{z_{2}} \ldots \tau_{z_{n}}(S \# f)(z)\right| \leqslant \\
& \qquad C\left((1+|z|)\left(1+\left|z_{1}\right|\right) \ldots\left(1+\left|z_{n}\right|\right)\right)^{s}, \quad z, z_{1}, z_{2}, \ldots, z_{n} \in I_{l} .
\end{aligned}
$$

Thus we conclude that $S \# f \in \mathcal{E} H^{\prime}$.
Next result will be very useful in the sequel. Similar results can be encountered in [9, Proposition 3.2] and [29, Lemma 1]

Proposition 2.6. - Assume that $\left\{\xi_{j}\right\}_{j \in N}$ is a sequence of positive real numbers being $\xi_{0}>1$ and $\xi_{j+1}-\xi_{j}>1$, for every $j \in \boldsymbol{N}$, and that $\left\{a_{j}\right\}_{j \in N}$ is a sequence of complex numbers for which there exists a positive real number γ verifying that $\left|a_{j}\right|=O\left(e^{-\gamma \xi_{j}}\right)$, as $j \rightarrow \infty$. Then the series

$$
\sum_{j=0}^{\infty} a_{j} \tau_{\xi_{j}} \delta
$$

converges in the weak * topology of H^{\prime}, where δ denotes, as usual, the Dirac functional. Moreover, $h_{\mu}^{\prime}\left(\sum_{j=0}^{\infty} a_{j} \tau_{\xi_{j}} \delta\right)$ is in $8 H^{\prime}$ if, and only if, for every $\eta>0$, $\left|a_{j}\right|=O\left(e^{-\eta \xi_{j}}\right)$, as $j \rightarrow \infty$.

Proof. - Let $\phi \in H$. For every $n, m \in \boldsymbol{N}, n>m$, we can write

$$
\left|\sum_{j=m}^{n} a_{j}\left\langle\tau_{\xi_{j}} \delta, \phi\right\rangle\right| \leqslant \sum_{j=m}^{n}\left|a_{j}\right|\left|\phi\left(\xi_{j}\right)\right| \leqslant C \sum_{j=m}^{n} e^{-\gamma j}
$$

Hence, the series $\sum_{j=0}^{\infty} a_{j}\left\langle\tau_{\xi_{j}} \delta, \phi\right\rangle$ converges in \boldsymbol{C}. Thus we proved that the series $\sum_{j=0}^{\infty} a_{j} \tau_{\xi_{j}} \delta$ converges in the weak $*$ topology of H^{\prime}.

According to [6, Lemma 2.1] we have that

$$
h_{\mu}^{\prime}\left(\sum_{j=0}^{\infty} a_{j} \tau_{\xi_{j}} \delta\right)=2^{\mu} \Gamma(\mu+1) \sum_{j=0}^{\infty} a_{j}\left(. \xi_{j}\right)^{-\mu} J_{\mu}\left(. \xi_{j}\right)
$$

where the convergence of the last series is understood in the weak $*$ topology of H^{\prime}. Moreover, by taking into account [13, (5.3.a)] the last series defines a holomorphic function in the interior of the strip I_{γ}. Indeed, for every $n, m \in \boldsymbol{N}$, being $n>m$, it has

$$
\left|\sum_{j=m}^{n} a_{j}\left(z \xi_{j}\right)^{-\mu} J_{\mu}\left(z \xi_{j}\right)\right| \leqslant C \sum_{j=m}^{n} e^{-(\gamma-|\operatorname{Im} z|) \xi_{j}}, \quad|\operatorname{Im} z|<\gamma .
$$

We now define

$$
F(z)=\sum_{j=0}^{\infty} a_{j}\left(z \xi_{j}\right)^{-\mu} J_{\mu}\left(z \xi_{j}\right), \quad|\operatorname{Im} z|<\gamma
$$

Suppose that $\left|a_{j}\right|=O\left(e^{-\eta \xi_{j}}\right)$, as $j \rightarrow \infty$, for each $\eta>0$. Then, by proceeding as above, we can see that F is an even and entire function that is bounded in I_{l}, for each $l \in \boldsymbol{N}$. Since the series defining F converges in \boldsymbol{H}_{e}, by [19, 2, (1)], we get

$$
\tau_{z_{1}} \tau_{z_{2}} \ldots \tau_{z_{n}}(F)(z)=
$$

$$
\left(2^{\mu} \Gamma(\mu+1)\right)^{n} \sum_{j=0}^{\infty} a_{j}\left(z \xi_{j}\right)^{-\mu} J_{\mu}\left(z \xi_{j}\right)\left(z_{1} \xi_{j}\right)^{-\mu} J_{\mu}\left(z_{1} \xi_{j}\right) \ldots\left(z_{n} \xi_{j}\right)^{-\mu} J_{\mu}\left(z_{n} \xi_{j}\right)
$$

for every $z, z_{1}, z_{2}, \ldots, z_{n} \in \boldsymbol{C}$. By invoking again [13, (5.3.a)] we can see that $F \in \mathcal{E} H^{\prime}$.

Assume now that $F \in \mathcal{E} H^{\prime}$. Let $r>0$. By Proposition 2.4, $\Phi_{r, \mu}\left(\Delta_{\mu}\right) F \in$ δH^{\prime}. Moreover, for every $l \in \boldsymbol{N}$ there exists $m \in \boldsymbol{N}$ such that

$$
(1+|z|)^{-m} \sum_{k=0}^{\infty} \frac{(-1)^{k} r^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \Delta_{\mu}^{k} F(z)
$$

converges uniformly in I_{l}.
According to [4, (3.1)], we can write, for every $\phi \in H$,

$$
\begin{aligned}
& 2^{\mu} \Gamma(\mu+1) \int_{0}^{\infty}(x y)^{-\mu} J_{\mu}(x y) \Phi_{r, \mu}\left(\Delta_{\mu}\right) F(x) \phi(x) x^{2 \mu+1} d x \\
= & \int_{0}^{\infty} \Phi_{r, \mu}\left(\Delta_{\mu}\right) F(x) h_{\mu}\left(\tau_{y}\left(h_{\mu} \phi\right)\right)(x) x^{2 \mu+1} d x \\
= & \sum_{k=0}^{\infty} \frac{(-1)^{k} r^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \int_{0}^{\infty} \Delta_{\mu}^{k} F(x) h_{\mu}\left(\tau_{y}\left(h_{\mu} \phi\right)\right)(x) x^{2 \mu+1} d x \\
= & \sum_{k=0}^{\infty} \frac{(-1)^{k} r^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \int_{0}^{\infty} F(x) \Delta_{\mu}^{k} h_{\mu}\left(\tau_{y}\left(h_{\mu} \phi\right)\right)(x) x^{2 \mu+1} d x \\
= & \sum_{k=0}^{\infty} \frac{r^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)}\left\langle h_{\mu}^{\prime}(F)(x), x^{2 k} \tau_{y}\left(h_{\mu} \phi\right)(x)\right\rangle \\
= & \sum_{k=0}^{\infty} \frac{r^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \sum_{j=0}^{\infty} a_{j} \xi_{j}^{2 k} \tau_{y}\left(h_{\mu} \phi\right)\left(\xi_{j}\right), \quad y \in(0, \infty) .
\end{aligned}
$$

By invoking Proposition 2.4 and Corollary 2.3, $\Phi_{r, \mu}\left(\Delta_{\mu}\right) F$ is a multiplier of
H. From [1, Satz 5] it follows that, for every $\phi \in H$ and $l \in \boldsymbol{N}$,
(2.9) $\quad y^{l} \int_{0}^{\infty}(x y)^{-\mu} J_{\mu}(x y) \Phi_{r, \mu}\left(\Delta_{\mu}\right) F(x) \phi(x) x^{2 \mu+1} d x \rightarrow 0, \quad$ as $y \rightarrow \infty$.

We now choose a function $\phi \in H$ such that $h_{\mu}(\phi)(x) \geqslant 0, x \in(0, \infty)$, $h_{\mu}(\phi)(x)=0, x \notin(0,1)$, and $h_{\mu}(\phi)(x)>\frac{1}{2}, x \in\left(0, \frac{1}{2}\right)$. Note that such a function can be easily found.

If $x, y \in(0, \infty)$ and $x-y>1$, by using [15, 8.11, (31)] (see also [19, p. 308, (2)]) then

$$
\begin{equation*}
\tau_{y}\left(h_{\mu} \phi\right)(x)=\int_{x-y}^{x+y} D(x, y, z) h_{\mu}(\phi)(z) \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z=0 . \tag{2.10}
\end{equation*}
$$

On the other hand, according to again [15, 8.11, (31)], we can write

$$
\begin{align*}
\tau_{x}\left(h_{\mu} \phi\right)(x) & =\int_{0}^{2 x} D(x, x, z) h_{\mu}(\phi)(z) \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z \tag{2.11}\\
& =C \int_{0}^{2 x} x^{-4 \mu} z^{2 \mu}\left(4 x^{2}-z^{2}\right)^{u-1 / 2} h_{\mu}(\phi)(z) d z \\
& =C \int_{0}^{1} x^{-4 \mu} z^{2 \mu}\left(4 x^{2}-z^{2}\right)^{u-1 / 2} h_{\mu}(\phi)(z) d z \\
& =C \int_{0}^{1 / 2 x} u^{2 \mu}\left(1-u^{2}\right)^{\mu-1 / 2} h_{\mu}(\phi)(2 x u) d u \\
& \geqslant C \int_{1 / 8 x}^{1 / 4 x} u^{2 \mu}\left(1-u^{2}\right)^{u-1 / 2} h_{\mu}(\phi)(2 x u) d u \\
& \geqslant C \int_{1 / 8 x}^{1 / 4 x} u^{2 \mu}\left(1-u^{2}\right)^{\mu-1 / 2} d u \\
& \geqslant C x^{-2 \mu-1}, x \geqslant \frac{1}{2}
\end{align*}
$$

From (2.10) we deduce that

$$
\begin{aligned}
& 2^{\mu} \Gamma(\mu+1) \int_{0}^{\infty}\left(x \xi_{l}\right)^{-\mu} J_{\mu}\left(x \xi_{l}\right) \Phi_{r, \mu}\left(\Delta_{\mu}\right) F(x) \phi(x) x^{2 \mu+1} d x \\
= & \sum_{k=0}^{\infty} \frac{r^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \xi_{l}^{2 k} a_{l} \tau_{\xi_{l}}\left(h_{\mu} \phi\right)\left(\xi_{l}\right) \\
= & \Phi_{r, \mu}\left(i \xi_{l}\right) a_{l} \tau_{\xi_{l}}\left(h_{\mu} \phi\right)\left(\xi_{l}\right), \quad l \in N .
\end{aligned}
$$

Hence, (2.9) and (2.11) imply that

$$
a_{l} \Phi_{r, \mu}\left(i \xi_{l}\right) \rightarrow 0, \quad \text { as } l \rightarrow \infty
$$

By taking into account $\Phi_{r, \mu}(i z)=2^{\mu}(r z)^{-\mu} \mathbb{I}_{\mu}(r z), z \in \boldsymbol{C}$ and $r>0$, where \mathbb{I}_{μ} denotes the modified Bessel function of the first kind and order μ, from [26, (5), 6.2] (see also [25, p. 203, (2) and (3)]) it infers that

$$
\Phi_{r, \mu}\left(i r \xi_{l}\right) \geqslant C\left(r \xi_{l}\right)^{-\mu-1 / 2} e^{r \xi_{l}}, \quad l \in \boldsymbol{N} .
$$

Hence, it is conclude that $\left|a_{l}\right|=O\left(e^{-r \xi_{l}}\right)$, as $l \rightarrow \infty$, for every $r>0$.
Thus the proof is finished.
The last proposition allows us to obtain necessary conditions in order that a distribution $T \in \mathcal{O}_{\#}^{\prime}$ is entire elliptic in H^{\prime}.

Proposition 2.7. - Let $S \in \mathcal{O}_{\#}^{\prime}$. If S is entire elliptic in H^{\prime} then, there exist positive constants a and A such that

$$
\begin{equation*}
\left|h_{\mu}^{\prime}(S)(y)\right| \geqslant e^{-a y}, \quad y>A \tag{2.12}
\end{equation*}
$$

Proof. - Suppose that we can not find $a, A>0$ for which (2.12) holds. Then there exists a sequence $\left\{\xi_{j}\right\}_{j \in N} \subset(0, \infty)$ such that $\xi_{0}>1, \xi_{j}-\xi_{j-1}>1$, for every $j \in \boldsymbol{N} \backslash\{0\}$, and $\left|h_{\mu}^{\prime}(S)\left(\xi_{j}\right)\right|<e^{-j \xi_{j}}$, for each $j \in \boldsymbol{N}$.

We define the distribution

$$
T=2^{\mu} \Gamma(\mu+1) \sum_{j=0}^{\infty}\left(. \xi_{j}\right)^{-\mu} J_{\mu}\left(. \xi_{j}\right)
$$

It is not hard to see that the series defining T converges in H^{\prime}. Moreover, Proposition 2.6 implies that $T \notin \& H^{\prime}$. On the other hand, by the interchange formula for the distributional Hankel transformation ([21, Proposition 4.5]), we have

$$
\begin{aligned}
h_{\mu}^{\prime}(T \# S) & =h_{\mu}^{\prime}(T) h_{\mu}^{\prime}(S) \\
& =\sum_{j=0}^{\infty} h_{\mu}^{\prime}(S)\left(\xi_{j}\right) \tau_{\xi_{j}} \delta .
\end{aligned}
$$

Hence,

$$
T \# S=2^{\mu} \Gamma(\mu+1) \sum_{j=0}^{\infty} h_{\mu}^{\prime}(S)\left(\xi_{j}\right)\left(. \xi_{j}\right)^{-\mu} J_{\mu}\left(. \xi_{j}\right)
$$

and by taking into account Proposition 2.6, $T \# S \in \mathcal{E} H^{\prime}$.
Thus we conclude that S is not entire elliptic on H^{\prime}.

In the next proposition we prove that the condition (2.12) implies the entire ellipticity of the element S of $\mathcal{O}_{\#}^{\prime}$.

Proposition 2.8. - Let $S \in \mathcal{O}_{\#}^{\prime}$. If there exist $a, A>0$ such that (2.12) holds for S, then S is entire elliptic on H^{\prime}.

Proof. - We first take a function $\phi \in H$ such that $\phi(x)=1, x \leqslant A$, and $\phi(x)=0, x>A+1$. We define the function g by

$$
g(x)=0, \quad 0<x \leqslant A, \quad \text { and } g(x)=\frac{1-\phi(x)}{\Phi_{2 a, \mu}(i x) h_{\mu}^{\prime}(S)(x)}, \quad x>A
$$

It is clear that g is a smooth function on $(0, \infty)$. Moreover, by taking into account that $h_{\mu}^{\prime}(S)$ is a multiplier of H ([21, Proposition 4.2]) and [28, (5) and (8), 6.2], we can see that g is a multiplier of H. Indeed, by using the Leibniz rule we can see that, for every $k \in \boldsymbol{N}$,

$$
\left|\left(\frac{1}{x} \frac{d}{d x}\right)^{k}\left(\frac{1-\phi(x)}{\Phi_{2 a, \mu}(i x) h_{\mu}^{\prime}(S)(x)}\right)\right|
$$

has a polynomial growth at infinity. Hence the distribution $G=h_{\mu}^{\prime}(g)$ is in $\mathcal{O}_{\#}^{\prime}$ ([21, Proposition 4.2]).

Moreover,

$$
\begin{equation*}
\Phi_{2 a, \mu}\left(\Delta_{\mu}\right)(S \# G)=\delta-\Phi, \tag{2.13}
\end{equation*}
$$

where $\Phi=h_{\mu}(\phi)$. Indeed, let $\varphi \in H$. We can write
$\left\langle\Phi_{2 a, \mu}\left(\Delta_{\mu}\right)(S \# G), \varphi\right\rangle$

$$
\begin{aligned}
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}(2 a)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)}\left\langle S \# \Delta_{\mu}^{k} G, \varphi\right\rangle \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}(2 \alpha)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)}\left\langle h_{\mu}^{\prime}(S) h_{\mu}^{\prime}\left(\Delta_{\mu}^{k} G\right), h_{\mu}(\varphi)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{\infty} \frac{(2 a)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \int_{0}^{\infty} x^{2 k} g(x) h_{\mu}^{\prime}(S)(x) h_{\mu}(\varphi)(x) \frac{x^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d x \\
& =\sum_{k=0}^{\infty} \frac{(2 a)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \int_{A}^{\infty} x^{2 k} \frac{1-\phi(x)}{\Phi_{2 a, \mu}(i x)} h_{\mu}(\varphi)(x) \frac{x^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d x \\
& =\int_{0}^{\infty}(1-\phi(x)) h_{\mu}(\varphi)(x) \frac{x^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d x \\
& =h_{\mu}\left(h_{\mu} \varphi\right)(0)-\int_{0}^{\infty} h_{\mu}(\phi)(x) \varphi(x) \frac{x^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d x \\
& =\langle\delta, \varphi\rangle-\left\langle h_{\mu}(\phi), \varphi\right\rangle .
\end{aligned}
$$

Then (2.13) is established. Note that (2.13) implies also that $\Phi_{2 a, \mu}\left(\Delta_{\mu}\right)(S \# G)$ is in $\mathcal{O}_{\#}^{\prime}$.

Also the series

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}(2 a)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \Delta_{\mu}^{k}(S \# G)
$$

converges in the space $\mathcal{O}_{\#}^{\prime}$. Indeed, let $\varphi \in H$. By proceeding as above we can see that

$$
\begin{aligned}
& \left\langle h_{\mu}^{\prime}\left(\sum_{k=0}^{n} \frac{(-1)^{k}(2 a)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \Delta_{\mu}^{k}(S \# G)\right), \varphi\right\rangle= \\
& \quad \sum_{k=0}^{n} \frac{(2 a)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)}\left\langle x^{2 k} \frac{1-\phi(x)}{\Phi_{2 a, \mu}(i x)}, \varphi(x)\right\rangle
\end{aligned}
$$

Hence, it is sufficient to show that the series

$$
\sum_{k=0}^{\infty} \frac{(2 a x)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \frac{1-\phi(x)}{\Phi_{2 a, \mu}(i x)}
$$

converges in the topology of \mathcal{O}. Let $s \in \boldsymbol{N}$. By invoking [28, (5) and (8), 6.2] it obtains,

$$
\begin{aligned}
& \left|\left(\frac{1}{x} \frac{d}{d x}\right)^{s}\left(\sum_{k=0}^{n} \frac{(2 a x)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \frac{1-\phi(x)}{\Phi_{2 a, u}(i x)}-(1-\phi(x))\right)\right| \\
= & \left|\left(\frac{1}{x} \frac{d}{d x}\right)^{s}\left(\left(\sum_{k=0}^{n} \frac{(2 a x)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \frac{1}{\Phi_{2 a, \mu}(i x)}-1\right)(1-\phi(x))\right)\right| \\
\leqslant & \sum_{j=0}^{s}\binom{s}{j}\left|\left(\frac{1}{x} \frac{d}{d x}\right)^{k-j}(1-\phi(x))\right|\left|\left(\frac{1}{x} \frac{d}{d x}\right)^{j}\left(\sum_{k=0}^{n} \frac{(2 a x)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \frac{1}{\Phi_{2 a, \mu}(i x)}-1\right)\right| \\
\leqslant & C \sum_{j=0}^{s}\left|\left(\frac{1}{x} \frac{d}{d x}\right)^{j}\left(\sum_{k=0}^{n} \frac{(2 a x)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \frac{1}{\Phi_{2 a, \mu}(i x)}-1\right)\right| \\
\leqslant & C\left(1+x^{2}\right)^{l}, x \in(0, \infty) \text { and } n \in \boldsymbol{N},
\end{aligned}
$$

for some $l \in \boldsymbol{N}$ that is not depending on $x \in(0, \infty)$ and $n \in \boldsymbol{N}$.
Let $\varepsilon>0$ and $s \in \boldsymbol{N}$. If l is the nonnegative integer that is associated to s as above, there exists $x_{0}>0$ such that, for every $n \in N$,
$\sup _{x \geqslant x_{0}} \frac{1}{\left(1+x^{2}\right)^{l+1}}\left|\left(\frac{1}{x} \frac{d}{d x}\right)^{s}\left(\left(\sum_{k=0}^{n} \frac{(2 a x)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \frac{1}{\Phi_{2 a, \mu}(i x)}-1\right)(1-\phi(x))\right)\right|<\varepsilon$.
Moreover, we can find $n_{0} \in \boldsymbol{N}$ for which
$\sup _{0<x<x_{0}} \frac{1}{\left(1+x^{2}\right)^{l+1}}\left|\left(\frac{1}{x} \frac{d}{d x}\right)^{s}\left(\left(\sum_{k=0}^{n} \frac{(2 a x)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \frac{1}{\Phi_{2 a, \mu}(i x)}-1\right)(1-\phi(x))\right)\right|<\varepsilon$,
provided that $n \geqslant n_{0}$.
Hence, we conclude that, for every $n \geqslant n_{0}$,
$\sup _{0<x<\infty} \frac{1}{\left(1+x^{2}\right)^{l+1}}\left|\left(\frac{1}{x} \frac{d}{d x}\right)^{s}\left(\left(\sum_{k=0}^{n} \frac{(2 a x)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \frac{1}{\Phi_{2 a, u}(i x)}-1\right)(1-\phi(x))\right)\right|<\varepsilon$.
Thus, it is showed that

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{(2 a x)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \frac{1-\phi(x)}{\Phi_{2 a, \mu}(i x)}=1-\phi(x),
$$

in the topology of \mathcal{O}.
Assume now that $T \# S=f$ where $T \in H^{\prime}$ and $f \in \mathcal{E} H^{\prime}$. According to (2.13) and by taking into account the series

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}(2 a)^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)} \Delta_{\mu}^{k}(S \# G)
$$

converges in $\mathcal{O}_{\#}^{\prime}$ we can write

$$
\begin{align*}
T & =T \#\left(\Phi_{2 a, \mu}\left(\Delta_{\mu}\right)(S \# G)\right)+T \# \Phi \tag{2.14}\\
& =\Phi_{2 a, \mu}\left(\Delta_{\mu}\right)((T \# S) \# G)+T \# \Phi \\
& =\Phi_{2 a, \mu}\left(\Delta_{\mu}\right)(f \# G)+T \# \Phi .
\end{align*}
$$

By Propositions 2.4 and 2.5, $\Phi_{2 a, \mu}\left(\Delta_{\mu}\right)(f \# G)$ is in δH^{\prime}.
Moreover, $T \# \Phi \in \delta H^{\prime}$. Indeed, by [4, (3.1)], we have

$$
\begin{aligned}
(T \# \Phi)(x) & =\left\langle T, \tau_{x} \Phi\right\rangle \\
& =\left\langle h_{\mu}^{\prime}(T)(t), 2^{\mu} \Gamma(\mu+1)(x t)^{-\mu} J_{\mu}(x t) \phi(t)\right\rangle, \quad x \in(0, \infty) .
\end{aligned}
$$

For every $x \in \boldsymbol{C}$, the series

$$
(x t)^{-\mu} J_{\mu}(x t) \phi(t)=\sum_{k=0}^{\infty} \frac{(-1)^{k}(x t)^{2 k}}{2^{2 k+\mu} k!\Gamma(\mu+k+1)} \phi(t)
$$

converges in \mathscr{B}. Then it deduces that

$$
(T \# \Phi)(x)=\Gamma(\mu+1) \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{2^{2 k} k!\Gamma(\mu+k+1)}\left\langle\left(h_{\mu}^{\prime} T\right)(t), t^{2 k} \phi(t)\right\rangle, \quad x \in(0, \infty) .
$$

Hence $T \# \Phi$ can be extended as an even and entire function.
By virtue of [6, Lemma 2.2], we get, for every $z, z_{1}, z_{2}, \ldots, z_{n} \in \boldsymbol{C}$ and $n \in N$,
$\tau_{z_{1}} \tau_{z_{2}} \ldots \tau_{z_{n}}(T \# \Phi)(z)=$

$$
\begin{array}{r}
\left\langle h_{\mu}^{\prime}(T)(t),\left(2^{\mu} \Gamma(\mu+1)\right)^{n+1}\left(z_{1} t\right)^{-\mu} J_{\mu}\left(z_{1} t\right)\left(z_{2} t\right)^{-\mu} J_{\mu}\left(z_{2} t\right) \ldots\right. \\
\left.\left(z_{n} t\right)^{-\mu} J_{\mu}\left(z_{n} t\right)(z t)^{-\mu} J_{\mu}(z t) \phi(t)\right\rangle .
\end{array}
$$

Since $h_{\mu}^{\prime} T \in \mathscr{B}^{\prime}$ and $\phi \in \mathscr{B}$, there exist $r \in N$ and $C>0$ for which

$$
\left|\tau_{z_{1}} \tau_{z_{2}} \ldots \tau_{z_{n}}(T \# \Phi)(z)\right| \leqslant
$$

$$
\begin{array}{r}
C \max _{0 \leqslant k \leqslant r} \sup _{0<t<A+1} \left\lvert\,\left(\frac{1}{t} \frac{d}{d t}\right)^{k}\left(\left(z_{1} t\right)^{-\mu} J_{\mu}\left(z_{1} t\right)\left(z_{2} t\right)^{-\mu} J_{\mu}\left(z_{2} t\right) \ldots\right.\right. \\
\left.\left(z_{n} t\right)^{-\mu} J_{\mu}\left(z_{n} t\right)(z t)^{-\mu} J_{\mu}(z t) \phi(t)\right) \mid,
\end{array}
$$

for each $z, z_{1}, z_{2}, \ldots, z_{n} \in \boldsymbol{C}$.

Therefore, according to [28, (7), 5.1] and [13, (5.3.a)], for each $n, l \in \boldsymbol{N}$, one has, for every $z, z_{1}, z_{2}, \ldots, z_{n} \in I_{l}$,

$$
\left|\tau_{z_{1}} \tau_{z_{2}} \ldots \tau_{z_{n}}(T \# \Phi)(z)\right| \leqslant C\left((1+|z|)\left(1+\left|z_{1}\right|\right) \ldots\left(1+\left|z_{n}\right|\right)\right)^{2 r} .
$$

Thus we prove that S is entire elliptic in H^{\prime}.
We now give a distribution $S \in \mathcal{O}_{\#}^{\prime}$ that is entire elliptic but it is not hypoelliptic in H^{\prime}.

Let $a>0$. We define the function $\phi(x)=1 / \Phi_{a, \mu}(i x), x>0$. By taking into account [28, (5) and (8), 6.2] we can see that $\phi \in H$. Then, according to [1, Satz 5], $S=h_{\mu}(\phi) \in H$. By [21, Proposition 4.2] it follows that $S \in \mathcal{O}_{\#}^{\prime}$. Moreover, for every $k \in \boldsymbol{N}, y^{k} h_{\mu}^{\prime}(S)(y)=y^{k} \phi(y) \rightarrow 0$, as $y \rightarrow \infty$. By invoking [9, Proposition 3.3] we conclude that S is not hypoelliptic in H^{\prime}.

Moreover, S is entire elliptic in H^{\prime}. Indeed, according to [28, (5), 6.2], there exists $C>0$ such that

$$
\left|h_{\mu}^{\prime}(S)(y)\right|=\phi(y) \geqslant C e^{-y},
$$

when y is large enough. Hence, from Proposition 2.8 one deduces that S is entire elliptic in H^{\prime}.

REFERENCES

[1] G. Altenburg, Bessel-Transformationen in Räumen von Grundfunktionen über dem Intervall $\Omega=(0, \infty)$ und deren Dualraumen, Math. Nachr., 108 (1982), 197-218.
[2] M. Belhadj - J. J. Betancor, Hankel convolution operators on entire functions and distributions, J. Math. Anal. Appl., 276 (2002), 40-63.
[3] J. J. Betancor - I. Marrero, Multipliers of Hankel transformable generalized functions, Comment. Math. Univ. Carolinae, 33 (3) (1992), 389-401.
[4] J. J. Betancor - I. Marrero, The Hankel convolution and the Zemanian spaces B_{μ} and B_{μ}^{\prime}, Math. Nachr., 160 (1993), 277-298.
[5] J. J. Betancor - I. Marrero, Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japonica, 38 (6) (1993), 1141-1155.
[6] J. J. Betancor - I. Marrero, Some properties of Hankel convolution operators, Canad. Math. Bull., 36 (4) (1993), 398-406.
[7] J. J. Betancor - I. Marrero, On the topology of the space of Hankel convolution operators, J. Math. Anal. Appl., 201 (1996), 994-1001.
[8] J. J. Betancor - L. Rodríguez-Mesa, Hankel convolution on distribution spaces with exponential growth, Studia Math., 121 (1) (1996), 35-52.
[9] J. J. Betancor - L. Rodríguez-Mesa, On Hankel convolution equations in distribution spaces, Rocky Mountain J. Math., 29 (1) (1999), 93-114.
[10] F. M. Cholewinski, A Hankel Convolution Complex Inversion Theory, Mem. Amer. Math. Soc., 58 (1965).
[11] F. M. Cholewinski, Generalized Fock spaces and associated operators, SIAM J. Math. Anal., 15 (1) (1984), 177-202.
[12] S. J. L. von Eijndhoven - J. de Graaf, Some results on Hankel invariant distribution spaces, Proc. Kon. Ned. Akad. van Wetensch. A, 86 (1) (1983), 77-87.
[13] S. J. L. von Eijndhoven - M. J. Kerkhof, The Hankel transformation and spaces of W-type, Reports on Appl. and Numer. Analysis, 10, Dept. of Maths. and Comp. Sci., Eindhoven Univ. of Tech. (1988).
[14] L. Ehrenpreis, Solution of some problem of division, Part IV. Invertible and elliptic operators, Amer. J. Maths., 82 (1960), 522-588.
[15] A. Erdélyi, Tables of integral transforms, II, McGraw Hill, New York, 1953.
[16] G. Godefroy - J.H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Functional Anal., 98 (1991), 229-269.
[17] D. T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc., 116 (1965), 330-375.
[18] C. S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. USA, 40 (1954), 996-999.
[19] I. I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Analyse Math., 8 (1960/61), 307-336.
[20] J. Horvath, Topological Vector Spaces and Distributions, I, Addison-Wesley, Reading, Massachusetts (1966).
[21] I. Marrero - J. J. Betancor, Hankel convolution of generalized functions, Rendiconti di Matematica, 15 (1995), 351-380.
[22] L. Schwartz, Theorie des distributions, Hermann, Paris, 1978.
[23] J. de Sousa-Pinto, A generalized Hankel convolution, SIAM J. Appl. Math., 16 (1985), 1335-1346.
[24] K. Triméche, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur ($0, \infty$), J. Math. Pures Appl., 60 (9) (1981), 51-98.
[25] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1959.
[26] A. H. Zemanian, A distributional Hankel transformation, SIAM J. Appl. Math., 14 (1966), 561-576.
[27] A. H. Zemanian, The Hankel transformations of certain distributions of rapid growth, J. SIAM Appl. Math., 14 (4) (1966), 678-690.
[28] A. H. Zemanian, Generalized integral transformations, Interscience Publishers, New York, 1968.
[29] Z. Zielezny, Hypoelliptic and entire elliptic convolution equations in subspaces of the spaces of distributions (I), Studia Math., 28 (1967), 317-332.

Departamento de Análisis Matemático, Universidad de La Laguna 38271 - La Laguna, Tenerife, Islas Canarias, España. E-mail: jbetanco@ull.es

[^0]
[^0]: Pervenuta in Redazione
 il 26 novembre $2001 e$ in forma rivista il 25 maggio 2002

