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Properties of (L , d)-closed Sets
in Topological Spaces.

D. N. GEORGIOU - S. JAFARI - T. NOIRI

Sunto. – In questo articolo vengono presentate e studiate le nozioni di insieme L d e di
insieme (L , d)-chiuso. Inoltre, vengono introdotte le nozioni di (L , d)-continuità,
(L , d)-compatezza e (L , d)-connessione e vengono fornite alcune caratterizzazioni
degli spazi d2T0 e d2T1 . Infine, viene mostrato che gli spazi (L , d)-connessi e
(L , d)-compatti vengono preservati mediante suriezioni d-continue.

Summary. – We present and study the notions of L d-sets and (L , d)-closed sets. More-
over, we introduce the notions of (L , d)-continuity, (L , d)-compactness and
(L , d)-connectedness. Characterizations of d2T0 and d2T1 spaces are given. It is
shown that (L , d)-connected and (L , d)-compact spaces are preserved under d-
continuous surjections.

1. – Preliminaries.

The notions of d-closed sets was introduced by Veličko [5] and is widely in-
vestigated in the literature. In this paper, we define and study some sets,
spaces and functions by using the notion of d-closed sets.

In what follows (X , t) and (Y , s) (or X and Y) denote topological spaces.
Let A be a subset of X . We denote the interior and the closure of a set A by
Int (A) and Cl (A), respectively. A point x�X is called the d-cluster point of A
if AOInt (Cl (U) ) c¯ for every open set U of X containing x. The set of all d-
cluster points of A is called the d-closure of A , denoted by Cld (A). A subset A
is called d-closed if A4Cld (A). The complement of a d-closed set is called d-
open. We denote the collection of all d-open (resp. d-closed) sets by d(X , t)
(resp. Cld (X , t) ). The set ]x�XNx�U%Int (Cl (U) ) %A( for some open set U
of X is called the d-interior of A and is denoted by Intd (A). Recall that a topo-
logical space is called Alexandroff if every point has a minimal neighborhood,
or equivalently, has a unique minimal base.

In section 2, we consider the notion of L d-sets. By definition a subset A of a
space (X , t) is called a L d-set if A is the intersection of all d-open sets contain-
ing A . It turns out that the family tL d of L d-sets of a space (X , t) is a topology



D. N. GEORGIOU - S. JAFARI - T. NOIRI746

for X . Moreover, we introduce and investigate the notion of (L , d)-closed sets.
The definition is as follows: A is (L , d)-closed if A4TOC , where T is a L d-
set and C is a d-closed set. In section 3, it is shown that a space (X , t) is d2T0

(resp. d2T1 ) if and only if for each x�X the singleton ]x( is (L , d)-closed
(resp. a L d-set). In section 4, we define a function f :(X , t) K (Y , s) to be
(L , d)-continuous if f 21 (sL d ) %tL d and obtain their characterizations. It is
shown that if f :(X , t) K (Y , s) is a d-continuous function, then it is (L , d)-
continuous. In the last section, we present the notions of (L , d)-compactness
and (L , d)-connectedness and show that (L , d)-compactness (resp. (L , d)-
connectedness) is preserved by (L , d)-continuous (hence d-continuous) sur-
jections.

2. – (L , d)-closed sets.

DEFINITION 1. – Let A be a subset of a topological space (X , t). A subset
L d (A) is defined as follows: L d (A) 4O]O�d(X , t)NA%O(.

LEMMA 2.1. – For subsets A , B and Ai (i�I) of a topological space (X , t),
the following hold:

(1) A%L d (A).

(2) L d (L d (A) ) 4L d (A).

(3) If A%B , then L d (A) %L d (B).

(4) L d (O]Ai Ni�I() %O]L d (Ai )Ni�I(.

(5) L d (N]Ai Ni�I() 4N]L d (Ai )Ni�I(.

PROOF. – We prove only statements (4) and (5).
(4) Suppose that x�O]L d (Ai )Ni�I(. There exists i0 �I such that x�

L d (Ai0
) and there exists a d-open set O such that x�O and Ai0

%O . We have
1

i�I
Ai %Ai0

%O and x�O . Therefore, x�L d (O]Ai Ni�I().

(5) First Ai%L d(Ai) %L dg0
i�I

Aih and hence L d(Ai) %L dg0
i�I

Aih. Therefore,

we obtain 0
i�I

L d(Ai) %L dg0
i�I

Aih. Conversely, suppose that x� 0
i�I

L d(Ai).

Then x�L d (Ai ) for each i�I and hence there exists Vi �d(X , t) such that

Ai %Vi and x�Vi for each i�I . We have 0
i�I

Ai % 0
i�I

Vi and 0
i�I

Vi is a d-open

set which does not contain x . Therefore, x�L dg 0
i�I

Aih. This shows that

L dg 0
i�I

Aih% 0
i�I

L d (Ai ).

REMARK 2.2. – In Lemma 2.1(4), the converse is not always true as the fol-
lowing example shows.
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EXAMPLE 2.3. – Let X4 ]a , b , c( and t4 ]X , ¯ , ]a((. Now put B4 ]b(

and C4 ]c(. Then L d (BOC) 4L d (¯) 4¯ , L d (B)OL d (C) 4X and
L d (B) cB .

DEFINITION 2. – A subset A of a topological space (X , t) is called a L d-set
if A4L d (A).

LEMMA 2.4. – For subsets A and Ai (i�I) of a topological space (X , t), the
following hold:

(1) L d (A) is a L d-set.

(2) If A is d-open, then A is a L d-set.
(3) If Ai is a L d-set for each i�I , then 1

i�I
Ai is a L d-set.

(4) If Ai is a L d-set for each i�I , then 0
i�I

Ai is a L d-set.

PROOF. – This follows readily from Lemma 2.1. r

THEOREM 2.5. – For a topological space (X , t), we put tL d 4 ]AN A is a L d-
set of X(. Then the pair (X , tL d ) is an Alexandroff space.

PROOF. – This is an immediate consequence of Lemma 2.4. r

DEFINITION 3. – Let A be a subset of a topological space (X , t). A set
L*d (A) is defined as follows: L*d (A) 4N]B�Cld (X , t)NB%A(.

DEFINITION 4. – A subset A of a topological space (X , t) is called a L d*-set
if A4L*d (A).

We obtain the following two lemmas which are similar to Lemma 2.1 and
Lemma 2.4.

LEMMA 2.6. – For subsets A , B and Ai (i�I) of a topological space (X , t)
the following properties hold:

(1) L*d (A) ’A .

(2) If A’B , then L*d (A) ’L*d (B).
(3) If A is d-closed, then L*d (A) 4A .

(4) L*d (O]Ai : i�I() 4O]L*d (Ai ) : i�I(.

(5) N]L*d (Ai ) : i�I( ’L*d (N]Ai : i�I().

(6) L d (X2A) 4X2L*d (A) and L*d (X2A) 4X2L d (A).

LEMMA 2.7. – For subsets A , B and Ai (i�I) of a topological space (X , t)
the following properties hold:
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(1) L*d (A) is a L*d -set.
(2) If A is a d-closed, then A is a L*d -set.
(3) If Ai is a L*d -set for each i�I , then N]Ai Ni�I( and O]Ai Ni�I(

are L*d -sets.

REMARK 2.8. – For a topological space (X , t), we set tL*d 4 ]ANA is a L*d -
set of X(, then the pair (X , tL*d ) is an Alexandroff space.

DEFINITION 5. – A subset A of a topological space (X , t) is called (L , d)-
closed if A4TOC , where T is a L d-set and C is a d-closed set.

THEOREM 2.9. – The following statements are equivalent for a subset A of a
topological space (X , t):

(1) A is (L , d)-closed;
(2) A4TOCld (A), where T is a L d-set;
(3) A4L d (A)OCld (A).

PROOF. – (1) ¨ (2): Let A4TOC , where T is a L d-set and C is a d-closed
set. Since A%C , we have Cld (A) %C and A4TOC&TOCld (A) &A . There-
fore, we obtain A4TOCld (A).

(2) ¨ (3): Let A4TOCld (A), where T is a L d-set. Since A%T , we have
L d (A) %L d (T) 4T and hence A%L d (A)OCld (A) %TOCld (A) 4A . There-
fore, we obtain A4L d (A)OCld (A).

(3) ¨ (1): Since L d (A) is a L d-set, Cld (A) is d-closed and A4L d (A)O
Cld (A). r

LEMMA 2.10. – Every L d-set (resp. d-closed set) is (L , d)-closed.

DEFINITION 6. – A subset A of a topological space (X , t) is said to be
(L , d)-open if the complement of A is (L , d)-closed.

THEOREM 2.11. – Let Ai (i�I) be a subset of a topological space
(X , t).

(1) If Ai is (L , d)-closed for each i�I , then O]Ai Ni�I( is (L , d)-
closed.

(2) If Ai is (L , d)-open for each i�I , then N]Ai Ni�I( is (L , d)-
open.

PROOF. – (1) Suppose that Ai is (L , d)-closed for each i�I . Then, for each
i , there exist a L d-set Ti and a d-closed set Ci such that Ai 4Ti OCi . We have
1

i�I
Ai 4 1

i�I
(Ti OCi ) 4 g 1

i�I
TihOg 1

i�I
Cih. By Lemma 2.4, 1

i�I
Ti is a L d-set and

1
i�I

Ci is a d-closed. This shows that 1
i�I

Ai is (L , d)-closed.
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(2) Let Ai is (L , d)-open for each i�I . Then X2Ai is (L , d)-closed and
X2 0

i�I
Ai 4 1

i�I
(X2Ai ). Therefore, by (1) 0

i�I
Ai is (L , d)-open. r

DEFINITION 7. – A subset A of a topological space (X , t) is called a (d , d)-
generalized-closed set (briefly (d , d)-g-closed) if Cld (A) ’U whenever A’U
and U is d-open in (X , t). A subset A is said to be (d , d)-g-open if X2A is
(d , d)-g-closed.

The following two lemmas are obtained easily from the definitions.

LEMMA 2.12. – For a subset A of a topological space (X , t), the following
properties hold:

(1) A is (d , d)-g-closed if and only if Cld (A) %L d (A).

(2) A is d-closed if and only if A is (d , d)-g-closed and (L , d)-
closed.

LEMMA 2.13. – For a subset A of a topological space (X , t), the following
properties hold:

(1) A is (d , d)-g-open if and only if L*d (A) % Intd (A).

(2) A is d-open if and only if A is (d , d)-g-open and (L , d)-open.

THEOREM 2.14. – For a subset A of a topological space (X , t), the following
are equivalent:

(1) A is (L , d)-open;

(2) A4TNC , where T is a L*d -set and C is d-open;

(3) A4TNIntd (A), where T is a L*d -set;

(4) A4L*d (A)NIntd (A).

PROOF. – (1) ¨ (2): Suppose that A is (L , d)-open. Then X2A is (L , d)-
closed and X2A4KOD , where K is a L d-set and D is a d-closed set. Hence,
we have A4 (X2A)N (X2D), where X2K is a L*d -set and X2D is d-open
set.

(2) ¨ (3): Let A4TNC , where T is a L*d -set and C is d-open. Since C%A
and C is d-open, C% Intd (A) and hence A4TNC%TNIntd (A) %A . Therefore,
we obtain A4TNIntd (A).

(3) ¨ (4): Let A4TNIntd (A), where T is a L*d -set. Since T%A , we have
L*d (A) &L*d (T) and hence A&L*d (A)NIntd (A) &L*d (T)NIntd (A) 4TN
Intd (A) 4A . Therefore, we obtain A4L*d (A)NIntd (A).

(4) ¨ (1): Let A4L*d (A)NIntd (A). Then, we have X2A4 (X2

L*d (A) )O (X2Intd (A) ) 4L d (X2A)OCld (X2A). By Lemma 2.4, L d (X2
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A) is a L d-set and Cld (X2A) is d-closed. Therefore, X2A is a (L , d)-closed
set and A is (L , d)-open. r

3. – Properties of (L , d)-closed Sets.

DEFINITION 8. – A topological space (X , t) is called a d2R0 space if for
each d-open set U and each x�U , Cld (]x() %U .

DEFINITION 9. – A topological space (X , t) is said to be

(1) d2T0 [1] if for any distinct pair of points in X, there is a d-open set
containing one of the points but not the other.

(2) d2T1 [1] if for any distinct pair of points x and y in X, there is a d-
open U in X containing x but not y and a d-open set V in X containing y but not x.

(3) d2T2 [1] if for any distinct pair of points x and y in X, there are d-
open sets U1 and U2 such that x�U1 , y�U2 and U1 OU2 4¯ .

REMARK 3.1. – From Definition 9, we have the following diagram:

d2T2

I

T2

K

K

d2T1

I

T1

K

K

d2T0

I

T0

THEOREM 3.2. – Let (X , t) be a d2R0 space. A singleton ]x( is (L , d)-
closed if and only if ]x( is d-closed.

PROOF. – Necessity. Suppose that ]x( is (L , d)-closed. Then by Theorem
2.9 ]x( 4L d (]x()OCld (]x(). For any d-open set U containing x , Cld (]x() %
U and hence Cld (]x() %L d (]x(). Therefore, we have ]x( 4L d (]x()O
Cld (]x() &Cld (]x(). This shows that ]x( is d-closed.

Sufficiency. Suppose that ]x( is d-closed. Since ]x( %L d (]x(), we have
L d (]x()OCld (]x() 4L d (]x()O ]x( 4 ]x(. This shows that ]x( is (L , d)-
closed. r

THEOREM 3.3. – A topological space (X , t) is d2T0 if and only if for each
x�X , the singleton ]x( is (L , d)-closed.

PROOF. – Necessity. Suppose that (X , t) is d2T0 . For each x�X , it is
obvious that ]x( %L d (]x()OCld (]x(). If ycx , (i) there exists a d-open set Vx

such that y�Vx and x�Vx or (ii) there exists a d-open set Vy such that
x�Vy and y�Vy . In case of (i), y�L d (]x() and y�L d (]x()OCld (]x().
This shows that ]x( &L d (]x()OCld (]x(). In case (ii), y�Cld (]x() and y�
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L d (]x()OCld (]x(). This shows that ]x( &L d (]x()OCld (]x(). Consequent-
ly, we obtain ]x( 4L d (]x()OCld (]x().

Sufficiency. Suppose that (X , t) is not d2T0 . There exist two distinct
points x , y such that (i) y�Vx for every d-open set Vx containing x and (ii) x�
Vy for every d-open set Vy containing y . From (i) and (ii), we obtain y�
L d (]x() and y�Cld (]x(), respectively. Therefore, we have y�L d (]x()O
Cld (]x(). By Theorem 2.9, ]x( 4L d (]x()OCld (]x() since ]x( is (L , d)-
closed. This is contrary to xcy . r

COROLLARY 3.4. – Let (X , t) a d-R0 topological space. Then (X , t) is d-T0 if
for each x�X , the singleton ]x( is d-closed.

PROOF. – It is an immediate consequence of Theorem 3.2 and Theorem
3.3. r

THEOREM 3.5. – A topological space (X , t) is d2T1 if and only if for each
x�X , the singleton ]x( is a L d-set.

PROOF. – Necessity. Suppose that y�L d (]x() for some point y distinct
from x . Then y�O]Vx Nx�Vx and Vx is d-open( and hence y�Vx for every d-
open set Vx containing x . This contradicts that (X , t) is a d2T1 .

Sufficiency. Suppose that ]x( is a L d-set for each x�X . Let x and y be any
distinct points. Then y�L d (]x() and there exists a d-open set Vx such that x�
Vx and y�Vx . Similarly, x�L d (]y() and there exists a d-open set Vy such that
y�Vy and x�Vy . This shows that (X , t) is d2T1 . r

THEOREM 3.6. – A topological space (X , t) is d2T2 if and only if it is T2 .

PROOF. – Every d2T2 space is obviously T2 . Conversely, suppose that
(X , t) is T2 . Let x and y be any distinct points of X . There exist open sets U
and V such that x�U , y�V and UOV4¯ . We obtain x�U%Int (Cl(U) ), y�
V%Int (Cl(V) ) and Int (Cl(U) )OInt (Cl(V) ) 4¯ . Every regular open set is d-
open. Therefore, (X , t) is d2T2 . r

DEFINITION 10. – A function f :(X , t) K (Y , s) is said to be

(1) almost-continuous [4] if for each x�X and each open set V of Y con-
taining f (x), there is an open set U containing x such that f (U) %
Int (Cl(V) ),

(2) d-continuous [2] if for each x�X and each open neighborhood V of
f (x), there exists an open neighborhood U of x such that f ( Int (Cl(U) ) %
Int (Cl(V) ).
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THEOREM 3.7. – For a topological space (X , t), the following properties
hold:

(1) (X , t) is d2T1 if and only if (X , tL d ) is the discrete space.

(2) The indentity function idX : (X , tL d ) K (X , t) is almost-continuous.

(3) If (X , tL d ) is connected, then (X , t) is connected.

PROOF. – (1) Necessity. Suppose that (X , t) is d2T1 . Let x be any point of
X . By Theorem 3.4, ]x( is a L d-set and ]x( �tL d . For any subset A of X , by
Lemma 2.4 A�tL d . This shows that (X , tL d ) is discrete.

Sufficiency. For each x�X , ]x( �tL d and hence ]x( is L d-set. By Theo-
rem 3.4, (X , t) is d2T1 .

(2) Let V be any regular open set of (X , t). Since V is d-open, by Lemma 2.4
(idX )21 (V) 4V�tL d and hence idX is almost-continuous [4, Theorem 2.2].

(3) Suppose that (X , t) is not connected. There exist nonempty open sets
V1 , V2 of (X , t) such that V1 OV2 4¯ . Therefore, we obtain Int (Cl(V1 ) )O
Int (Cl(V2 ) ) 4¯ , Int (Cl(V1 ) )NInt (Cl(V2 ) ) 4X and Vi % Int (Cl(Vi ) ) �tL d for
i41, 2 . This shows that (X , tL d ) is not connected. r

THEOREM 3.8. – If a function f :(X , t) K (Y , s) is d-continuous, then
f :(X , tL d ) K (Y , sL d ) is continuous.

PROOF. – Let V be any L d-set of (Y , s), i.e. V�sL d . Then V4L d (V) 4O
]WNV%W and W is d-open in (Y , s)(. Since f is d-continuous, f 21 (W) is d-
open in (X , t) for each W and hence we have f 21 (V) 4O] f 21 (W)Nf 21 (V) %
f 21 (W) and W is d-open in (Y , s)( &O]UNf 21 (V) %U and U is d-open in
(X , t)( 4L d ( f 21 (V) ). On the other hand, by the definition f 21 (V) %
L d ( f 21 (V) ). Hence, we obtain f 21 (V) 4L d ( f 21 (V) ). Therefore, f 21 (V) �tL d

and f : (X , t) K (Y , s) is continuous. r

4. – (L , d)-continuous functions.

DEFINITION 11. – Let (X , t) be a topological space and A’X . A point x�X
is called a (L , d)-cluster point of A if for every (L , d)-open set U of X con-
taining x we have AOUc¯ . The set of all (L , d)-cluster points is called the
(L , d)-closed set of A and is denoted by A (L , d) .

LEMMA 4.1. – Let A and B be subsets of a topological space (X , t). For the
(L , d)-closure, the following properties hold:

(1) A%A (L , d) and (A (L , d) )(L , d) 4A (L , d) .
(2) A (L , d) 4O]FNA%F and F is (L , d)-closed(.

(3) If A%B , then A (L , d) %B (L , d) .
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(4) A is (L , d)-closed if and only if A4A (L , d) .

(5) A (L , d) is (L , d)-closed.

The proof of the above lemma is clear.

DEFINITION 12. – Let (X , t) be a topological space, x�X and ]xs , s�S( be
a net of X . We say that the net ]xs , s�S( (L , d)-converges to x if for each
(L , d)-open set U containing x there exists an element s0 �S such that sFs0

implies xs �U .

LEMMA 4.2. – Let (X , t) be a topological space and A’X . A point x�A (L , d)

if and only if there exists a net ]xs , s�S( of A which (L , d)-converges to x .

The proof of the above lemma is clear.

DEFINITION 13. – Let (X , t) be a topological space, F 4 ]Fi : i�I( be a fil-
terbase of X and x�X . A filterbase F is said to converge to x (written F Kx) if
for each (L , d)-open set U containing x there is a member Fi � F such that
Fi ’U .

DEFINITION 14. – A function f : (X , t) K (Y , s) is called (L , d)-continuous
if f 21 (V) is a (L , d)-open subset of X for every (L , d)-open subset V of Y .

THEOREM 4.3. – For a function f : (X , t) K (Y , s), the following statements
are equivalent:

(1) f is (L , d)-continuous;

(2) f 21 (B) is a (L , d)-closed subset of X for every (L , d)-closed subset B
of Y ;

(3) For each x�X and for each (L , d)-open set V of Y containing f (x)
there exists a (L , d)-open set U of X containing x and f (U) ’V ;

(4) f (A (L , d) ) % [ f (A) ](L , d) for each subset A of X ;

(5) [ f 21 (B) ](L , d) % f 21 (B (L , d) ) for each subset B of Y ;

(6) For each x�X and each filterbase F which (L , d)-converges to x ,
f (F ) (L , d)-converges to f (x).

PROOF. – Obvious. r

THEOREM 4.4. – If f : (X , t) K (Y , s) is a d-continuous function, then it is
(L , d)-continuous.

PROOF. – Let F be any (L , d)-closed set of (Y , s). Then there exist a L d-set
T and a d-closed set D such that F4TOD . Since f is d-continuous, f 21 (D) is
d-closed and f 21 (T) is a L d-set of (X , t) by Theorem 3.7. Therefore, f 21 (F) 4
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f 21 (T)O f 21 (D) is a (L , d)-closed set of (X , t). By Theorem 4.3, f is
(L , d)-continuous. r

5. – (L , d)-compactness and (L , d)-connectedness.

DEFINITION 15. – A topological space (X , t) is said to be

(1) (L , d)-compact if every cover of X by (L , d)-open sets of (X , t) has a
finite subcover,

(2) nearly compact [3] if every regular open cover of X has a finite
subcover.

THEOREM 5.1. – A topological space (X , t) is (L , d)-compact if and only if
for every family ]Ai : i�I( of (L , d)-closed sets in X satisfying O]Ai :
i�I(4¯, there is a finite subfamily Ai1

, R , Ain
with O]Aik

: k41, R , n(4¯ .

PROOF. – Obvious. r

THEOREM 5.2. – For a topological space (X , t), the following properties
hold:

(1) If (X , tL d ) is compact, then (X , t) is nearly compact.
(2) If (X , t) is (L , d)-compact, then (X , t) is nearly compact.
(3) If (X , t) is (L , d)-compact, then (X , tL*d ) is compact.

PROOF. – (1) Let ]VaNa�˜( be any regular open cover of X . Since every
regular open set is d-open, by Lemma 2.4 Va is a L d-set for each a�˜ . More-
over, by the compactness of (X , tL d ) there exists a finite subset ˜0 of ˜ such
that X4N]Va Na�˜0 (. This shows that (X , t) is nearly compact.

(2) Let ]Fa Na�˜( be a family of regular closed sets of (X , t) such that O
]Fa Na�˜( 4¯ . Every regular closed set is d-closed and by Theorem 2.9 Fa is
a (L , d)-closed set for each a�˜ . By Theorem 5.1, there exists a finite subset
˜0 of ˜ such that O]Fa Na�˜0 ( 4¯ . It follows from [3, Theorem 2.1] that
(X , t) is nearly compact.

(3) Let ]Va Na�˜( be a cover of X by L*d -sets of (X , t). Since Va4VaN¯

and the empty set is d-open, by Lemma 2.4 each Va is (L , d)-open in (X , t).
Since (X , t) is (L , d)-compact, there exists a finite subset ˜0 of ˜ such that
X4N]Va Na�˜0 (. This shows that (X , tL*d ) is compact. r

THEOREM 5.3. – If f : (X , t) K (Y , s) is a (L , d)-continuous surjection and
(X , t) is a (L , d)-compact space, then (Y , s) is (L , d)-compact.

PROOF. – Let ]VaNa�˜( be any cover of Y by (L , d)-open sets of (Y , s).
Since f is (L , d)-continuous, by Theorem 4.3 ] f 21 (Va )Na�˜( is a cover of X
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by (L , d)-open sets of (X , t). Thus, there exists a finite subset ˜0 of ˜ such
that X4N] f 21 (Va )Na�˜0 (. Since f is surjective, we obtain Y4 f (X) 4N
]Va Na�˜0 (. This shows that (Y , s) is (L , d)-compact. r

COROLLARY 5.4. – The (L , d)-compactness is preserved by d-continuous
surjections.

PROOF. – This is an immediate consequence of Theorem 4.4 and 5.3. r

DEFINITION 16. – A topological space (X , t) is called (L , d)-connected if X
cannot be written as a disjoint union of two non-empty (L , d)-open
sets.

THEOREM 5.5. – For a topological space (X , t), the following statements
are equivalent:

(1) (X , t) is (L , d)-connected;

(2) The only subsets of X , which are both (L , d)-open and (L , d)-closed
are the empty set ¯ and X.

PROOF. – Straightforward. r

THEOREM 5.6. – For a topological space (X , t), the following properties
hold:

(1) If (X , t) is (L , d)-connected, then (X , tL d ) is connected.

(2) If (X , tL d ) is connected, then (X , t) is connected.

PROOF. – (1) Suppose that (X , tL d ) is not connected. There exist nonempty
L d-sets G , H of (X , t) such that GOH4¯ and GNH4X . By Lemma 2.10, G
and H are (L , d)-closed sets. This shows that (X , t) is not (L , d)-connected.

(2) Suppose that (X , t) is not connected. There exist nonempty open sets
G , H of (X , t) such that GOH4¯ and GNH4X . Every closed and open set
is d-open and G , H are L d-sets by Lemma 2.4. This shows that (X , tL d ) is not
connected. r

THEOREM 5.7. – If f : (X , t) K (Y , s) is a (L , d)-continuous surjection and
(X , t) is (L , d)-connected, then (Y , s) is (L , d)-connected.

PROOF. – Suppose that (Y , s) is not (L , d)-connected. There exist nonemp-
ty (L , d)-open sets G , H of Y such that GOH4¯ and GNH4Y . Then we
have f 21 (G)O f 21 (H) 4¯ and f 21 (G)N f 21 (H) 4X . Moreover, f 21 (G) and
f 21 (H) are nonempty (L , d)-open sets of (X , t). This shows that (X , t) is not
(L , d)-connected. Therefore, (Y , s) is (L , d)-connected. r
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COROLLARY 5.8. – The (L , d)-connectedness is preserved by d-continuous
surjections.

PROOF. – This is an immediate consequence of Theorem 4.4 and Theorem
5.7. r
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