BOLLETTINO UNIONE MATEMATICA ITALIANA

D. N. GEORGIOU, S. JAFARI, T. NOIRI

Properties of (Λ, δ) -closed sets in topological spaces

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 7-B (2004), n.3, p. 745–756.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2004_8_7B_3_745_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 2004.

Bollettino U. M. I. (8) **7**-B (2004), 745-756

Properties of (Λ, δ) -closed Sets in Topological Spaces.

D. N. Georgiou - S. Jafari - T. Noiri

Sunto. – In questo articolo vengono presentate e studiate le nozioni di insieme Λ_{δ} e di insieme (Λ, δ) -chiuso. Inoltre, vengono introdotte le nozioni di (Λ, δ) -continuità, (Λ, δ) -compatezza e (Λ, δ) -connessione e vengono fornite alcune caratterizzazioni degli spazi $\delta - T_0$ e $\delta - T_1$. Infine, viene mostrato che gli spazi (Λ, δ) -connessi e (Λ, δ) -compatti vengono preservati mediante suriezioni δ -continue.

Summary. – We present and study the notions of Λ_{δ} -sets and (Λ, δ) -closed sets. Moreover, we introduce the notions of (Λ, δ) -continuity, (Λ, δ) -compactness and (Λ, δ) -connectedness. Characterizations of $\delta - T_0$ and $\delta - T_1$ spaces are given. It is shown that (Λ, δ) -connected and (Λ, δ) -compact spaces are preserved under δ continuous surjections.

1. - Preliminaries.

The notions of δ -closed sets was introduced by Veličko [5] and is widely investigated in the literature. In this paper, we define and study some sets, spaces and functions by using the notion of δ -closed sets.

In what follows (X, τ) and (Y, σ) (or X and Y) denote topological spaces. Let A be a subset of X. We denote the interior and the closure of a set A by Int (A) and Cl (A), respectively. A point $x \in X$ is called the δ -cluster point of A if $A \cap \text{Int}(Cl(U)) \neq \emptyset$ for every open set U of X containing x. The set of all δ cluster points of A is called the δ -closure of A, denoted by $Cl_{\delta}(A)$. A subset A is called δ -closed if $A = Cl_{\delta}(A)$. The complement of a δ -closed set is called δ open. We denote the collection of all δ -open (resp. δ -closed) sets by $\delta(X, \tau)$ (resp. $Cl_{\delta}(X, \tau)$). The set $\{x \in X | x \in U \subset \text{Int}(Cl(U)) \subset A\}$ for some open set U of X is called the δ -interior of A and is denoted by $\text{Int}_{\delta}(A)$. Recall that a topological space is called Alexandroff if every point has a minimal neighborhood, or equivalently, has a unique minimal base.

In section 2, we consider the notion of Λ_{δ} -sets. By definition a subset A of a space (X, τ) is called a Λ_{δ} -set if A is the intersection of all δ -open sets containing A. It turns out that the family $\tau^{\Lambda_{\delta}}$ of Λ_{δ} -sets of a space (X, τ) is a topology

for X. Moreover, we introduce and investigate the notion of (Λ, δ) -closed sets. The definition is as follows: A is (Λ, δ) -closed if $A = T \cap C$, where T is a Λ_{δ} -set and C is a δ -closed set. In section 3, it is shown that a space (X, τ) is $\delta - T_0$ (resp. $\delta - T_1$) if and only if for each $x \in X$ the singleton $\{x\}$ is (Λ, δ) -closed (resp. a Λ_{δ} -set). In section 4, we define a function $f:(X, \tau) \to (Y, \sigma)$ to be (Λ, δ) -continuous if $f^{-1}(\sigma^{\Lambda_{\delta}}) \subset \tau^{\Lambda_{\delta}}$ and obtain their characterizations. It is shown that if $f:(X, \tau) \to (Y, \sigma)$ is a δ -continuous function, then it is (Λ, δ) -continuous. In the last section, we present the notions of (Λ, δ) -compactness and (Λ, δ) -connectedness and show that (Λ, δ) -compactness (resp. (Λ, δ) -connectedness) is preserved by (Λ, δ) -continuous (hence δ -continuous) surjections.

2. – (Λ, δ) -closed sets.

DEFINITION 1. – Let A be a subset of a topological space (X, τ) . A subset $\Lambda_{\delta}(A)$ is defined as follows: $\Lambda_{\delta}(A) = \cap \{ O \in \delta(X, \tau) | A \in O \}.$

LEMMA 2.1. – For subsets A, B and A_i $(i \in I)$ of a topological space (X, τ) , the following hold:

- (1) $A \in \Lambda_{\delta}(A)$.
- (2) $\Lambda_{\delta}(\Lambda_{\delta}(A)) = \Lambda_{\delta}(A).$
- (3) If $A \in B$, then $\Lambda_{\delta}(A) \in \Lambda_{\delta}(B)$.
- (4) $\Lambda_{\delta}(\cap \{A_i \mid i \in I\}) \subset \cap \{\Lambda_{\delta}(A_i) \mid i \in I\}.$
- (5) $\Lambda_{\delta}(\cup \{A_i \mid i \in I\}) = \cup \{\Lambda_{\delta}(A_i) \mid i \in I\}.$

PROOF. - We prove only statements (4) and (5).

(4) Suppose that $x \notin \cap \{ \Lambda_{\delta}(A_i) | i \in I \}$. There exists $i_0 \in I$ such that $x \notin \Lambda_{\delta}(A_{i_0})$ and there exists a δ -open set O such that $x \notin O$ and $A_{i_0} \subset O$. We have $\bigcap_{i \in I} A_i \subset A_{i_0} \subset O$ and $x \notin O$. Therefore, $x \notin \Lambda_{\delta}(\cap \{A_i | i \in I\})$.

(5) First $A_i \subset \Lambda_{\delta}(A_i) \subset \Lambda_{\delta}(\bigcup_{i \in I} A_i)$ and hence $\Lambda_{\delta}(A_i) \subset \Lambda_{\delta}(\bigcup_{i \in I} A_i)$. Therefore, we obtain $\bigcup_{i \in I} \Lambda_{\delta}(A_i) \subset \Lambda_{\delta}(\bigcup_{i \in I} A_i)$. Conversely, suppose that $x \notin \bigcup_{i \in I} \Lambda_{\delta}(A_i)$. Then $x \notin \Lambda_{\delta}(A_i)$ for each $i \in I$ and hence there exists $V_i \in \delta(X, \tau)$ such that $A_i \subset V_i$ and $x \notin V_i$ for each $i \in I$. We have $\bigcup_{i \in I} A_i \subset \bigcup_{i \in I} V_i$ and $\bigcup_{i \in I} V_i$ is a δ -open set which does not contain x. Therefore, $x \notin \Lambda_{\delta}(\bigcup_{i \in I} A_i)$. This shows that $\Lambda_{\delta}(\bigcup_{i \in I} A_i) \subset \bigcup_{i \in I} \Lambda_{\delta}(A_i)$.

REMARK 2.2. – In Lemma 2.1(4), the converse is not always true as the following example shows. EXAMPLE 2.3. - Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}\}$. Now put $B = \{b\}$ and $C = \{c\}$. Then $\Lambda_{\delta}(B \cap C) = \Lambda_{\delta}(\emptyset) = \emptyset$, $\Lambda_{\delta}(B) \cap \Lambda_{\delta}(C) = X$ and $\Lambda_{\delta}(B) \neq B$.

DEFINITION 2. – A subset A of a topological space (X, τ) is called a Λ_{δ} -set if $A = \Lambda_{\delta}(A)$.

LEMMA 2.4. – For subsets A and A_i $(i \in I)$ of a topological space (X, τ) , the following hold:

- (1) $\Lambda_{\delta}(A)$ is a Λ_{δ} -set.
- (2) If A is δ -open, then A is a Λ_{δ} -set.
- (3) If A_i is a Λ_{δ} -set for each $i \in I$, then $\bigcap A_i$ is a Λ_{δ} -set.
- (4) If A_i is a Λ_{δ} -set for each $i \in I$, then $\bigcup_{i \in I} A_i$ is a Λ_{δ} -set.

PROOF. – This follows readily from Lemma 2.1.

THEOREM 2.5. – For a topological space (X, τ) , we put $\tau^{\Lambda_{\delta}} = \{A \mid A \text{ is a } \Lambda_{\delta} \text{-set of } X\}$. Then the pair $(X, \tau^{\Lambda_{\delta}})$ is an Alexandroff space.

PROOF. – This is an immediate consequence of Lemma 2.4.

DEFINITION 3. – Let A be a subset of a topological space (X, τ) . A set $\Lambda^*_{\delta}(A)$ is defined as follows: $\Lambda^*_{\delta}(A) = \bigcup \{B \in Cl_{\delta}(X, \tau) | B \in A\}.$

DEFINITION 4. – A subset A of a topological space (X, τ) is called a Λ^*_{δ} -set if $A = \Lambda^*_{\delta}(A)$.

We obtain the following two lemmas which are similar to Lemma 2.1 and Lemma 2.4.

LEMMA 2.6. – For subsets A, B and A_i $(i \in I)$ of a topological space (X, τ) the following properties hold:

- (1) $\Lambda^*_{\delta}(A) \subseteq A$.
- (2) If $A \subseteq B$, then $\Lambda^*_{\delta}(A) \subseteq \Lambda^*_{\delta}(B)$.
- (3) If A is δ -closed, then $\Lambda^*_{\delta}(A) = A$.
- (4) $\Lambda^*_{\delta}(\cap \{A_i: i \in I\}) = \cap \{\Lambda^*_{\delta}(A_i): i \in I\}.$
- (5) $\cup \{ \Lambda^*_{\delta}(A_i) : i \in I \} \subseteq \Lambda^*_{\delta}(\cup \{A_i : i \in I \}).$
- (6) $\Lambda_{\delta}(X-A) = X \Lambda_{\delta}^*(A)$ and $\Lambda_{\delta}^*(X-A) = X \Lambda_{\delta}(A)$.

LEMMA 2.7. – For subsets A, B and A_i $(i \in I)$ of a topological space (X, τ) the following properties hold:

(1) $\Lambda^*_{\delta}(A)$ is a Λ^*_{δ} -set.

(2) If A is a δ -closed, then A is a Λ_{δ}^* -set.

(3) If A_i is a Λ_{δ}^* -set for each $i \in I$, then $\cup \{A_i \mid i \in I\}$ and $\cap \{A_i \mid i \in I\}$ are Λ_{δ}^* -sets.

REMARK 2.8. – For a topological space (X, τ) , we set $\tau^{\Lambda^*_{\delta}} = \{A | A \text{ is a } \Lambda^*_{\delta} \text{-} \text{set of } X\}$, then the pair $(X, \tau^{\Lambda^*_{\delta}})$ is an Alexandroff space.

DEFINITION 5. – A subset A of a topological space (X, τ) is called (Λ, δ) closed if $A = T \cap C$, where T is a Λ_{δ} -set and C is a δ -closed set.

THEOREM 2.9. – The following statements are equivalent for a subset A of a topological space (X, τ) :

- (1) A is (Λ, δ) -closed;
- (2) $A = T \cap Cl_{\delta}(A)$, where T is a Λ_{δ} -set;
- (3) $A = \Lambda_{\delta}(A) \cap Cl_{\delta}(A)$.

PROOF. – (1) \Rightarrow (2): Let $A = T \cap C$, where T is a Λ_{δ} -set and C is a δ -closed set. Since $A \subset C$, we have $Cl_{\delta}(A) \subset C$ and $A = T \cap C \supset T \cap Cl_{\delta}(A) \supset A$. Therefore, we obtain $A = T \cap Cl_{\delta}(A)$.

 $(2) \Rightarrow (3)$: Let $A = T \cap Cl_{\delta}(A)$, where *T* is a Λ_{δ} -set. Since $A \in T$, we have $\Lambda_{\delta}(A) \in \Lambda_{\delta}(T) = T$ and hence $A \in \Lambda_{\delta}(A) \cap Cl_{\delta}(A) \in T \cap Cl_{\delta}(A) = A$. Therefore, we obtain $A = \Lambda_{\delta}(A) \cap Cl_{\delta}(A)$.

 $(3) \Rightarrow (1)$: Since $\Lambda_{\delta}(A)$ is a Λ_{δ} -set, $Cl_{\delta}(A)$ is δ -closed and $A = \Lambda_{\delta}(A) \cap Cl_{\delta}(A)$.

LEMMA 2.10. – Every Λ_{δ} -set (resp. δ -closed set) is (Λ, δ) -closed.

DEFINITION 6. – A subset A of a topological space (X, τ) is said to be (Λ, δ) -open if the complement of A is (Λ, δ) -closed.

THEOREM 2.11. – Let A_i $(i \in I)$ be a subset of a topological space (X, τ) .

(1) If A_i is (Λ, δ) -closed for each $i \in I$, then $\cap \{A_i | i \in I\}$ is (Λ, δ) -closed.

(2) If A_i is (Λ, δ) -open for each $i \in I$, then $\cup \{A_i \mid i \in I\}$ is (Λ, δ) -open.

PROOF. - (1) Suppose that A_i is (Λ, δ) -closed for each $i \in I$. Then, for each i, there exist a Λ_{δ} -set T_i and a δ -closed set C_i such that $A_i = T_i \cap C_i$. We have $\bigcap_{i \in I} A_i = \bigcap_{i \in I} (T_i \cap C_i) = (\bigcap_{i \in I} T_i) \cap (\bigcap_{i \in I} C_i)$. By Lemma 2.4, $\bigcap_{i \in I} T_i$ is a Λ_{δ} -set and $\bigcap_{i \in I} C_i$ is a δ -closed. This shows that $\bigcap_{i \in I} A_i$ is (Λ, δ) -closed.

(2) Let A_i is (Λ, δ) -open for each $i \in I$. Then $X - A_i$ is (Λ, δ) -closed and $X - \bigcup_{i \in I} A_i = \bigcap_{i \in I} (X - A_i)$. Therefore, by (1) $\bigcup_{i \in I} A_i$ is (Λ, δ) -open.

DEFINITION 7. – A subset A of a topological space (X, τ) is called a (δ, δ) -generalized-closed set (briefly (δ, δ) -g-closed) if $Cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is δ -open in (X, τ) . A subset A is said to be (δ, δ) -g-open if X - A is (δ, δ) -g-closed.

The following two lemmas are obtained easily from the definitions.

LEMMA 2.12. – For a subset A of a topological space (X, τ) , the following properties hold:

(1) A is (δ, δ) -g-closed if and only if $Cl_{\delta}(A) \in \Lambda_{\delta}(A)$.

(2) A is δ -closed if and only if A is (δ, δ) -g-closed and (Λ, δ) -closed.

LEMMA 2.13. – For a subset A of a topological space (X, τ) , the following properties hold:

(1) A is (δ, δ) -g-open if and only if $\Lambda^*_{\delta}(A) \subset \text{Int}_{\delta}(A)$.

(2) A is δ -open if and only if A is (δ, δ) -g-open and (Λ, δ) -open.

THEOREM 2.14. – For a subset A of a topological space (X, τ) , the following are equivalent:

- (1) A is (Λ, δ) -open;
- (2) $A = T \cup C$, where T is a Λ^*_{δ} -set and C is δ -open;
- (3) $A = T \cup \text{Int}_{\delta}(A)$, where T is a Λ^*_{δ} -set;
- (4) $A = \Lambda^*_{\delta}(A) \cup \operatorname{Int}_{\delta}(A)$.

PROOF. – (1) \Rightarrow (2): Suppose that A is (Λ, δ) -open. Then X - A is (Λ, δ) closed and $X - A = K \cap D$, where K is a Λ_{δ} -set and D is a δ -closed set. Hence, we have $A = (X - A) \cup (X - D)$, where X - K is a Λ_{δ}^* -set and X - D is δ -open set.

 $(2) \Rightarrow (3)$: Let $A = T \cup C$, where T is a A_{δ}^* -set and C is δ -open. Since $C \subset A$ and C is δ -open, $C \subset \operatorname{Int}_{\delta}(A)$ and hence $A = T \cup C \subset T \cup \operatorname{Int}_{\delta}(A) \subset A$. Therefore, we obtain $A = T \cup \operatorname{Int}_{\delta}(A)$.

 $(3) \Rightarrow (4)$: Let $A = T \cup \operatorname{Int}_{\delta}(A)$, where T is a Λ^*_{δ} -set. Since $T \subset A$, we have $\Lambda^*_{\delta}(A) \supset \Lambda^*_{\delta}(T)$ and hence $A \supset \Lambda^*_{\delta}(A) \cup \operatorname{Int}_{\delta}(A) \supset \Lambda^*_{\delta}(T) \cup \operatorname{Int}_{\delta}(A) = T \cup \operatorname{Int}_{\delta}(A) = A$. Therefore, we obtain $A = \Lambda^*_{\delta}(A) \cup \operatorname{Int}_{\delta}(A)$.

 $(4) \Rightarrow (1)$: Let $A = \Lambda_{\delta}^*(A) \cup \operatorname{Int}_{\delta}(A)$. Then, we have $X - A = (X - \Lambda_{\delta}^*(A)) \cap (X - \operatorname{Int}_{\delta}(A)) = \Lambda_{\delta}(X - A) \cap Cl_{\delta}(X - A)$. By Lemma 2.4, $\Lambda_{\delta}(X - A) \cap Cl_{\delta}(X - A)$.

A) is a Λ_{δ} -set and $Cl_{\delta}(X - A)$ is δ -closed. Therefore, X - A is a (Λ, δ) -closed set and *A* is (Λ, δ) -open.

3. – Properties of (Λ, δ) -closed Sets.

DEFINITION 8. – A topological space (X, τ) is called a $\delta - R_0$ space if for each δ -open set U and each $x \in U$, $Cl_{\delta}(\{x\}) \subset U$.

DEFINITION 9. – A topological space (X, τ) is said to be

(1) $\delta - T_0$ [1] if for any distinct pair of points in X, there is a δ -open set containing one of the points but not the other.

(2) $\delta - T_1$ [1] if for any distinct pair of points x and y in X, there is a δ -open U in X containing x but not y and a δ -open set V in X containing y but not x.

(3) $\delta - T_2$ [1] if for any distinct pair of points x and y in X, there are δ -open sets U_1 and U_2 such that $x \in U_1$, $y \in U_2$ and $U_1 \cap U_2 = \emptyset$.

REMARK 3.1. – From Definition 9, we have the following diagram:

THEOREM 3.2. – Let (X, τ) be a $\delta - R_0$ space. A singleton $\{x\}$ is (Λ, δ) -closed if and only if $\{x\}$ is δ -closed.

PROOF. – Necessity. Suppose that $\{x\}$ is (Λ, δ) -closed. Then by Theorem 2.9 $\{x\} = \Lambda_{\delta}(\{x\}) \cap Cl_{\delta}(\{x\})$. For any δ -open set U containing x, $Cl_{\delta}(\{x\}) \subset U$ and hence $Cl_{\delta}(\{x\}) \subset \Lambda_{\delta}(\{x\})$. Therefore, we have $\{x\} = \Lambda_{\delta}(\{x\}) \cap Cl_{\delta}(\{x\}) \supset Cl_{\delta}(\{x\})$. This shows that $\{x\}$ is δ -closed.

Sufficiency. Suppose that $\{x\}$ is δ -closed. Since $\{x\} \subset \Lambda_{\delta}(\{x\})$, we have $\Lambda_{\delta}(\{x\}) \cap Cl_{\delta}(\{x\}) = \Lambda_{\delta}(\{x\}) \cap \{x\} = \{x\}$. This shows that $\{x\}$ is (Λ, δ) -closed.

THEOREM 3.3. – A topological space (X, τ) is $\delta - T_0$ if and only if for each $x \in X$, the singleton $\{x\}$ is (Λ, δ) -closed.

PROOF. – *Necessity*. Suppose that (X, τ) is $\delta - T_0$. For each $x \in X$, it is obvious that $\{x\} \subset \Lambda_{\delta}(\{x\}) \cap Cl_{\delta}(\{x\})$. If $y \neq x$, (i) there exists a δ -open set V_x such that $y \notin V_x$ and $x \in V_x$ or (ii) there exists a δ -open set V_y such that $x \notin V_y$ and $y \in V_y$. In case of (i), $y \notin \Lambda_{\delta}(\{x\})$ and $y \notin \Lambda_{\delta}(\{x\}) \cap Cl_{\delta}(\{x\})$. This shows that $\{x\} \supset \Lambda_{\delta}(\{x\}) \cap Cl_{\delta}(\{x\})$. In case (ii), $y \notin Cl_{\delta}(\{x\})$ and $y \notin Cl_{\delta}(\{x\})$ and $y \notin Cl_{\delta}(\{x\})$.

 $\Lambda_{\delta}(\{x\}) \cap Cl_{\delta}(\{x\})$. This shows that $\{x\} \supset \Lambda_{\delta}(\{x\}) \cap Cl_{\delta}(\{x\})$. Consequently, we obtain $\{x\} = \Lambda_{\delta}(\{x\}) \cap Cl_{\delta}(\{x\})$.

Sufficiency. Suppose that (X, τ) is not $\delta - T_0$. There exist two distinct points x, y such that (i) $y \in V_x$ for every δ -open set V_x containing x and (ii) $x \in V_y$ for every δ -open set V_y containing y. From (i) and (ii), we obtain $y \in \Lambda_{\delta}(\{x\})$ and $y \in Cl_{\delta}(\{x\})$, respectively. Therefore, we have $y \in \Lambda_{\delta}(\{x\}) \cap Cl_{\delta}(\{x\})$. By Theorem 2.9, $\{x\} = \Lambda_{\delta}(\{x\}) \cap Cl_{\delta}(\{x\})$ since $\{x\}$ is (Λ, δ) -closed. This is contrary to $x \neq y$.

COROLLARY 3.4. – Let (X, τ) a δ - R_0 topological space. Then (X, τ) is δ - T_0 if for each $x \in X$, the singleton $\{x\}$ is δ -closed.

PROOF. – It is an immediate consequence of Theorem 3.2 and Theorem 3.3. \blacksquare

THEOREM 3.5. – A topological space (X, τ) is $\delta - T_1$ if and only if for each $x \in X$, the singleton $\{x\}$ is a Λ_{δ} -set.

PROOF. – Necessity. Suppose that $y \in \Lambda_{\delta}(\{x\})$ for some point y distinct from x. Then $y \in \cap \{V_x \mid x \in V_x \text{ and } V_x \text{ is } \delta\text{-open}\}$ and hence $y \in V_x$ for every δ -open set V_x containing x. This contradicts that (X, τ) is a $\delta - T_1$.

Sufficiency. Suppose that $\{x\}$ is a Λ_{δ} -set for each $x \in X$. Let x and y be any distinct points. Then $y \notin \Lambda_{\delta}(\{x\})$ and there exists a δ -open set V_x such that $x \in V_x$ and $y \notin V_x$. Similarly, $x \notin \Lambda_{\delta}(\{y\})$ and there exists a δ -open set V_y such that $y \in V_y$ and $x \notin V_y$. This shows that (X, τ) is $\delta - T_1$.

THEOREM 3.6. – A topological space (X, τ) is $\delta - T_2$ if and only if it is T_2 .

PROOF. – Every $\delta - T_2$ space is obviously T_2 . Conversely, suppose that (X, τ) is T_2 . Let x and y be any distinct points of X. There exist open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. We obtain $x \in U \subset \operatorname{Int}(Cl(U))$, $y \in V \subset \operatorname{Int}(Cl(V))$ and $\operatorname{Int}(Cl(U)) \cap \operatorname{Int}(Cl(V)) = \emptyset$. Every regular open set is δ -open. Therefore, (X, τ) is $\delta - T_2$.

DEFINITION 10. – A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be

(1) almost-continuous [4] if for each $x \in X$ and each open set V of Y containing f(x), there is an open set U containing x such that $f(U) \subset$ Int (Cl(V)),

(2) δ -continuous [2] if for each $x \in X$ and each open neighborhood V of f(x), there exists an open neighborhood U of x such that $f(\operatorname{Int}(Cl(U)) \subset \operatorname{Int}(Cl(V)))$.

THEOREM 3.7. – For a topological space (X, τ) , the following properties hold:

- (1) (X, τ) is δT_1 if and only if $(X, \tau^{\Lambda_{\delta}})$ is the discrete space.
- (2) The indentity function $id_X: (X, \tau^{\Lambda_{\delta}}) \to (X, \tau)$ is almost-continuous.
- (3) If $(X, \tau^{\Lambda_{\delta}})$ is connected, then (X, τ) is connected.

PROOF. - (1) Necessity. Suppose that (X, τ) is $\delta - T_1$. Let x be any point of X. By Theorem 3.4, $\{x\}$ is a Λ_{δ} -set and $\{x\} \in \tau^{\Lambda_{\delta}}$. For any subset A of X, by Lemma 2.4 $A \in \tau^{\Lambda_{\delta}}$. This shows that $(X, \tau^{\Lambda_{\delta}})$ is discrete.

Sufficiency. For each $x \in X$, $\{x\} \in \tau^{\Lambda_{\delta}}$ and hence $\{x\}$ is Λ_{δ} -set. By Theorem 3.4, (X, τ) is $\delta - T_1$.

(2) Let V be any regular open set of (X, τ) . Since V is δ -open, by Lemma 2.4 $(id_X)^{-1}(V) = V \in \tau^{\Lambda_{\delta}}$ and hence id_X is almost-continuous [4, Theorem 2.2].

(3) Suppose that (X, τ) is not connected. There exist nonempty open sets V_1, V_2 of (X, τ) such that $V_1 \cap V_2 = \emptyset$. Therefore, we obtain $\operatorname{Int}(Cl(V_1)) \cap \operatorname{Int}(Cl(V_2)) = \emptyset$, $\operatorname{Int}(Cl(V_1)) \cup \operatorname{Int}(Cl(V_2)) = X$ and $V_i \subset \operatorname{Int}(Cl(V_i)) \in \tau^{A_{\delta}}$ for i = 1, 2. This shows that $(X, \tau^{A_{\delta}})$ is not connected.

THEOREM 3.8. – If a function $f:(X, \tau) \to (Y, \sigma)$ is δ -continuous, then $f:(X, \tau^{\Lambda_{\delta}}) \to (Y, \sigma^{\Lambda_{\delta}})$ is continuous.

PROOF. – Let V be any Λ_{δ} -set of (Y, σ) , i.e. $V \in \sigma^{A_{\delta}}$. Then $V = \Lambda_{\delta}(V) = \cap \{W | V \subset W \text{ and } W \text{ is } \delta$ -open in $(Y, \sigma)\}$. Since f is δ -continuous, $f^{-1}(W)$ is δ -open in (X, τ) for each W and hence we have $f^{-1}(V) = \cap \{f^{-1}(W) | f^{-1}(V) \subset f^{-1}(W) \text{ and } W \text{ is } \delta$ -open in $(Y, \sigma)\} \supset \cap \{U | f^{-1}(V) \subset U \text{ and } U \text{ is } \delta$ -open in $(X, \tau)\} = \Lambda_{\delta}(f^{-1}(V))$. On the other hand, by the definition $f^{-1}(V) \subset \Lambda_{\delta}(f^{-1}(V))$. Hence, we obtain $f^{-1}(V) = \Lambda_{\delta}(f^{-1}(V))$. Therefore, $f^{-1}(V) \in \tau^{A_{\delta}}$ and $f:(X, \tau) \to (Y, \sigma)$ is continuous.

4. – (Λ, δ) -continuous functions.

DEFINITION 11. – Let (X, τ) be a topological space and $A \subseteq X$. A point $x \in X$ is called a (Λ, δ) -cluster point of A if for every (Λ, δ) -open set U of X containing x we have $A \cap U \neq \emptyset$. The set of all (Λ, δ) -cluster points is called the (Λ, δ) -closed set of A and is denoted by $A^{(\Lambda, \delta)}$.

LEMMA 4.1. – Let A and B be subsets of a topological space (X, τ) . For the (Λ, δ) -closure, the following properties hold:

- (1) $A \in A^{(\Lambda, \delta)}$ and $(A^{(\Lambda, \delta)})^{(\Lambda, \delta)} = A^{(\Lambda, \delta)}$.
- (2) $A^{(\Lambda, \delta)} = \bigcap \{F | A \in F \text{ and } F \text{ is } (\Lambda, \delta)\text{-closed} \}.$
- (3) If $A \in B$, then $A^{(A, \delta)} \in B^{(A, \delta)}$.

- (4) A is (Λ, δ) -closed if and only if $A = A^{(\Lambda, \delta)}$.
- (5) $A^{(\Lambda, \delta)}$ is (Λ, δ) -closed.

The proof of the above lemma is clear.

DEFINITION 12. – Let (X, τ) be a topological space, $x \in X$ and $\{x_s, s \in S\}$ be a net of X. We say that the net $\{x_s, s \in S\}$ (Λ, δ) -converges to x if for each (Λ, δ) -open set U containing x there exists an element $s_0 \in S$ such that $s \ge s_0$ implies $x_s \in U$.

LEMMA 4.2. – Let (X, τ) be a topological space and $A \subseteq X$. A point $x \in A^{(\Lambda, \delta)}$ if and only if there exists a net $\{x_s, s \in S\}$ of A which (Λ, δ) -converges to x.

The proof of the above lemma is clear.

DEFINITION 13. – Let (X, τ) be a topological space, $\mathcal{F} = \{F_i : i \in I\}$ be a filterbase of X and $x \in X$. A filterbase \mathcal{F} is said to converge to x (written $\mathcal{F} \to x$) if for each (Λ, δ) -open set U containing x there is a member $F_i \in \mathcal{F}$ such that $F_i \subseteq U$.

DEFINITION 14. – A function $f:(X, \tau) \to (Y, \sigma)$ is called (Λ, δ) -continuous if $f^{-1}(V)$ is a (Λ, δ) -open subset of X for every (Λ, δ) -open subset V of Y.

THEOREM 4.3. – For a function $f:(X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:

(1) f is (Λ, δ) -continuous;

(2) $f^{-1}(B)$ is a (Λ, δ) -closed subset of X for every (Λ, δ) -closed subset B of Y;

(3) For each $x \in X$ and for each (Λ, δ) -open set V of Y containing f(x) there exists a (Λ, δ) -open set U of X containing x and $f(U) \subseteq V$;

(4) $f(A^{(\Lambda, \delta)}) \in [f(A)]^{(\Lambda, \delta)}$ for each subset A of X;

(5) $[f^{-1}(B)]^{(A, \delta)} \subset f^{-1}(B^{(A, \delta)})$ for each subset B of Y;

(6) For each $x \in X$ and each filterbase \mathcal{F} which (Λ, δ) -converges to x, $f(\mathcal{F})$ (Λ, δ) -converges to f(x).

PROOF. – Obvious.

THEOREM 4.4. – If $f:(X, \tau) \rightarrow (Y, \sigma)$ is a δ -continuous function, then it is (Λ, δ) -continuous.

PROOF. – Let *F* be any (Λ, δ) -closed set of (Y, σ) . Then there exist a Λ_{δ} -set *T* and a δ -closed set *D* such that $F = T \cap D$. Since *f* is δ -continuous, $f^{-1}(D)$ is δ -closed and $f^{-1}(T)$ is a Λ_{δ} -set of (X, τ) by Theorem 3.7. Therefore, $f^{-1}(F) =$

 $f^{-1}(T) \cap f^{-1}(D)$ is a (Λ, δ) -closed set of (X, τ) . By Theorem 4.3, f is (Λ, δ) -continuous.

5. – (Λ, δ) -compactness and (Λ, δ) -connectedness.

DEFINITION 15. – A topological space (X, τ) is said to be

(1) (Λ, δ) -compact if every cover of X by (Λ, δ) -open sets of (X, τ) has a finite subcover,

(2) nearly compact [3] if every regular open cover of X has a finite subcover.

THEOREM 5.1. – A topological space (X, τ) is (Λ, δ) -compact if and only if for every family $\{A_i: i \in I\}$ of (Λ, δ) -closed sets in X satisfying $\cap \{A_i: i \in I\} = \emptyset$, there is a finite subfamily A_{i_1}, \ldots, A_{i_n} with $\cap \{A_{i_k}: k = 1, \ldots, n\} = \emptyset$.

PROOF. – Obvious.

THEOREM 5.2. – For a topological space (X, τ) , the following properties hold:

- (1) If $(X, \tau^{\Lambda_{\delta}})$ is compact, then (X, τ) is nearly compact.
- (2) If (X, τ) is (Λ, δ) -compact, then (X, τ) is nearly compact.
- (3) If (X, τ) is (Λ, δ) -compact, then $(X, \tau^{\Lambda^*_\delta})$ is compact.

PROOF. – (1) Let $\{V_{\alpha} | \alpha \in \nabla\}$ be any regular open cover of X. Since every regular open set is δ -open, by Lemma 2.4 V_{α} is a Λ_{δ} -set for each $\alpha \in \nabla$. Moreover, by the compactness of $(X, \tau^{\Lambda_{\delta}})$ there exists a finite subset ∇_0 of ∇ such that $X = \bigcup \{V_{\alpha} | \alpha \in \nabla_0\}$. This shows that (X, τ) is nearly compact.

(2) Let $\{F_{\alpha} \mid \alpha \in \nabla\}$ be a family of regular closed sets of (X, τ) such that $\cap \{F_{\alpha} \mid \alpha \in \nabla\} = \emptyset$. Every regular closed set is δ -closed and by Theorem 2.9 F_{α} is a (Λ, δ) -closed set for each $\alpha \in \nabla$. By Theorem 5.1, there exists a finite subset ∇_0 of ∇ such that $\cap \{F_{\alpha} \mid \alpha \in \nabla_0\} = \emptyset$. It follows from [3, Theorem 2.1] that (X, τ) is nearly compact.

(3) Let $\{V_a \mid a \in \nabla\}$ be a cover of X by Λ_{δ}^* -sets of (X, τ) . Since $V_a = V_a \cup \emptyset$ and the empty set is δ -open, by Lemma 2.4 each V_a is (Λ, δ) -open in (X, τ) . Since (X, τ) is (Λ, δ) -compact, there exists a finite subset ∇_0 of ∇ such that $X = \cup \{V_a \mid a \in \nabla_0\}$. This shows that $(X, \tau^{\Lambda_{\delta}})$ is compact.

THEOREM 5.3. – If $f:(X, \tau) \to (Y, \sigma)$ is a (Λ, δ) -continuous surjection and (X, τ) is a (Λ, δ) -compact space, then (Y, σ) is (Λ, δ) -compact.

PROOF. – Let $\{V_a | a \in \nabla\}$ be any cover of Y by (Λ, δ) -open sets of (Y, σ) . Since f is (Λ, δ) -continuous, by Theorem 4.3 $\{f^{-1}(V_a) | a \in \nabla\}$ is a cover of X by (Λ, δ) -open sets of (X, τ) . Thus, there exists a finite subset ∇_0 of ∇ such that $X = \bigcup \{ f^{-1}(V_\alpha) \mid \alpha \in \nabla_0 \}$. Since f is surjective, we obtain $Y = f(X) = \bigcup \{ V_\alpha \mid \alpha \in \nabla_0 \}$. This shows that (Y, σ) is (Λ, δ) -compact.

COROLLARY 5.4. – The (Λ, δ) -compactness is preserved by δ -continuous surjections.

PROOF. – This is an immediate consequence of Theorem 4.4 and 5.3. ■

DEFINITION 16. – A topological space (X, τ) is called (Λ, δ) -connected if X cannot be written as a disjoint union of two non-empty (Λ, δ) -open sets.

THEOREM 5.5. – For a topological space (X, τ) , the following statements are equivalent:

(1) (X, τ) is (Λ, δ) -connected;

(2) The only subsets of X, which are both (Λ, δ) -open and (Λ, δ) -closed are the empty set \emptyset and X.

PROOF. – Straightforward.

THEOREM 5.6. – For a topological space (X, τ) , the following properties hold:

(1) If (X, τ) is (Λ, δ) -connected, then $(X, \tau^{\Lambda_{\delta}})$ is connected.

(2) If $(X, \tau^{\Lambda_{\delta}})$ is connected, then (X, τ) is connected.

PROOF. – (1) Suppose that $(X, \tau^{\Lambda_{\delta}})$ is not connected. There exist nonempty Λ_{δ} -sets G, H of (X, τ) such that $G \cap H = \emptyset$ and $G \cup H = X$. By Lemma 2.10, G and H are (Λ, δ) -closed sets. This shows that (X, τ) is not (Λ, δ) -connected.

(2) Suppose that (X, τ) is not connected. There exist nonempty open sets G, H of (X, τ) such that $G \cap H = \emptyset$ and $G \cup H = X$. Every closed and open set is δ -open and G, H are Λ_{δ} -sets by Lemma 2.4. This shows that $(X, \tau^{\Lambda_{\delta}})$ is not connected.

THEOREM 5.7. – If $f:(X, \tau) \to (Y, \sigma)$ is a (Λ, δ) -continuous surjection and (X, τ) is (Λ, δ) -connected, then (Y, σ) is (Λ, δ) -connected.

PROOF. – Suppose that (Y, σ) is not (Λ, δ) -connected. There exist nonempty (Λ, δ) -open sets G, H of Y such that $G \cap H = \emptyset$ and $G \cup H = Y$. Then we have $f^{-1}(G) \cap f^{-1}(H) = \emptyset$ and $f^{-1}(G) \cup f^{-1}(H) = X$. Moreover, $f^{-1}(G)$ and $f^{-1}(H)$ are nonempty (Λ, δ) -open sets of (X, τ) . This shows that (X, τ) is not (Λ, δ) -connected. Therefore, (Y, σ) is (Λ, δ) -connected.

COROLLARY 5.8. – The (Λ, δ) -connectedness is preserved by δ -continuous surjections.

PROOF. – This is an immediate consequence of Theorem 4.4 and Theorem 5.7. $\hfill \blacksquare$

REFERENCES

- [1] R. C. JAIN, *The role of regularly open sets in general topology*, Ph.D. Thesis, Meerut Univ., Inst. Advanc. Stud. Meerut, India, 1980.
- [2] T. NOIRI, On δ-continuous functions, J. Korean Math. Soc., 16 (1980), 161-166.
- [3] M. K. SINGAL A. MATHUR, On weakly-compact spaces, Boll. Un. Mat. Ital., 42 (1969), 702-710.
- [4] M. K. SINGAL A. R. SINGAL, Almost-continuous mappings, Yokohama J. Math., 16 (1968), 63-73.
- [5] N. V. VELIČKO, *H-closed topological spaces*, Mat. Sb., 70 (1966), 98-112; English transl. (2), in Amer. Math. Soc. Transl., 78 (1968), 102-118.
 - D. N. Georgiou: Department of Mathematics, University of Patras 26500 Patras, Greece. E-mail:georgiou@math.upatras.gr
 - S. Jafari: Department of Mathematics and Physics, Roskilde University Postbox 260, 4000 Roskilde, Denmark. E-mail:sjafari@ruc.dk
 - T. Noiri: Department of Mathematics, Yatsushiro College of Technology Kumamoto, 866-8501 Japan. E-mail: noiri@as.yatsushiro-nct.ac.jp

Pervenuta in Redazione il 9 maggio 2003