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Bollettino U. M. I.
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Absorption Effects for Some Elliptic Equations
with Singularities.

A. PORRETTA (*)

Sunto. – In questa nota si presenta una breve rassegna di alcuni recenti risultati otte-
nuti su una classe di equazioni ellittiche con termini di assorbimento a crescita
naturale e dati singolari. Si mettono in luce tipici fenomeni (stabilità, esistenza o
nonesistenza, singolarità rimovibili, effetti di barriera) dovuti essenzialmente al-
l’effetto regolarizzante dei termini di assorbimento che in alcuni casi può impedire
la presenza o la diffusione di singolarità nell’equazione. Oltre all’esposizione di ri-
sultati già noti, si presenta una nuova applicazione al caso di crescita sottocritica
per l’equazione modello (1.6), per la quale dimostriamo un risultato generale di esi-
stenza con dato misura, nelle ipotesi ottimali che estendono la classica condizione
di P. Benilan e H. Brezis [4].

Summary. – We give an expository review of recent results obtained for elliptic equa-
tions having natural growth terms of absorption type and singular data. As a new
result, we provide an application to the case of lower order terms of subcritical gro-
wth, proving a general solvability result with measure data for a class of equations
modeled on (1.6).

1. – Introduction.

In this note we consider a class of elliptic equations in the form

A(u)1H(x , u , ˜u) 4 f ,(1.1)

where A is a second order, possibly nonlinear, divergence form operator of
the type introduced in [20], somehow modeled on the p-Laplace operator
2div (N˜uNp22 ˜u), pD1. The lower order term H(x , u , ˜u), which could be
seen as a perturbation of such operator A , will be assumed to satisfy two struc-
ture conditions, first of all the absorption hypothesis

)s0 D0 : H(x , s , j) sF0 (s�R : NsNDs0 ,(1.2)

and secondly a so-called natural growth condition (see below), namely an en-

(*) Comunicazione presentata a Milano in occasione del XVII Congresso U.M.I.
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ergy type growth with respect to the gradient. In order to simplify our exposi-
tion, we will mainly refer to the following simple model problem:

2Du1H(x , u , ˜u) 4 f in V ,(1.3)

where V is a bounded subset of RN and H satisfies (1.2) and

g2 (s)NjN2 2 f2 (x) GNH(x , s , j)NGg1 (s)NjN2 1 f1 (x) ,(1.4)

where g1 , g2 are continuous functions, and f1 , f2 �L 1 (V).
A particular motivation for dealing with natural growth terms as in (1.4)

comes from the study of Euler equations of some functionals in the calculus of
variations, as the following example:

J(v) 4
1

2
s

V

a(x , v)N˜vN2 dx2s
V

fv dx .(1.5)

In fact, we have (at least formally)

J 8 (v) 42div (a(x , v) ˜v)1
1

2
g ¯

¯v
a(x , v)hN˜vN2 2 f ,(1.5)

so that J 8 (v) enters the class of operators in (1.1). This also shows the impor-
tance to consider problem (1.1) in its general form including nonlinear opera-
tors A . We also point out that equations like (1.3) appear very naturally in dif-
ferent contexts, as for instance in so-called viscous Hamilton Jacobi equations
related to stochastic control problems. While these motivations account for the
growth condition (1.4), the absorption assumption (1.2) is crucial for the type
of questions we investigate and for the results obtained.

The main issue we address is the possibility that the Dirichlet problem for
(1.3) admits a solution in case f is a measure on V . Indeed, due to (1.2), the
lower order term may induce regularizing effects which prevent in some cases
from development of singularities. The stability properties of the equation
(and existence results) will then be affected by the behavior of the functions gi

in (1.4) and by the fact whether f charges or not sets of zero (harmonic) capaci-
ty. As a consequence, we apply this analysis to study the stability of minimi-
zers of J and whether J admits minima (in any weak sense) corresponding to
singular sources f , like the Dirac mass; in this case it turns out that, roughly
speaking, J has a minimum (even in very weak sense) if and only if a(x , s) is
bounded from above and from below.

Moreover, these questions are related to results concerning removable sin-
gularities for the equation (1.3) (see [13 bis]), which point out even stronger
regularizing effects having a local character. Indeed, in some situations, the
development of singularities seems to be avoided by local barrier-type effects:
this has led us to more recent researches (which we only sketch here, in the fi-
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nal section) concerning other classical absorption phenomena, as existence of
local universal interior estimates and of solutions which blow-up at the
boundary.

Let us recall that the type of questions we discuss has been deeply investi-
gated, since the pioneering works by H. Brezis ([10], [11]), for semilinear
equations, i.e. (1.3) where H does not depend on ˜u . We just refer the reader
to the survey [37] and its references, and to the recent paper [13]. In that situ-
ation, however, an important role is played by monotonicity arguments (as if
H4H(s) is increasing), which in general can not be applied once the function
H depends on the gradient. Actually, our study relies rather on compactness
properties, and some heavy technical tools, like strong compactness for the
truncations of solutions, seem to be unavoidable for dealing with gradient de-
pendent terms.

In this paper we give an expository review of the results proved for (1.3),
(1.5) and related questions, mainly based on references [24], [26], [29], [30].
However, in Section 2.2 we prove a new result, showing how having dealt with
natural growth terms and recalling results for the semilinear case one can
handle the general case of possibly subquadratic growth of H with respect to
˜u , in particular for the model problem

.
/
´

2Du1g(u)N˜uNq 4m

u40

in V ,

on ¯V ,
(1.6)

where 0 GqG2 and m is a bounded Radon measure. We prove then a general
solvability result (i.e. existence of solutions of (1.6) for any measure m) under
the natural extension of the Benilan-Brezis condition known if q40.

2. – Measure data: existence and nonexistence of solutions.

2.1. Natural growth terms.

Let us start by considering the simple problem

.
/
´

2Du1H(x , u , ˜u) 4 f

u40

in V ,

on ¯V ,
(2.1)

where H satisfies the absorption condition

)s0 D0 : H(x , s , j)sF0 (s�R : NsNDs0 .(2.2)

We say that assumption (2.2) has a possibly regularizing effect since it induces
an a priori estimate for solutions of (2.1) as

VH(x , u , ˜u)VL 1 (V) GCV f VL 1 (V) .(2.3)
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A very interesting case appears if H has natural growth conditions as

g2 (s)NjN2 2 f2 (x) GNH(x , s , j)NGg1 (s)NjN2 1 f1 (x) ,(2.4)

where g1 , g2 are continuous functions, and f1 , f2 �L 1 (V). In this situation, the
function g2 accounts for the possibly regularizing effect of H , and one can ob-
tain from (2.3) further energy estimates which, in some cases, largely improve
those already available for the non perturbed problem, i.e. when H40. As an
example, assume that

) u� [0 , 1 ] : g2 (s) FNsN2u for NsNDs0 D0 .(2.5)

Then (2.3) implies (see [7], [9], [31]):

VuV

W(V)
1 ,

N(22u)

N2u
GCV f VL 1 (V) .(2.6)

Note that these gradient estimates, induced by the lower order term H , would
not hold for the simple Laplace operator. In particular if u40, there are even
estimates in H 1

0 (V) depending only on the L 1-norm of the data, so that it is
possible to find finite energy solutions even if the right hand side is not in the
dual space H 21 (V).

In order to look for solutions of (2.1), these estimates are meant to be ap-
plied to sequences of approximating problems of the form

.
/
´

2Dun 1H(x , un , ˜un ) 4 fn

un 40

in V ,

on ¯V ,
(2.7)

where ] fn ( is a sequence of bounded functions converging to f . Any sequence
of solutions ]un ( of (2.7) (whose existence is ensured by (2.2), see e.g. [5]) will
then satisfy uniform estimates; we are left then to study compactness and sta-
bility properties of such sequences of solutions trying to prove that a limit fun-
ction u is a solution of (2.1). This program can be successfully performed when
f belongs to L 1 (V), or more generally to L 1 (V)1H 21 (V); it is proved in [31]
(see also [9], [32]) that, under the assumption (2.2), and if H satisfies (2.4) for
whatever g1 , g2 , then problem (2.1) has a solution. Moreover, as remarked abo-
ve, this solution may have further regularity if H is more coercive at infinity,
as in (2.5)-(2.6).

Let now m be a general bounded Radon measure on V and consider the Di-
richlet problem

.
/
´

2Du1H(x , u , ˜u) 4m

u40

in V ,

on ¯V .
(2.8)
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When trying to extend the existence result to general measures m , some new
phenomena can be observed, and, due to the regularizing effect of the lower
order term, existence of solutions may be lost if the measure is too concentra-
ted. Since the estimates on the approximating solutions only depend on the L 1

norm of the sequence ] fn ( of approximating data, clearly these estimates con-
tinue to hold if fn approximates (e.g. as a convolution) a measure with finite
mass. However, the compactness and stability properties in the equation are
strongly affected by the behavior of H(x , s , j) for large s , and by the presence
of measures possibly concentrated on thin sets, more precisely sets having
zero capacity. Here the capacity is the standard notion of (harmonic) capacity
defined in the energy space H 1

0 (V) as

cap(A) 4 inf ]VcVH 1
0 (V) , cFx A a.e( if A is open ,

and

cap(E) 4 inf ]cap(A), E%A , A open( for borelians E .

As main examples, let us recall that compact N22-dimensional manifolds ha-
ve zero capacity in RN , in particular a point x0 has zero capacity in RN , NF2.
A measure m is said not to charge sets of zero capacity if m(B) 40 whenever
cap(B) 40, for any Borelian set B . It has been proved in [8] that such measu-
res can be written as the sum of two terms, one in L 1 (V), one in H 21 (V).
Thus, the existence result mentioned above applies to any measure m which
does not charge sets of zero capacity.

A full study in case of a general datum m requires to know (see [15]) that
any bounded measure m in V admits a unique decomposition with respect to
the capacity as

m4m 0 1l ,(2.9)

where m 0 , l are bounded measures such that l is concentrated on a set E%V
with cap(E) 40 and m 0 does not charge sets of zero capacity, which implies in
view of [8] that

m 0 4 f2div (F) , f�L 1 (V), F�L 2 (V)N .(2.10)

Hereafter, we also assume that m is nonnegative (which simplifies a few techni-
cal arguments) and shortly write m� Mb

1 (V). Referring to the previous de-
composition of m and m 0 in (2.9), (2.10), there exists a sequence m n of bounded
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functions such that

.
`
/
`
´

m n 4m 0n 1l n , m 0n F0, l n F0, m n �L Q (V)

m 0n 4 fn 2div (Fn ), fn �L Q (V), Fn �L Q (V)N ,

fn K f strongly in L 1 (V) ,

Fn KF strongly in L 2 (V)N ,

s
V

Wl n dxKs
V

Wdl (W�Cb (V) ,

(2.11)

where Cb (V) denotes the space of bounded continuous functions in V . Such a
sequence m n can be constructed using convolution and a suitable compactly
supported approximation of m . For fixed n�N , since m n �L Q (V), there exists
a weak solution un �H 1

0 (V)OL Q (V) of the problem:

.
/
´

2Dun 1H(x , un , ˜un ) 4m n

un 40

in V ,

on ¯V .
(2.12)

The behavior of the approximating problems (2.12) was described in [28]
and [24], yielding the following result. A crucial role is played by the trunca-
tion function Tk (s) 4 min (max (s , 2k), k).

THEOREM 2.1. – Assume that H satisfies (2.2) and (2.4), and let m� Mb
1 (V)

and m n given by (2.11). Then there exists a subsequence of solutions of (2.12),

still denoted un , and a function u gwhich belongs to W 1, q
0 (V) for any qE

N

N21
h such that un almost everywhere converges to u in V , and

Tk (un ) KTk (u) strongly in H 1
0 (V) for any kD0 .

Moreover we have:

(i) if s
0

1Q

g1 (s) dsE1Q , then

H(x , un , ˜un ) KH(x , u , ˜u) strongly in L 1 (V) ,

and u is a solution of (2.8).

(ii) if s
0

1Q

g2 (s) ds41Q , then

H(x , un , ˜un ) KH(x , u , ˜u)1l in the weak sense of measures ,
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and u is a solution of

.
/
´

2Du1H(x , u , ˜u) 4m 0

u40

in V ,

on ¯V . r

Let us stress that the conclusion of Theorem 2.1 is threefold: first of all, it
gives a compactness result which holds true under a general growth condition
(2.4), regardless of the functions g1 , g2 ; in particular, it applies to possibly sub-
quadratic growth of H with respect to the gradient. In other words, the absor-
ption assumption (2.2) ensures, in a quite general situation, the existence of a
limit function u; moreover, since the truncations are strongly compact in the
energy space, the convergence of H depends on its behavior when NuN is large.
Then, (i) gives a sufficient condition for having solutions of (2.8), with any
measure as right hand side. Thirdly, this condition is proved to be sharp by (ii),
which says when and why we fail to find a solution with measures concentra-
ted on sets of zero capacity; indeed, it happens when g2 in (2.4) is not integra-
ble at infinity since in that case these singular measures disappear in the limi-
ting process. In particular, if m is concentrated on a set of zero capacity (i.e.
m 0 40), the approximating solutions un converge to zero in V , which could be
described as a complete blow-down phenomenon.

In terms of stability, Theorem 2.1 characterizes the possible situations ap-
pearing under assumptions (2.2), (2.4): as a corollary, the model problem

.
/
´

2Du1g(u)N˜uN2 4m

u40

in V ,

on ¯V ,
(2.13)

may be fully characterized in any formulation of stable solutions. In a nonli-
near context, this can be done in the framework of renormalized solutions (see
[24]); for the case of a linear operator, it is possible to consider the formulation
by duality introduced by G. Stampacchia ([34]), also called notion of very weak
solution. Namely, u�L 1 (V) is a very weak solution of (2.13) if

2s
V

uDW dx1s
V

g(u)N˜uN2 W dx4s
V

W dm , for every W�C 1
c (V) : DW�L Q (V) ,

where C 1
c (V) denotes the functions which are C 1in V and zero on the bounda-

ry. Since a very weak solution is always a solution obtained by approximation,
and it is also a renormalized solution, from [24] we obtain the following conse-
quence for the case of Laplace operator.

THEOREM 2.2. – Let m� Mb
1 (V) and let g be a continuous function such

that, for a positive constant s0 , g(s)sF0 for NsNFs0 . Then problem (2.13) has
a very weak solution if and only if one of the two following conditions hold:
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s
0

1Q

g(s) dsE1Q or m does not charge sets of zero (harmonic) capaci-

ty. r

REMARK 2.3. – In the general case of problem

.
/
´

2div (a(x , u , ˜ u) )1H(x , u , ˜u) 4m

u40

in V ,

on ¯V ,
(2.14)

same results as in Theorem 2.1 are proved to hold. One assumes that a(x , s , j)
satisfies the so-called Leray-Lions assumptions, i.e. a(x , s , j) : V3R3RN K

RN is a Carathéodory function which satisfies, for almost every x in V, for all
s�R , and for all j , j 8 (jcj 8) in RN :

a(x , s , j) QjFaNjNp , aD0 ,(2.15)

(2.16) Na(x , s , j)NGb(k(x)1NsNp21 1NjNp21 ) , bD0 , k(x) �L p 8 (V) ,

(a(x , s , j)2a(x , s , j 8 ) ) Q (j2j 8 ) D0 .(2.17)

Moreover H satisfies (2.2) and

g2 (s) a(x , s , j) Qj2 f2 (x) GNH(x , s , j)NGg1 (s) a(x , s , j) Qj1 f1 (x) ,

where g1 , g2 are continuous functions, and f1 , f2 �L 1 (V). The conclusions of
Theorem 2.1, including (i) and (ii), still hold true (see [31] for even more gene-
ral growth conditions on a). The interest in obtaining results for general nonli-
near operators can be seen in Section 3 from applications to Calculus of
Variations.

2.2. General solvability for the subcritical growth.

The alternative behavior given by (i) and (ii) in Theorem 2.1 distinguishes
whether the lower order term H is «dominated» by the principal operator (the
Laplacian for (2.8)) or whether H itself is the «leading term». In other words,
if g is integrable, the first order perturbation H is controlled by the Laplacian
and may be seen as an admissible perturbation, which preserves the surjectivi-
ty property on the space of bounded Radon measures. Let us recall that for
the purely semilinear case

.
/
´

2Du1g(x , u) 4m

u40

in V ,

on ¯V ,
(2.18)

the condition on g under which there is existence for any measure m was found
by P. Benilan and H. Brezis ([4], see also [10], [16], [37]) and also called the
weak singularity assumption on g: if ND2, g should satisfy, beyond the absor-



ABSORPTION EFFECTS FOR SOME ELLIPTIC EQUATIONS ETC. 377

ption condition g(x , s) sF0, the growth assumption

(2.19) Ng(x, s)NGgA(NsN) , with gA nondecreasing and s
1

1Q

gA(r) r
2

2(N21)

N22 drEQ.

Heuristically, this condition appears if one asks gA(G) �L 1 (V), where G is the
fundamental solution for the Laplacian. When we consider general possibly
first order perturbations as in (2.8), clearly (2.18) represents a limit case,
where the lower order term is independent on the gradient, while (2.4) repre-
sents, in some sense, the opposite borderline case, having energy-like growth
with respect to ˜u . In the next result, which to our knowledge is new even in
the linear case, we show that joining the Benilan-Brezis result with Theorem
2.1 allows to deal with the complete problem whose simplest model is

.
/
´

2Du1g(u)N˜uNq 4m

u40

in V ,

on ¯V ,
(2.20)

with 0 GqG2. The natural assumption which makes the lower order term a
«weak singularity» may again be heuristically found asking g(G)N˜ G Nq �
L 1 (V), and reads as

s
1

1Q

g(r) r
2

(22q)(N21)

N22 drEQ .

Note that this condition is a good interpolation between (2.19) and g�L 1 (R1 ),
which are recovered in the two cases q40 and q42.

Since we need to apply the basic compactness result for the truncations as
in Theorem 2.1, which is technically the hardest part, we will restrict ourselves
to the case mF0; however, we will set the result in a possibly nonlinear frame-
work, including the p-laplace equation. The restriction ND2 is only due to the
fact that condition (2.19) should be suitably modified (with an exponential type
growth, see [35]) if N42; this would modify also (2.22), although not the
method of proof.

THEOREM 2.4. – Let the vector field a : V3R3RN KRN satisfy (2.15)-
(2.17). Assume that H(x , s , j) satisfies (2.2) and the growth condition

NH(x , s , j)NGg(s)NjNq 1 f1 (x) , (s�R , (j�RN , a.e. x�V ,(2.21)

where f1 �L 1 (V) and g is a positive continuous function on R such that
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g(s) s
q(N21)

N2p is nondecreasing on R1 and

s
1

1Q

g(s) s
2

(p2q)(N21)

N2p dsE1Q .(2.22)

Then for any nonnegative bounded measure m there exists a (weak) solution of

.
/
´

2div (a(x , u , ˜u) )1H(x , u , ˜u) 4m

u40

in V ,

on ¯V .
(2.23)

PROOF. – Let m n be an approximation of m as in (2.11) and un a solution of

.
/
´

2div (a(x , un , ˜un ) )1H(x , un , ˜un ) 4m n

un 40

in V ,

on ¯V .
(2.24)

The absorption condition (2.2) allows to have the standard a priori estimates;
indeed, choosing Tk (un ) e lNTs0 (un )N as test function in (2.24) implies

s
V

a(x , un , ˜un ) ˜Tk (un ) e lNTs0 (un )N dx1

ls
V

a(x , un , ˜un ) ˜Ts0
(un )NTk (un )Ne lNTs0 (un )N dx1

s
V

H(x , un , ˜un ) e lNTs0 (un )N Tk (un ) dx4s
V

Tk (un ) e lNTs0 (un )N m n dx .

Thanks to (2.2) and (2.21) we obtain

s
V

a(x , un , ˜un ) ˜Tk (un ) e lNTs0 (un )N dx1

ls
V

a(x , un , ˜un ) ˜Ts0
(un )NTk (un )Ne lNTs0 (un )N dxG

s
]NunNEs0(

(g(un )N˜unNq 1 f1 ) e lNTs0 (un )N NTk (un )Ndx1s
V

Tk (un ) e lNTs0 (un )N m n dx

hence

s
V

a(x , un , ˜un ) ˜Tk (un ) e lNTs0 (un )N dx1

ls
V

a(x , un , ˜un ) ˜Ts0
(un )NTk (un )Ne lNTs0 (un )N dxG

C0 s
]NunNEs0(

N˜unNp e lNTs0 (un )N NTk (un )Ndx1C1 ke ls0 (11V f1 VL 1 (V) 1Vm n VL 1 (V) ) .
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Using (2.15) and choosing lD
C0

a
we obtain:

as
V

N˜Tk (un )Np e lNTs0 (un )N dxGC1 ke ls0 (11V f1 VL 1 (V) 1Vm n VL 1 (V) ) ,

which implies

s
V

N˜Tk (un )Np dxGC(k11) ,

for any kD0. It is well known (see [3]) that this estimate implies that un is

bounded in the Marcinkiewicz space M
N(p21)

N2p (V), which means that

meas ]x�V : NunNDk( GCk
2

N(p21)

N2p , (n�N .(2.25)

Similarly N˜unN is bounded in the Marcinkiewicz space M
N(p21)

N21 (V). Thanks to
these estimates, it can be proved as in Theorem 2.1 (see [31] for the general
case) that there exists a function u such that a(x , u , ˜u) �L q (V)N for any

qE
N

N21
, the truncation Tk (u) �W 1, p

0 (V) for any kD0 and for a subsequen-

ce, not relabeled,

.
/
´

un Ku a.e. in V ,

Tk (un ) KTk (u) strongly in W 1, p
0 (V) for any kD0 .

(2.26)

As a consequence of (2.26) and (2.25), we deduce that, again up to subsequences,

˜un K˜u a.e. in V .

Let now h be a positive continuous function in R such that s
0

1Q

h(s) dsE1Q:

choosing s
0

un

h(s)x ]sDk( ds as test function in (2.24) with kDs0 and using (2.2) we
have

s
]unDk(

a(x , un , ˜un ) ˜un h(un ) dxGVm n VL 1 (V) s
k

1Q

h(s) ds .

Therefore, (2.15) and the integrability of h imply

lim
kK1Q

sup
n

s
]unDk(

h(un )N˜unNp dx40 .(2.27)

Thanks to (2.26) and (2.27) the sequence h(un )N˜unNp is then equi-integrable:
indeed, for any subset E%V

s
E

h(un )N˜unNp dxGs
E

h(Tk (un ) )N˜Tk (un )Np dx1sup
n

s
]unDk(

h(un )N˜unNp ,
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hence the strong convergence of Tk (un ) gives

lim
meas (E) K0

sup
n

s
E

h(un )N˜unNp dxG sup
n

s
]unDk(

h(un )N˜unNp .

Letting k tend to infinity and using (2.27) we get the equi-integrability of
h(un )N˜un Np . Using the almost everywhere convergence and Vitali’s theorem
we conclude that

(2.28) h(un )N˜unNp strongly converges in L 1 (V) for any h�C(R)1 :

s
0

1Q

h(s) dsEQ .

It is known from the work [4] that thanks to estimate (2.25) and again applying
Vitali’s theorem we also have

(2.29) h(un ) strongly converges in L 1 (V)

for any nondecreasing h�C(R)1 : s
1

1Q

h(s) s
2

p(N21)

N2p dsEQ .

For the convenience of the reader, let us just recall that the main argument
for getting (2.29) is again the equi-integrability condition

lim
kK1Q

sup
n

s
]unDk(

h(un ) dx40 ,

which follows from the fact that, being h nondecreasing and using (2.25),

s
]unDk(

h(un ) dx4meas ]un Dk( h(k)1 s
k

1Q

meas ]un Ds( dh(s) G

meas ]un Dk( h(k)1 s
k

1Q

Cs
2

N(p21)

N2p dh(s) G CA s
k

1Q

s
2

p(N21)

N2p h(s) ds .

This provides equi-integrability and then, by Vitali’s theorem, implies (2.29).

Now, we use Young’s inequality with exponent
p

q
to obtain

g(un )N˜unNq Gc1 g(un )(11NunN)
2

(p2q)(N21)

N2p N˜unNp 1c2 g(un )(11NunN)
q(N21)

N2p .

Thanks to (2.22), we can use (2.28) with h(s) 4g(s)(11NsN)2
(p2q)(N21)

N2p in order

to obtain that g(un )(11NunN)
2

(p2q)(N21)

N2p N˜unNp strongly converges in L 1 (V).

Moreover, since g(s) s
q(N21)

N2p is nondecreasing and (2.22) holds true, we can use

(2.29) to deduce that g(un )(11NunN)
q(N21)

N2p is also strongly convergent in
L 1 (V). Therefore, recalling the almost everywhere convergence of un and
˜un , we conclude that g(un )N˜unNq strongly converges in L 1 (V) and then,



ABSORPTION EFFECTS FOR SOME ELLIPTIC EQUATIONS ETC. 381

from (2.21), that

H(x , un , ˜un ) KH(x , u , ˜u) strongly in L 1 (V) .

We can pass then to the limit in (2.24) and conclude that u is a weak solution of
(2.23). r

REMARK 2.5. – The assumption that the function g should be such that

g(s)s
q(N21)

N2p is nondecreasing is mainly technical and due to the zero order part,
as in (2.19). However, note that NHN should be smaller than such a function g ,
and that the integrability assumption (2.22) is largely consistent with this re-
quirement. In other words, only pathological examples would escape this mo-
notonicity condition. Note also that g may be allowed to be unbounded only if

qE
N(p21)

N21
, which gives

(p2q)(N21)

N2p
D1 in (2.22). This is expected, since

N(p21)

N21
is a well known critical value due to the fact that the a priori estima-

tes only hold in W 1, r
0 (V) for any rE

N(p21)

N21
(this is also the regularity of the

fundamental solution).

REMARK 2.6. – The optimality of the integral condition (2.22) comes from
the fact that, if G is the fundamental solution of the Laplace equation in V ,
g(G)N˜ G Nq �L 1 (V) if (2.22) is violated, so that (2.20) could not have a solution
in this case if m is the Dirac mass. For instance, consider the borderline case

when g(s) behaves like s
N2q(N21)

q(N22) at infinity: having g(u)N˜uNq �L 1 (V) would

imply that u�W0
1, N

N21 (V) hence Du�W
21, N

N21 (V) so that (2.20) could not
hold if m is the Dirac mass. However, let us stress that, while Theorem 2.4 gi-
ves optimal sufficient conditions for having a general solvability for (2.20), a
full characterization of the problem (as in Theorem 2.2 for q42) has not yet
been proved.

3. – Applications to Calculus of Variations.

The main motivation for considering growth conditions like (2.4) is the stu-
dy of functionals in Calculus of Variations, as the following:

J(v) 4
1

2
s

V

a(x , v)N˜vN2 dx2s
V

v f dx .

where a(x , s) satisfies a coerciveness condition

a(x , s) FaD0 ( s�R , a.e. x�V .(3.1)

It is well known that, if f�L 2 (V), then (3.1) is enough to ensure the existence
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of a minimum of J . Assume also that a(x , Q) is C 1 and let us denote

a 8 (x , s) »4g ¯

¯s
a(x , s)h .

In this situation, the absorption assumption becomes

)s0 D0 : sa 8 (x , s) F0 (s : NsNFs0 ,(3.2)

which may yield further regularity for the minima, as is tipically the case when
a(x , Q) is convex.

Since under (3.1), (3.2), the geometry of the functional should lead to exi-
stence of minima, it is reasonable to try to miminize J even with less regular
data f , for instance when the source term f is just L 1 (V), or even a general
measure m , writing (in a formal way)

J(v) 4
1

2
s

V

a(x , v)N˜vN2 dx2s
V

v dm .(3.3)

Of course, in such situation one should expect to find minima of infinite en-
ergy, since the functional will no more be coercive in the energy space H 1

0 (V).
As an example, the fundamental solution of the Laplace operator can still be
seen as a minimum point, in some suitable sense, of the Dirichlet functional
when the source is a Dirac mass. A natural approach, as in the case of Section
2, can be a stability, or a relaxation, method, that is the study of the behavior of
minima of regularized problems, where m is replaced by a suitable approxima-
tion m n . Defining

Jn (v) 4
1

2
s

V

a(x , v)N˜vN2 dx2s
V

m n v dx ,(3.4)

one studies properties of sequences of minimizers un �argmin Jn (v). Clearly,
this is strictly related to the study of the Euler equation which was done in
Section 2.1.

On the other hand, it is also possible to define suitable generalized notions
of minima which allow to deal with the problem of minimizing J in presence of
singular data. For data m�L 1 (V), the notion of T-minima has been introduced
in [6] using properties of truncations, in connection with the notion of entropy
solution of elliptic equations developed in [3]. Alternatively, one can use the
notion of weak minima, introduced in [17], which seems to better fit the case of
general measure data, as it is done in [25]. A weak minimum of J is, roughly
speaking, a minimum point with respect to variations along smooth directions;
more precisely, it is a function u�W 1, 1

0 (V) such that

[a(x , u)N˜uN2 2a(x , u1W)N˜(u1W)N2 ] �L 1 (V)(3.5)
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and which satisfies

(3.6)
1

2
s

V

[a(x, u)N˜uN22a(x, u1W)N˜(u1W)N2] dx1s
V

W dmG0, (W�C Q
c (V) .

Note that this definition makes sense since, although u should have infinite
energy, i.e. a(x , u)N˜uN2 �L 1 (V), the difference in (3.5) (which is of lower or-
der) is expected to be in L 1 (V). For instance, the fundamental solution is a
weak minimum of the Dirichlet functional with m being the Dirac mass.

The technical tools developed for the equations as in (1.1) allow us (see
[29]) to obtain results for functionals as in (3.3). First of all, it can be proved
that, if m�L 1 (V)1H 21 (V) (namely if m does not charge sets of zero capaci-
ty), then the sequences of approximating minimizers are compact and conver-
ge to a «minimum» of J . More precisely, there exists a T-minimum for J . The
absorbing assumption (3.2) also yields, in some cases, further regularity for
these approximated minima; for example, if a(x , s) FNsNm (for NsN large) with
mD1, then, even if m�L 1 (V), sequences of approximating minimizers are
bounded in H 1

0 (V), and there exist a T-minimum which belongs to H 1
0 (V).

The possibility to find (weak) minima of J when the source m is a general
bounded measure is related to the results of Theorem 2.1. The assumption of in-
tegrability for the function g in Theorem 2.1 is now related to the boundedness of
a(x , s); roughly speaking, if a(x , s) is bounded from above, then it is possible to
find minima of J for any measure datum m; if a(x , s) is unbounded, then stability
of minimizers (and existence of minima) holds only for measures not charging
sets of zero capacity. A proper statement of these considerations is the following;
however we need to set the assumptions on the derivative of a(x , s) instead that
directly on a . For the proof of next two results, see [29].

THEOREM 3.1. – Let a satisfy assumptions (3.1)-(3.2), and let m� Mb
1 (V)

and m n be an approximation of m in the sense (2.11). If un is a sequence of mi-

nimizers of Jn (v), then there exist a function u gwhich belongs to W 1, q
0 (V) for

any qE
N

N21
h and a subsequence, still denoted un , such that un almost

everywhere converges to u in V , and

Tk (un ) KTk (u) strongly in H 1
0 (V) for any kD0 .

If moreover we have that

sup
x�V

Na 8 (x , s)N�L 1 (R1 ) ,(3.7)

then u is a weak minimum of J . r

Note that (3.7) implies that a(x , s) is uniformly bounded from above; in the
autonomous case, we have a(x , s) 4a(s), and assumption (3.7), in virtue also of
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(3.2), simply becomes aGa(s) Gb for two positive constants a , b . Next result
says what can happen if a is unbounded and m is singular.

THEOREM 3.2. – Let m�m 1
b (V), splitted as in (2.9), and let m n be an appro-

ximation of m in the sense (2.11). Assume (3.2), and that there exist positive
continuous functions a(s), m(s) and constants b , g , d , such that:

(3.8)
.
/
´

0EbEa(s)Ga(x, s)Gga(s) ,

a 8(x, s)

a(s)
Fm(s) (sFd, with m(s) bounded and s

d

1Q

m(s) ds41Q.

If un is a sequence of minimizers of Jn , then (up to subsequences) it converges
a.e. to a T-minimum of the functional

J0 (v) 4
1

2
s

V

a(x , v)N˜vN2 2s
V

v dm 0 .

In particular, if m 0 40 and s0 40 in (3.2), then un converges to
zero. r

As an example, consider the case that a4a(s), a 8 (s)sF0, and m is a Dirac
mass. Then the above results say, roughly speaking, that J has a weak mini-
mum if and only if a(s) is bounded, i.e. if the energy of the functional is equiva-
lent to the Dirichlet energy; should a(s) be unbounded at infinity, having a
(possibly microscopic) regularizing effect with respect to the Dirichlet energy,
then sequences of approximating minimizers blow-down completely. For the
significant example of

J(v) 4s
V

(b(x)1NvNm )N˜vN2 dx2s
V

v dm ,

where aGb(x) Gb for positive constants a , b , we deduce that J has a weak
minimum for any measure m if m40, while if mD0 and m is concentrated on
sets of zero capacity, then there is a loss of minima in the relaxation procedure.
If m is the Dirac mass, it can be also proved (independently from the stability
argument) that J has a weak minimum if and only if m40.

4. – Connection with semilinear problems.

Let us come back to the model problem treated so far, that is the autono-
mous equation

.
/
´

2Du1g(u)N˜uN2 4m

u40

in V ,

on ¯V ,
(4.1)
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where g(s) sD0. It is known that problem (4.1) is, at least formally, equivalent

to a semilinear problem; indeed, setting w4F(u), with F(s) 4 s
0

s

exp (2

G(t) ) dt and G(s) 4 s
0

s

g(t) dt , and setting

H(s) 4
.
/
´

exp (2G(F21 (s) ) ) ,

exp (2G(Q) ) ,

if 0 GsEF(Q)

if F(Q) Gs ,
(4.2)

problem (4.1) is transformed into the Dirichlet problem:

.
/
´

2Dw4H(w) m

w40

in V ,

on ¯V .
(4.3)

It is a natural question to understand the consequence that the results proved
on (4.1) (which is entirely characterized by Theorem 2.2) have for (4.3). Moreo-
ver, the formulation of problem (4.3) is not clear «a priori», since when m is a
general bounded measure in V the product H(w) m may not be well defined as
soon as w is not continuous. On the other hand, at least when (4.3) is the tran-
sformed equation of (4.1), the function H given by (4.2) will satisfy two very
important conditions:

H(s) D0 ( s�R1 ,(4.4)

and

) lim
sK1Q

H(s) 4: H(Q) .(4.5)

In [25] we analyze problem (4.3) under these two structure assumptions; using
again, as in Theorem 2.1, a stability approach, we are led to suggest the follo-
wing formulation for (4.3), inspired from ideas in [14]: splitting the measure m
as in (2.9), the product H(w) m should be formally written as

H(w) m4H(w) m 0 1H(Q) l .(4.6)

This interpretation, which is motivated from relaxation arguments, accounts
for the fact that solutions are expected to blow up on the support of l , the con-
centrated part of the measure. This actually happens if H(Q) D0, but if H
tends to zero at infinity, a penalization effect would make this singular measu-
re l disappear. On the other hand the term H(w) m 0 will be well defined since
m 0 does not charge sets of zero capacity and w will admit a unique cap-quasi
continuous representative. The following result, which we state here in its
simplest form, is proved in [24] in a context of nonlinear operators.

THEOREM 4.1. – Assume that H is a bounded continuous function on R sa-
tisfying (4.4), (4.5). Let m be in Mb

1 (V), splitted as in (2.9), and let ]m n ( be an
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approximation of m in the sense (2.11). If wn is a sequence of solutions of

.
/
´

2Dwn 4H(wn ) m n

wn 40

in V ,

on ¯V
(4.7)

then there exists w�W 1, q
0 (V) for every qE

N

N21
such that Tk (w) belongs to

H 1
0 (V) for every kD0, H(w) belongs to L Q (V , dm 0 ), and for a subsequence

wn , not relabeled, we have

(4.8)

.
`
`
/
`
`
´

Tk (wn ) KTk (w) strongly in H 1
0 (V) for every kD0 ,

wn Kw strongly in W 1, q
0 (V) for every qE

N

N21
,

lim
nK1Q

s
V

WH(wn ) m 0n dx4s
V

WH(w) dm 0 for every W�H 1
0 (V)OL Q (V) ,

lim
nK1Q

s
V

WH(wn ) l n dx4H(Q)s
V

Wdl for every W�Cb (V).

In particular, w is a solution of (4.3) in the following sense:

2Dw4H(w) m 0 1H(Q)l in D8 (V) . r(4.9)

In view of Theorem 4.1, a new light is shed upon the results obtained in
Section 2 on (4.1). Indeed, if H is given through (4.2), then H(Q) 40 if and

only if s
0

1Q

g(t) dt41Q . In this case problem (4.1) has no solution if m charges

sets of zero capacity and, consistently, the concentrated measures disappear in
(4.9) because H(Q) 40: the regularizing effect of g in the absorption term of
(4.1) corresponds to the fact that the term H in (4.9) penalizes the singular

measures l . By contrast, if s
0

1Q

g(t) dtE1Q , and equivalently H(Q) D0, then

both problems (4.1) and (4.3) admit solutions for any measure m .
Moreover, if g(s) sD0 and H is as in (4.2) one can prove that (4.9) has a uni-

que solution w�W0
1, q (qE

N

N21
, hence problem (4.1) has also a unique sol-

ution u .

5. – Removability of very singular approximations.

The results in Section 2 say that problem (2.8) may fail to have a solution
for all measures data m if g is not integrable at infinity and gives a motivation
for this fact by stability arguments. The absorption effects of lower order ter-
ms may sometimes bring even stronger nonexistence results, under the form
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of removable singularities phenomena: for problem (2.8), this was proved by
H. Brezis and L. Nirenberg (see [13 bis]).

THEOREM 5.1. – Let K be a compact subset of V of zero (harmonic) capaci-
ty. Let u be a smooth solution of the problem

2Du1H(x , u , ˜u) 4 f in V0K ,(5.1)

where f�L Q (V) and H satisfies

H(x , s , j) sFgNjN2 , gD1 ,(5.2)

for every NsNFs0D0. Then u is a smooth solution of (5.1) in the whole of V .

Thus, if (5.2) holds true, sets of zero (harmonic) capacity are removable for
problem (5.1), which implies that equation (2.8) does not admit any type of sin-
gularity on K . Note that, for having such strong nonexistence result, one re-
quires assumption (5.1) which is stronger than g�L 1 (R). The result in Theo-
rem 5.1 has suggested that similar features could also be observed in the sta-
bility approach, studying the effect of perturbations of the data which are pos-
sibly very singular (i.e. not necessarily bounded in L 1 as if converging to mea-
sures) but localized around sets of null capacity. We have then the following
result, which can be found in more generality (nonlinear operators) in [26].

THEOREM 5.2. – Let K%V be a compact set of zero (harmonic) capacity.
Let f be a nonnegative function in L 1 (V), and let fn be a sequence of nonnega-
tive L Q (V) functions which converges to f in L 1

loc (V0K), i.e.

lim
nK1Q

s
V0I(K)

Nfn 2 fNdx40 ,(5.3)

for any neighborhood I(K) of K. Assume that H satisfies

H(x , s , j) sign (s) Fg(s)NjN2 ,(5.4)

where g : RKR1 is a continuous function such that

g(s) F0, g�L Q (R1 ), exp (2G(s) ) �L 1 (R1 ) ,(5.5)

where G(s) 4 s
0

s

g(t) dt. Let un in H 1
0 (V)OL Q (V) be a solution of

.
/
´

2Dun 1H(x , un , ˜un ) 4 fn

un 40

in V ,

on ¯V .
(5.6)

Then un converges (up to subsequences) to a function u�W 1, q
0 (V) for every
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qE
N

N21
, which solves (in the sense of distributions)

.
/
´

2Du1H(x , u , ˜u) 4 f

u40

in V ,

on ¯V . r
(5.7)

The result of Theorem 5.2 can be seen as an «exceptional» stability result
for the solutions of problem (5.7): one can perturb the datum f with arbitrarily
large (concentrating on K) functions but the solution u of problem (5.7) re-
mains asymptotically stable. In particular, one can take f40 and fn 4

r n * D k (d x0
), the convolution of derivatives of the Dirac mass. Under assum-

ptions (5.4), (5.5), the approximating solutions converge to zero in the whole of
V, so that this very strong perturbation is actually swept away by the regulari-
zing effects of the equation.

REMARK 5.3. – Note that assumption (5.5) is slightly weaker than (5.2); mo-
reover, it can be easily proved to be sharp for the model case (2.13). Indeed, if
fn is defined as

fn (x) 4

.
`
/
`
´

n a

0

if 0 GNxNG
1

n
,

if
1

n
ENxNG1 ,

with aDN , and if

exp (2G(s) ) �L 1 (R1 ) ,

then the solutions of

.
/
´

2Dun 1g(un )N˜unN2 4 fn

un 40

in V ,

on ¯V ,

have a complete blow-up:

lim
nK1Q

un (x) 41Q , (x�V . r

The previous remark shows that the assumption that exp (2G(s) ) �
L 1 (R1 ) really plays the role of a borderline: if it is satisfied, any possible sin-
gularity arising around K does not propagate in the limiting process (5.6), whi-
le in the opposite case, as in Remark 5.3, too strong singularities can dramati-
cally propagate in the whole of V . This reminds very much of a barrier pheno-
menon and appears very clearly in the model equation (2.13); actually, if
exp (2G(s) ) �L 1 (R1 ) holds true, it is even possible to construct solutions of
(2.13) which blow-up on large sets, for instance on a smooth subdomain v%V
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with meas (v) D0. Indeed, setting M4 s
0

1Q

exp (2G(s) ) ds , the solution w of
the obstacle problem

.
/
´

2Dw40

wFMx v

w40

in V0v ,

on ¯V ,

corresponds (at least formally), by putting w4 s
0

u

exp (2G(s) ) ds , to a solution
u of the problem

.
/
´

2Du1g(u)N˜uN2 40

u41Q

u40

in V0v ,

in v ,

on ¯V .

A proper definition of solution of the previous problem can be given in some
suitable way but is not our purpose here. We just use this simple remark as a
motivation for studying more in detail the possibility to have local interior esti-
mates for such type of equations and our interest for the construction of explo-
sive solutions.

6. – Further developments: local estimates and explosive solutions.

We conclude by only mentioning some recent developments on related to-
pics. Actually, the barrier-type effects observed in the previous study lead in a
natural way to consider the problem of constructing solutions of

.
/
´

2Du1H(x , u , ˜u) 4 f

u41Q

in V ,

on ¯V .
(6.1)

The existence of such explosive solutions (also called large solutions) is clearly
a nonlinear effect, usually generated by regularizing properties of the equa-
tion, as the existence of interior local estimates independent from the behavior
of u at the boundary. This topic has a long history and is becoming more and
more investigated in possibly very different situations. A review of the many
references is beyond our purposes here. We just recall that the purely semili-
near case

2Du1h(u) 4 f(6.2)

has been deeply investigated since the works [18], [27], where J. B. Keller and
R. Osserman proved that local estimates hold for positive subsolutions of (6.2)

if and only if s
a

1Q

(h(s) s)21/2 dsEQ (so-called Keller-Osserman condition).
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Questions concerning explosive solutions have been then thoroughly studied
(see e.g. [2], [21], [22], [23], [36]). The possibility to have local estimates in pre-
sence of gradient dependent lower order terms has also been object of resear-
ch; we mainly refer to the fundamental results obtained in [19] in connection
with stochastic control problems (the blow-up condition at the boundary is in-
deed related to a constraint required on the state variable). Existence and
asymptotic behaviour of large solutions of equation

2Du1h(u) 46N˜uNq , qD1 ,

were also proved in [1] mainly for the case qc2. The case of natural growth
terms, as in the model problem

2Du1h(u)1g(u)N˜uN2 4 f(6.3)

represents as usual a special case and may offer, as before, a clear picture for
these absorption effects since there is always a semilinear (variational) struc-
ture behind equation (6.3). First of all, it should be observed that local estima-
tes, as well as the existence of explosive solutions, cannot hold if h40; in fact,
if f40 and h(s) 40, arbitrarily large constants would be solutions of (6.3). Mo-
reover, as already remarked in Section 5, the assumption

s
0

1Q

exp (2G(s) ) dsE1Q ,(6.4)

plays the role of a borderline. Indeed, if we assume (6.4), then if u is a solution of

.
/
´

2Du1h(u)1g(u)N˜uN2 G0

uF0

in D8 (V) ,

in V ,
(6.5)

the function v4 s
u

1Q

exp(2G(s) ) ds is a positive solution of the semilinear
problem

2DvFr(v) in V ,(6.6)

where r(v) 4h(u) e 2G(u) . The existence of universal upper bounds for (6.5) is
then related to the existence of positive lower bounds (hence of positive subso-
lutions) for (6.6). A very simple consequence is the following result on local
estimates, where we denote by l 1, V the first eigenvalue of the Laplacian (with
Dirichlet boundary conditions) and by W 1, V the corresponding positive first ei-
genfunction normalized so that max

V
W 1, V41. We also denote by dV (x) 4

dist (x , ¯V). The proof of next result is in [30].
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THEOREM 6.1. – Assume (6.4) and that

l 1, VE lim inf
sK1Q

h(s) exp (2G(s) )

s
s

1Q

exp (2G(t) ) dt

.(6.7)

Then there exists a positive decreasing function F(s), with lim
sK01

F(s) 41Q ,

such that any solution u�H 1 (V)OL Q (V) of (6.5) satisfies

u(x) GF(dV (x) ) for almost every x�V .

In particular, if we set

u(s) »4
h(s) exp (2G(s) )

s
s

1Q

exp (2G(t) ) dt

, c(s) 4 s
s

1Q

exp (2G(t) ) dt ,(6.8)

and if u(s) is increasing we have (a.e. in V):

u(x) G min{u21u l 1, B1 (0)

dV (x)2
v , c21(W 1, V (x) c(u21 (l 1, V ) ))} . r(6.9)

REMARK 6.2. – A new feature should be observed with respect to the semili-
near problem (6.2); whereas the classical Keller-Osserman condition for (6.2)
is independent on the domain V , the possibility to have local estimates for
(6.5) may (in some cases) depend on V , through its first eigenvalue l 1 . This
happens for instance if g41 and h(s) is increasing and bounded. r

The main application of the local estimates concerns the study of (6.1); let
us consider here the model case

.
/
´

2Du1h(u)1g(u)N˜uN2 4 f

lim
dV (x) K0

u(x) 41Q ,

in V ,
(6.10)

where f�L Q (V) and h and g are nondecreasing. The existence of a solution of
(6.10) is a consequence of Theorem 6.1, which ensures that the sequence of sol-
utions of

.
/
´

2Dun 1h(un )1g(un )N˜unN2 4 f

un 4n

in V ,

on ¯V

is bounded in L Q
loc (V). The monotonicity assumption on h and g also implies
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that un is an increasing sequence, so that it will converge, locally uniformly, to
a function u which solves (6.10). A more delicate question is in general the uni-
queness of solutions of (6.10), which is related to the possible asymptotic
expansion of u near the boundary. Using the effect of the absorbing natural
growth term, we can prove (see [30]) that if g is unbounded any explosive sol-
ution behaves, near the boundary, as the corresponding ODE’s solution w
solving

w 94h(w)1g(w)Nw 8N2 , w(s) K1Q as sK0 .

More precisely, u(x) satisfies:

(6.11) u(x) 4F 21 (dV (x) )1o(1) as dV (x) K0 ,

where F(t) 4 s
t

1Q

e 2G(s)

g s
s0

s

h(j) e 22G(j) djh1/2
ds .

Since this asymptotics at the boundary is true for any explosive solution, and
since the monotonicity of h and g yields a classical maximum principle inside
V , one clearly deduces the uniqueness for (6.10) (see [30]).

THEOREM 6.3. – Let f�L Q (V). Assume that h is increasing, that g is non-
decreasing and such that

lim
sK1Q

h(s) 41Q , lim
sK1Q

g(s) 41Q ,(6.12)

and that there exists LD0 such that h(s) sF0, g(s)sF0 for any s with NsND

L . Then there exists a unique solution u of (6.10). Moreover u�C 1 (V) and sa-
tisfies (6.11).

Note that, in particular, the previous result applies to the model pro-
blem

.
/
´

2Du1NuNa21 u1NuNb21 uN˜uN2 4 f in V ,

lim
dist (x , ¯V) K0

u(x) 41Q ,
(6.13)

for any a , bD0, extending then results in [2], [22], [36], [19].
Other consequences of the local estimates of Theorem 6.1 also involve pro-

perties of the equation in the whole space RN , as existence, weak maximum
principles or some Liouville type results for solutions of

2Du1h(u)1g(u)N˜uN2 4 f in RN .(6.14)
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Indeed, they are mainly consequences of the precise estimate (6.9) which, rou-
ghly speaking, gives that if fG0 then uGh 21 (0) for any u�H 1

loc (RN ) subsolu-
tion of (6.14). In a similar spirit, an interesting and still widely open question is
whether uniqueness holds for (6.14) without condition at infinity, namely if for
any f�L Q

loc (RN ) problem (6.14) has a unique solution u�H 1
loc (RN )OL Q

loc (RN ),
without prescribing any behavior at infinity, neither on f nor on u . For the se-
milinear equation (6.2) with h(s) 4NsNp21 s , pD1, this result was proved by H.
Brezis in [12]. A partial result for (6.14), in case of radial nonnegative function
f , can be found in [33].

R E F E R E N C E S

[1] C. BANDLE - E. GIARRUSSO, Boundary blow-up for semilinear elliptic equations
with nonlinear gradient terms, Adv. Diff. Equat.. 1 (1996), 133-150.

[2] C. BANDLE - M. MARCUS, Large solutions of semilinear elliptic equations: existen-
ce, uniqueness and asymptotic behavior, J. Anal. Math., 58 (1992), 9-24.

[3] P. BENILAN - L. BOCCARDO - T. GALLOUËT - R. GARIEPY - M. PIERRE - J. L. VÁZQUEZ,
An L 1 theory of existence and uniqueness of nonlinear elliptic equations, Ann.
Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 240-273.

[4] P. BENILAN - H. BREZIS, Nonlinear problems related to the Thomas-Fermi equa-
tion, J. Evolution Equations, 3 (2003), 673-770.

[5] A. BENSOUSSAN - L. BOCCARDO - F. MURAT, On a nonlinear partial differential
equation having natural growth terms and unbounded solutions, Ann. Inst. H.
Poincaré Anal. Non Linéaire, 5 (1988), 347-364.

[6] L. BOCCARDO, T-minima: an approach to minimization problems in L 1, Contribu-
tions in honor of the memory of Ennio De Giorgi. Ricerche Mat., 49 (2000),
135-154.

[7] L. BOCCARDO - T. GALLOUËT, Strongly nonlinear elliptic equations having natural
growth terms and L 1 data, Nonlinear Anal. T.M.A., 19 (1992), 573-579.

[8] L. BOCCARDO - T. GALLOUËT - L. ORSINA, Existence and uniqueness of entropy sol-
utions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré
Anal. Non Linéaire, 13 (1996), 539-551.

[9] L. BOCCARDO - T. GALLOUËT - L. ORSINA, Existence and nonexistence of solutions
for some nonlinear elliptic equations, Journal d’Analyse Math., 73 (1997), 203-223.

[10] H. BREZIS, Nonlinear elliptic equations involving measures, in Variational Ine-
qualities, Cottle, Giannessi, Lions ed., Wiley, 1980, 53-73.

[11] H. BREZIS, Some Variational Problems of the Thomas-Fermi type, in Contribu-
tions to nonlinear partial differential equations (Madrid, 1981), 82-89, Res. Notes
in Math. 89, Pitman, Boston Mass.-London, 1983.

[12] H. BREZIS, Semilinear equations in RN without condition at infinity, Appl. Math.
Optim., 12, no. 3 (1984), 271-282.

[13] H. BREZIS - M. MARCUS - A. PONCE, Nonlinear elliptic equations with measures
revisited, to appear in Annals of Math. Studies, Princeton Univ. Press.

[13 bis] H. BREZIS - L. NIRENBERG, Removable singularities for some nonlinear ellip-
tic equations, Top. Methods Nonlin. Anal., 9 (1997), 201-219.



A. PORRETTA394

[14] G. DAL MASO - F. MURAT - L. ORSINA - A. PRIGNET, Renormalized solutions of el-
liptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci.,
28, 4 (1999), 741-808.

[15] M. FUKUSHIMA - K. SATO - S. TANIGUCHI, On the closable part of pre-Dirichlet for-
ms and the fine support of the underlying measures, Osaka J. Math., 28 (1991),
517-535.

[16] A. GMIRA - L. VERON, Boundary singularities of solutions of some nonlinear ellip-
tic equations, Duke Math. J., 64 (1991), 271-324.

[17] T. IWANIEC - C. SBORDONE, Weak minima of variational integrals, J. Reine An-
gew. Math., 454 (1994), 143-161.

[18] J. B. KELLER, On solutions of Du4 f (u), Comm. Pure Appl. Math., 10 (1957),
503-510.

[19] J.-M. LASRY - P.-L. LIONS, Nonlinear elliptic equations with singular boundary
conditions and stochastic control with state constraints. I. The model problem,
Math. Ann., 283, n. 4 (1989), 583-630.

[20] J. LERAY - J.-L. LIONS, Quelques résultats de Višik sur les problèmes elliptiques
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