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Bollettino U. M. 1.
(8) 8-B (2005), 707-722

Rosenthal and Semi-Tauberian Linear Relations
in Normed Spaces (*).

TERESA ALVAREZ - ANTONTIO MARTINEZ-ABEJON

Sunto. — St introduce la classe delle relazioni lineart di Rosenthal in spazi normati e st
studia in termini det suoi coniugati primi e secondi. Si analizza il rapporto fra una
relazione lineare di Rosenthal e il suo coniugato. Nell'articolo si studiano inoltre le
relaziont lineart semi-Tauberiane che seguono il modello adottato nello studio delle
relazioni lineari Tauberiane. Si dimostra che le relazioni lineari semi-Tauberiane
condividono alcune delle proprietd delle relazioni lineari Tauberiane e che stanno in
relazione alle relaziont lineart di Rosenthal nello stesso modo in cui le relazioni
lineari Tauberiane si trovano in relazione con le relaziont lineari debolmente com-
patte. Si descrivono esempi e si discutono cast particolari, F. e le relazioni lineari
strettamente singolari.

Summary. — The class of Rosenthal linear relations in normed spaces is introduced and
studied in terms of their first and second conjugates. We investigate the relationship
between a Rosenthal linear relation and its conjugate. In this paper, we also study the
semi-Tauberian linear relations following the pattern followed for the study of the
Tauberian linear relations. We prove that the semi-Tauberian linear relations share
some of the properties of Tauberian linear relations and they are related to Rosenthal
linear relations i the same way as Tauberian linear relations are related to weakly
compact linear relations. We describe examples and investigate special cases: in
particular, F, and strictly singular linear relations.

1. = Introduction.

Let T : X — Y be abounded operator where X and Y are Banach spaces. T is
called Tauberian (resp. semi-Tauberian) if every bounded sequence (x,) in X
such that (Tx,) is weakly convergent (resp. weak Cauchy) has a weakly con-
vergent (resp. weak Cauchy) subsequence.

Bounded Tauberian operators in Banach spaces were originally introduced

(*) Supported in part by DGI (Spain), Proyecto BFM20001-1149
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by Kalton and Wilansky [18] and they have found application in many different
situations: summability [13], factorisation of operators [11] and [22], equivalence
between Radon-Nikodym property and Krein-Milman property [24], generalised
Fredholm operators [25] and [27], etc.

The class of bounded semi-Tauberian operators in Banach spaces is studied in
[14] (under the name of SRo-operators) in the context of semigroups of gen-
eralised Fredholm operators and also in [6] and [17] where they are applied to
study isomorphic properties of L (u, X).

Tauberian linear relations in arbitrary normed spaces were introduced and
studied by Cross [10] generalising the bounded case.

The purpose of this paper is to study the classes of Rosenthal and semi-
Tauberian operators in the more general setting of linear relations between
normed spaces.

In Section 2, the class of Rosenthal linear relations is introduced and studied
in terms of their first and second conjugates. We analyse the connection between
a Rosenthal linear relation and its conjugate. We also give a condition under
which Rosenthal linear relations are strictly singular.

In Section 3 we introduce and study the class of semi-Tauberian linear re-
lations following the pattern followed for the study of Tauberian linear relations.
We prove that they share some of the properties of Tauberian linear relations.
We show that semi-Tauberian linear relations are related to Rosenthal linear
relations in the same way as Tauberian linear relations are related to weakly
compact linear relations.

Examples of Rosenthal and semi-Tauberian linear relations are exhibited.

NoTaTIiONS. — We follow the notation and terminology of the book [10]: X
and Y are normed spaces, By the closed unit ball of X, X’ and X” the first and
second dual spaces of X respectively. If M C X and N C X’ are subspaces,
then M+ ={o' e X' : &/(w) =0 for all t e M}, NT = {w € X : /() = 0 for all
¥ € N}, Jf@ (or simply Jj;) is the natural injection of M into X, @y is the
quotient map of X onto X/M and J is the canonical injection of a given
normed space into its second dual. We write Jx for the injection of X into its
completion X and K(X) := {2” € X" : there exists a sequence (x,) in X such
that «’ = (X", X') — limJx,, }.

A linear relation or multivalued linear operator 7 : X — Y is a mapping from
a subspace D(T) C X, called the domain of 7, into P(Y) \ {¢} (the collection of
nonempty subsets of Y) such that T'(ax; + fas) = aT'(x1) + ST (x2) for all nonzero
scalars a, f € K and a1, 22 € D(T). The class of such relations 7' is denoted by
LR(X,Y). If T maps the points of its domain to singletons, then 7' is said to be a
single valued linear relation or operator. Continuous everywhere defined linear
operators referred to as bounded operators.

The graph G(T) of T e LRX,Y) is G(T):={(x,y) e X x Y : x € D(T),



ROSENTHAL AND SEMI-TAUBERIAN LINEAR RELATIONS IN NORMED SPACES 709

y € Tx}. Let M be a subspace of D(T). Then the restriction 7' |y is defined by
GT |y):={m,y) :meM, y<c Tm}. For any subspace M of X we write
T |y= T |ynpr)- The inverse of T is the linear relation 7! defined by
G(T™Y) .= {(y,x) € Y x X : (x,y) € G(T)}. If T~ is single valued, then 7' is called
injective, thatis, 7'is injective if and only if its null space N (7)) := T-1(0) = {0}, and
T is said to be surjective if its range R(T) := T'(D(T)) =Y. N

The closure and completion of a linear relation 7', denoted 7 and T, respec-
tively, are defined in terms of their corresponding graphs: G(T) :=GT)
CXxY,GT:=GT) CXxY.

Alinear relation T € LR(X,Y) is said to be closed if G(T') is a closed subspace,
closable if T is an extension of T, continuous if for any neighbourhood 2 C R(T),
the inverse image 71(Q) is a neighbourhood in D(T), open if its inverse 7! is
continuous, partially continuous (resp. F',) if there exists a finite codimensional
subspace M of X such that T |j; is continuous (resp. T |j is injective and open)
and strictly singular if there is no infinite dimensional subspace M of D(T) for
which T |y is injective and open.

If T € LR(X,Y), we shall denote Q% by Qr. Clearly QT is single valued and
it can be shown that T is continuous if and only if || 7| := ||QrT|| < oo [10, II. 3.2].
Given T € LR(X,Y), let Dy denote the vector space D(T) normed by
llz|lp == llx|| + || T|| for & € D(T), and Gy € LR(Dy,X) the identity injection of
Dy into X, that is, D(Gr) = D7, Gp(x) = x, for « € Dr.

The minimum modulus of 7 is the quantity »(T):=sup{1>0:|Tx|
> Ad(x,N(T)) for x € D(T)}. T is open if and only if »(7") > 0 [10, II. 3.2].

As remarked by Wilcox [26], single valued maps were favoured as the natural
morphisms in the rigorous development of topology at the start of the 20th
century. Nevertheless, limits of sequences of sets were considered by Painlevé in
1909 (see, e.g., [5]) and later by Kuratowski [19] in 1958. Furthermore, extension
problems in topology led to the study of selections or single valued parts of upper
and lower semi-continuous set valued maps [21]. Multivalued maps, of course,
occur quite naturally, but the earnest development of mathematical methods for
set valued or multivalued problems came in the 1960’s.

Linear relations were introduced into Functional Analysis by J. von
Neumann [23] motivated by the need of considering conjugates of non-densely
defined linear differential operators.

Problems in optimisation and control also lead to the study of set valued maps
and differential inclusions (see, e.g., Aubin and Cellina [4], Clarke [7], among
others). Studies of convex processes, tangent cones, ete, form part of the theory
of convex analysis developed to deal with nonsmooth problems in viability and
control theory, for example. Some of the basic topological properties from this
area coincide with the core of the topological results for multivalued linear op-
erators.

Other works on multivalued linear operators include the treatise on partial
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differential relations by Gromov [16] and the application of multivalued methods
to the solution of differential equations by Favini and Yagi [12].

A recent work on linear relations semi-Fredholm type and other classes re-
lated to them is the book «Multivalued linear Operators» by Cross [10]. This is
the first book that have been published on these classes of linear relations. It
contains an impressive amount of information, including many unpublished re-
sults and open problems.

2. - Rosenthal Linear Relations.

Recall that a bounded operator acting between Banach spaces is called
weakly compact (resp. Rosenthal) if it transforms bounded sequences into se-
quences having weakly convergent (resp. weak Cauchy) subsequences. (See, e.g.,
[6] and [14]). A Banach space X is said to be reflexive if X" = JX, almost reflexive
if every bounded sequence in X has a weak Cauchy subsequence and weakly
sequentially complete if every weak Cauchy sequence is weakly convergent.
Clearly c, is almost reflexive and [; is weakly sequentially complete.

The notion of weakly compact operator is generalised to linear relations in
normed spaces as follows:

DEFINITION 1. — [10]. Let T € LR(X,Y). Then T s called weakly compact if
TBpr) s relatively o(Y, D(T"))-compact.

It is clear that T' is weakly compact if and only if the operator QrT is weakly
compact.

We have the following properties:

THEOREM 2. — [10, VIII. 2.7, VIII. 2.8 and VIII. 2.10]. Let T € LR(X,Y).
Then:
i) If T is weakly compact, then T’ is weakly compact.

ii) If Y is a Banach space and T' is weakly compact, then T is weakly
compact.

iii) 77 is a(D(T"),JY) — a(X’, D(T)")-continuous if and only if T' is con-
tinuous and R(T") CJY + T"(0).

iv) If T' is continuous and R(T") C JY + T"(0), then T is weakly compact.

Our aim in this Section is to obtain analogue properties to those of Theorem 2
for Rosenthal linear relations.

DEFINITION 8. — We say that T € LR(X,Y) is Rosenthal if Q7T maps boun-
ded sequences in D(T) into sequences having o(QrY,D(T")-Cauchy sub-
sequences.
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The corresponding class of linear relations will be abbreviated Ro(X,Y) or
simply Ro.

Every weakly compact linear relation is trivially Rosenthal but, in general,
the converse is false. Indeed, the identity on ¢, is Rosenthal but not weakly
compact.

PROPOSITION 4. —- Let T € LR(X,Y) be Rosenthal and let S € LR(Y,Z) be

continuous with R(T) + T(0) C D(S). Then ST is Rosenthal.

ProoF. — First suppose that T is single valued. Then ST(0) = S(0), so
QsrST = (QsS)T and we may assume that S is single valued. Note that
D(ST) = D(T) because R(T) + T(0) = R(T) C D(S). Let (x,) be a bounded se-
quence in D(ST). Then, there exists a subsequence (x,) of (x,) such that (T'x,,) is
a(Y,D(T"))-Cauchy. Since D(S’) = Z' and R(T) C D(S), it follows by [10, III. 1.6]
that (ST) = T'S’. Thus, for each 2’ € D((ST)") we have 2'S € D(T") and conse-
quently there exists lim 2’S(Tx;,) . Therefore ST is Rosenthal.

For the general case, consider the linear relation SQ;lQTT. Since Q}l(O) =
T(0) C D(S) and S is continuous, by [10, II. 3.13] SQ}1 is continuous. Hence
SQ7'QrT is Rosenthal. Now, as ST(0) = SQ7'QrT(0), by the continuity of S and
T(0) C D(S), using [10, V. 2.9] we deduce that QsrST = QsrSQ;'QrT is
Rosenthal and consequently so is ST ]

Next we prove a result which reduces the study of a Rosenthal linear relation
to the case of a continuous single valued linear relation. For this purpose, we

need the following Proposition.

PROPOSITION 5. — [10,1V. 3.17). Let T € LR(X,Y). There exists a normed
space Zr and a bounded operator Hr mapping Y onto Zr with the following
properties:

) [|Hrl <1.
ii) HrT s continuous and single valued with ||[HpT|| < 1.
i)y Z%, = Dyp.
iv) HY = Gp (and hence (HrT) = T'Gyp).
v) N(Hp) = T(0); in particular Hy is injective if and only if T is closable
and single valued.

PROPOSITION 6. — Given a linear relation T € LR(X,Y), we have that T is
Rosenthal if and only if H7T is Rosenthal.

ProoF. — The proof is along the lines of the proof of [10, VIII. 2.5], with only
minor changes. ]

In order to investigate the relationship between a Rosenthal linear relation
and its conjugate we recall the following result.
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PROPOSITION 7. - [15,2.8]. Let T : X — Y be a bounded operator, where X
and Y are Banach spaces. Then T is Rosenthal if T' 1s Rosenthal.

THEOREM 8. — Let T € LR(X,Y) such that Y is complete. If T" is continuous
and Rosenthal, then T is Rosenthal.

PROOF. — Let us assume that 7" is a continuous Rosenthal linear relation, and
prove that TGy is Rosenthal. Indeed, we note that Qrq,, T'Gr = (QrT")Gr (as
G is single valued) and a bounded sequence in Dy is mapped by G to abounded
sequence in D(T"). Moreover, if 7" is continuous, then D(T”) = D(T)" by [10, III.
8.10] and so D(T"Gp)') = D(T") = D(T)". Thus, as T" is Rosenthal, we get that
T'Grp is also Rosenthal. N

We are going to prove that 7' is Rosenthal. Since 7" = T" it follows from
Proposition 7 that H; T is Rosenthal and applying Proposition 6 we deduce that T
is Rosenthal. But, since 7 coincides with the complete closure of Jy YT, from the
definition of Rosenthal linear relation it follows that 7 is Rosenthal whenever T
is Rosenthal and Y is complete. ]

The converse of Theorem 8 is false even for bounded operators in Banach
spaces. For example, let T be the identity on ¢,. Then T is Rosenthal but 7" is not
Rosenthal.

Cross shows in [10] that there are no closed unbounded weakly compact linear
relations in Banach spaces. We don’t know if the same property is true for
Rosenthal linear relations.

THEOREM 9. — Let T € LR(X,Y) such that T' is continuous and R(T")
C K(Y) + T"(0). Then T is Rosenthal.

Proor. — Let (x,) be a bounded sequence in D(T). Then by the Banach-
Alaoglu Theorem, the sequence (Jx,) has a subsequence (Jx,) such that
Jx,, — «" with respect to o(D(T)",D(T)), for some a" € Bpy. Since 7" is
continuous, D(T”) = D(T)" and by the weak*-weak* continuity of Q77" [10,
VIIL 1.8], we have QpT"x" = a(QpY",D(T")) — lim QpT"Jx,;. By hypothe-
sis, there exists y" e K(Y) such that QpT"x" = Q. Hence for y € D(T"),
Qe T"Jay,(y') = Qrd Tacn/ ) — Qry"(y') or equivalently ¥ (QrTx,,) — Qry" (y')
This shows that (QrTxy,)is (QrY, D(T")) Cauchy. [ |

The converse of Theorem 9 is false even for bounded operators in Banach
spaces. Indeed, let T be the identity on ¢,(I") with I" uncountable. Then it is clear
that T' is Rosenthal and R(T")ZK(c,(I)).

In the classical case of bounded operators in Banach spaces the previous
Theorem was obtained by Bombal and Hernando [6, 2.3].

Let us exhibit some examples of Rosenthal linear relations.
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ExampPLE 10. - Let T : X — Y be a bounded operator, where X and Y are
Banach spaces. If X is almost reflexive and separable, then T is Rosenthal.

In effect, a result of Odell and Rosenthal (see, e.g., [20, 2.e.7]) states that a
separable Banach space Z contains no isomorphic copy of /; if and only if
7" = K(Z) and also it is known that a Banach space Z is almost reflexive if and
only if /; does not embed in Z (see, e.g., [20, 2.e.5]). Now, the assertion follows
immediately.

EXAMPLE 11. — Let T € LR(X,Y) be everywhere defined with D(T") = {0}.
Then T is Rosenthal.

Since G(T") =X" x Y", we have T"(0) =Y” and thus T is Rosenthal by
Theorem 9.

Propositions 13 and 14 below give conditions under which Rosenthal opera-
tors are F', or strictly singular. In order to obtain these Propositions we recall
some definitions.

A subclass A of all Banach spaces has the three-space property if it satisfies
the following conditions: If M is a closed subspace of a Banach space Z such that
ZIMe A andM € A,thenZ € A.

DEFINITION 12. — [3]. An operator T : D(T) C X — Y (X, Y normed spaces)
18 called thin if there is no infinite dimensional subspace N of Y such that TBpr)
almost absorbs By, namely, for every & >0 there exists 1> 0 such that
By C ATBp(r) + ¢By.

ProrosiTION 13. — Let Y be a Banach space and T: D(T) C X —Y a
partially continuous operator. Consider the following properties:
i) T is Rosenthal and Y is hereditarily-l;.
ii) T is thin.
iii) T is strictly singular.

Then (1)=(1%)=(i11).

Proor. — (i)=-(ii) Since T is partially continuous and Y is complete, there exists
a finite dimensional subspace £ of Y such that QgT is continuous [10, V. 9.3].
Assume (i) holds and 7" is not thin. Then QT is not thin by [3, 3.1]. Moreover, since
the class of all Banach spaces containing no /; isomorphically has the three-space
property (see, e.g., [1]), Y /E is hereditarily -/; and by [22, I1. C. 11], we obtain that
QT is not Rosenthal which contradicts the assumption «T Rosenthal» by virtue of
Proposition 4.

(il)=-(iii) See [3, 3.3]. ]
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This Proposition generalises the homologous result for bounded operators in
Banach spaces [22, I1. C. 1 and II. C. 11].

PROPOSITION 14. — Let T € LR(X,Y) be a Rosenthal linear relation. Then
D(T) is almost reflexive if T is F,.

PRrOOF. - Since T € F, if and only if Q7T € F', [10, V. 1.1], we may suppose
(substituting Q7T for T if necessary) that T is single valued.

Let T € F (X, Y). Then, there is a closed finite codimensional subspace M of
X for which T |y is injective and open [8, 2.2]. We have (T ;) (T |y ) = I |
Moreover D(T") = D((T |51 )") by [2, 3.8] and thus it follows immediately from
Definition 3 that T’ | m is a Rosenthal linear relation and so by Proposition 4 we
have that I |y is Rosenthal. Therefore M is almost reflexive, equivalently Mis an
almost reflexive Banach space. This fact combined with dim D(7) /M < oo and
the three-space property of almost reflexive Banach spaces permit us to conclude
that D(T) is almost reflexive and so is D(T). [ |

In [2, 8.5], it is proved the analogue of Proposition 14 for unbounded weakly
compact operators; namely, if 7" is a weakly compact F'-operator, then D(T) is
reflexive. Since 7' € LR(X,Y) is weakly compact (resp. F,) if and only if the
operator Q7T is weakly compact (resp. F',) we can extend this property to linear
relations.

3. = Semi-Tauberian Linear Relations.

The notion of bounded Tauberian operator acting between Banach spaces
was originally extended to linear relations in normed spaces as follows:
T € LR(X,Y) is Tauberian if (7")"'JY C J(D )(T)). This concept is due to Cross
[10, VIII. 5.1], who proves that Tauberian linear relations can be defined as
those linear relations which respect the relatively o(Y, D(T"))-compact subsets
of Y, in the sense that for every bounded subset A of D(T) if TA is relatively
(Y, D(T"))-compact, then A is relatively o(D(T), X')-compact; hence they appear
as opposite to weakly compact linear relations. This characterisation combined
with the notions of bounded semi-Tauberian operators in Banach spaces, sug-
gests to consider the semi-Tauberian linear relations which are defined as
follows:

DEFINITION 15. — We say that T € LR(X,Y) is semi-Tauberian if every
bounded sequence (x,,) in D(T) for which (QrTx,) is 6(QrY, D(T"))-Cauchy has a
a(D(T), X")-Cauchy subsequence.
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The corresponding class of linear relations will be denoted ST(X,Y) or
simply ST.
We note the following stability property of semi-Tauberian linear relations.

THEOREM 16. — Let T € ST(X,Y) and let S € LR(X,Y) be a continuous
Rosenthal linear relation with D(T) C D(S) and S(0) C T(0). Then T + S is semi-
Tauberian.

ProoOF. — Since S(0) C T(0) we have (T + S)(0) = T(0), and hence Qr,s = Qr
and Qr = Q4Qg where A := T(0)/S(0) by [10, IV. 5.2]. Now, using Proposition 4
we obtain_tllat QrS is a continuous Rosenthal operator and consequently
D(T') C T(0) = (Y/T(0)) = D(QrS)"). Since S is continuous and S(0) C T(0), it
follows by [10, II1. 4.6] that D(T") C T(0)" C S(0)" = D(S') and applying [10, IIL.
1.5] we have that (T +S) = T" +S'. Combining these facts, we deduce that
D(T") = DU(Qr(T +8))).

Let (x,) be a bounded sequence in D(T +8) such that (Qr(T + S)x,) is
o(@QrY,D((T +8S))-Cauchy. Then, (x,) has a subsequence (z,) which is
a(QTY,D(QTS)/)-Cauchy. Hence QrT%, is o(QrY, D(T"))-Cauchy and since 7T is
semi-Tauberian, it follows that there exists a subsequence (z,,) of (2,,) such that
(2y;) 18 a(D(T), X")-Cauchy. Therefore T + S is semi-Tauberian, as desired. ~®

For bounded operators in Banach spaces this property was obtained by
Gonzalez and Onieva [14].

The homologous result for Tauberian linear relations was proved by [10, VIII.
5.4] with a different scheme of proof.

THEOREM 17. — Let T € ST(X,Y) be a bounded operator and S € ST(Y, Z).
Then ST 1s semi-Tauberian.

ProoF. — Clearly Qsr = Qs, D(T) =Y’ and it is easy to verify that
D(S") € D((ST)'); indeed, if ' € D(S'), then /S is single valued and continuous on
D(ST), soy' € D(ST)").

Let (x,,) be a bounded sequence in D(ST') such that the sequence (QsrSTw),) is
o(QsrZ,D((ST)')-Cauchy. Then, since (Tx,) is bounded in D(S) and S is semi-
Tauberian, there exists a subsequence (z,,) of (x,) such that (Tz,) is o(D(T), Y’)-
Cauchy. By hypothesis T'is semi-Tauberian and hence, (z,,) has a subsequence (2y,)
such that (z,,) is ¢(D(ST), X')-Cauchy. Therefore ST is semi-Tauberian. m

For Tauberian linear relations, the homologous of this Theorem was obtained
by Cross [10, VIII. 5.13].

THEOREM 18. — Let S € LR(Y, Z) be a bounded operator and T € LR(X,Y). If
ST is semi-Tauberian, then so is T.
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ProOF. - Let (x,) be a bounded sequence in D(T) such that (QyTx,) is
o(QrY,D(T"))-Cauchy. We have D(T') = D(ST) (as D(S) = Y) and (ST) = T'S' by
[10, I11.1.6]. Hence for 2’ € D((ST)') we have that Sz’ € D(T"), so S’z (QrTx,)
= 2/(QsrSTx,) is convergent. But ST is semi-Tauberian, so we conclude that (x,,)
has a o(D(ST), X')-Cauchy subsequence. Therefore T is semi-Tauberian. ]

The homologous result for Tauberian linear relations was proved in [10, VIIL.
5.14].

Let T'e LR(X,Y). Then, the regular contraction of 7, Qp 7T is single va-
lued and closable with D(T") = QD ™ -T)), [10, III. 4.11 and III. 4.12].

COROLLARY 19. —The operator T is semi-Tauberian if and only if its reqular
contraction Qp T is semi-Tauberian.

PRrOOF. — . Let QD(T,)TT be semi-Tauberian, then so is 7' by Theorem 18. For
the converse, assume that 7 is semi-Tauberian. Let (x;,) be abounded sequence in
D(T) = QD ™ +T') such that ( QD T, Tx,) is o(Y /D( (", D(T"))- Cauchy. Then
for y' € D(T") we have y'(Txy) =y (Qppyr Txy) (since y € D(T")™) and thus
(QrTxy) is o(QrY, D(T"))-Cauchy. Consequently () has a o(D(T), X’)- Cauchy
subsequence and the assertion follows. ]

For Tauberian linear relations the analogue property is true by [10, VIII.
5.16].

Notice that some properties enjoyed by Tauberian linear relations are not
satisfied by semi-Tauberian linear relations, as we can see from Theorem 20 and
Example 22.

THEOREM20. — Let T' € LR(X,Y) suchthat N(T") C K(D( ). Then T is semi-
Tauberian.

PROOF. —- Since N(T"”) = N((Q7T)") by [10, VIIL. 5.2], we may suppose that T
is single valued. N - N

Assume first that 7' is continuous. Then as D(T') = D(T) and 7" = 7" we have
that T is a continuous single valued between Banach spaces with N(T") C K(D(T))
and therefore T is semi-Tauberian by [6, 2.1]. Now, observing that y’i’x = y'Tx for
y' € D(T") and x € D(T), it follows that T is semi-Tauberian.

For the general case, consider the continuous single valued HTT Then
N(T") = N(HT)"). Indeed, N((HyT)")=R(H7T))" =R(I"Gp)" = R(T')"
= N(T") (since N(T") = R(T)* by [10, III. 1.4] and H7, = G+ which maps Dy
onto D(T") by Proposition 5). Hence HyT is semi-Tauberian, so Theorem 18
states that T is semi-Tauberian. ]

This result generalises the corresponding result for bounded operators in
Banach spaces of [6, 2.1].
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The converse of Theorem 20 is false. An example of bounded semi-Tauberian
operator 7': X — Y (X, Y Banach spaces) such that N(T") € K(X) has been
constructed by Bombal and Hernando [6, 2.2].

We note that the homologous of Theorem 20 for Tauberian linear relations is
not true. In fact, follows immediately from the definition of Tauberian linear
relation that N(T") C J(D(T)) if T is a Tauberian linear relation. But the con-
verse is not holds even for bounded operators in Banach spaces. For example, let
T : lo — Iz be the bounded operator defined by T'(a,,) := (a, /%), (ay) € . Then
N(T |, )") = {0} and T |, is not Tauberian by [22].

Upon noting that every F', -relation is Tauberian [10, VIII. 8.4], an application
of Theorem 20 yields immediately the next result.

COROLLARY 21. —Let T' € LR(X,Y). Constder the following properties:
i) TisF,.
ii) T is Tauberian.
iii) T s semi-Tauberian.
Then (i) =(12)=(112).

In[10, VIII. 6.4], it is showed that TBp(y) is closed if T is Tauberian. However,
we have:

ExamMpPLE 22. - There exist a Banach space X and a bounded semi-
Tauberian operator from X into X such that TBy is not closed.

Define T': ¢, — ¢, by T(ay,) := ((ap11 — an) /1), (ay) € c,. It is easy to see that
T is a bounded injective operator and 7" is not injective. Consequently 7' is not
Tauberian [22, I.D.7]. Let M be a closed subspace of ¢, such that 7" |5; By is not
closed. (See [22, I. D. 4] for the existence of such M). Clearly T | is semi-
Tauberian.

The following results illustrate that the semi-Tauberian linear relations share
some of the properties of Tauberian linear relations.

THEOREM 23. — Let T € LR(X,Y). We have:
i) If T is semi-Tauberian, then N(T) is almost reflexive.
i) IfTis open and N(T) is closed, then T is semi-Tauberian if and only if
N(T) is almost reflexive.

PRroOF. — (i) Since (T'x,) is the null sequence for every (x,) in N(T), the as-
sertion is clear from the definitions.

(ii) Let N(T') be closed and y(T') > 0. We can consider the canonical factorisation
Z’ = ?QN@) of T, where the injeActive component T of T is the linear relation
T € LR(X/N(T),Y) given by G(T) = {@nx,y) : (@,y) € G(T)}. According to
Theorem 17, T is semi-Tauberian if 7 and Qyr) are both semi-Tauberian.
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Since T'is open if and only if so is T by [10, V.13.5], we obtain from [10, V. 5.1]
that 7 € F, . Hence Corollary 21 yields T is semi-Tauberian.

Now assume that N(T) is a closed almost reflexive. Let N N(T) denote the
closure of N(T) in X. Then N(7) is almost reflexive. Indeed, if N(T) is not almost
reflexive, then by [20, 2.e.5], there exists a closed subspace M o@ isomorphic
to ;. Consequently M N X is a subspace of N(7) such that M NX has a closed
subspace isomorphic to ;. This last fact contradicts the assumption «N(T') almost
reflexive» since, in [9, 3] Cross proves that a normed space X is almost reflexive if
and only if X is almost reflexive, equivalently X contains no subspace whose
completion is isomorphic to ;. Therefore N(T) is an almost reflexive Banach
space. In this situation, we have that Qg7 is a bounded operator on Banach
spaces such that N(Qg7;) does not have a closed subspace isomorphic to /; and
thus by [14, 1], QN is semi-Tauberian and thus by Theorem 17, QN T Jx 1s
semi-Tauberian. From the canonical equality X /N(T) =X /N ), the operator
Jx /N @n(r) is naturally identified with QN ——J x. Therefore Jx /N(T)QN(T) is semi-
Tauberian and by Theorem 18 Qy(r) is semi—Tauberian. |

For bounded operators in Banach spaces, this result was obtained by
Gonzalez and Onieva [14, 1].

Cross proves in [10, VIII. 7.1 and VIII. 7.6] the homologous result for
Tauberian linear relations, namely that if 7€ LR(X,Y), then : (a) If T is
Tauberian , then N(7) is reflexive. (b) If 7' is open and N(T) is closed, then T is
Tauberian if and only if N(T) is reflexive. We remark that the scheme of the proof
of this last result is false for semi-Tauberian linear relations. In fact, the proof of
Cross is based in the property : If T is an open linear relation, then 7' is
Tauberian if and only if N(T") C J(D(T)) , (see [10, VIII. 7.1]). But, it follows
from [6, 2.2] that if 7' € LR(X,Y) is open, then the properties, 7' semi-Tauberian,
and, N(T") C K(D(T)), are not equivalent.

It follows from Open Mapping Theorem for linear relations [26, 3.3.6], that if
X and Y are Banach spaces and 7' € LR(X,Y) is closed, then T is open if and only
if R(T) is closed. Combining this observation with Theorem 23 yields im-
mediately the following Corollary.

COROLLARY 24. —Let X and Y be Banach spaces, and let T € LR(X,Y) be
closed with closed range. Then T is semi-Tauberian if and only if N(T) is almost
reflexive.

This Corollary has been proved in [14, 1] in the context of bounded operators
in Banach spaces.

THEOREM 25. — Let T € LR(X,Y). Then T is F, if and only if T is semi-
Tauberian and T |y is F. for all subspaces M of D(T) with almost reflexive
completion.
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Proor. — Let T € F',.. Restrictions of linear relations in F', are linear rela-
tions of F', [10, V. 2.4]; moreover, by virtue of Corollary 21, T is semi-Tauberian.

Conversely, assume that 7' is semi-Tauberian and T |5, is ;. for all subspaces
M of D(T) such that M is almost reflexive. Since T' € F', if and only if QT € F,
by [10, V. 1.1], we may suppose without loss of generality that 7 is single valued.
According to[10, V. 7.11], the assertion follows if we verify that N(T' + K) is finite
dimensional for every precompact operator K € LR(X,Y).

Let K€ LR(X,Y) be a precompact single valued. Thus trivially K is
Rosenthal. Let us consider two cases for K :

Case 1: D(T) € D(K). Then by Theorem 16, T' + K is semi-Tauberian if so is
T. Then we infer from Theorem 23 that N(T + K) is almost reflexive and by
hypothesis T ‘N(T—&-K)G F+.

Case 2: D(T) D D(K). Then, as D(T") C D((T |px) )) it follows that T Ip)is
semi-Tauberian and proceeding exactly as in Case 1 we obtain that
T |nrix) € F+ , equivalently, each bounded sequence in N(T' + K) whose image
under T is Cauchy has a Cauchy subsequence [9, 1].

Now, take a bounded sequence (x,,) in N(T + K); since (Tx,) = ( — Kx,,) and
K is precompact, there exists a subsequence (x,) of (v,) such that
(Txy,) = (— Kuy;) is Cauchy and thus (x,) has a Cauchy subsequence. In con-
sequence, N(T + K) is finite dimensional, as required. [ |

This Theorem is the multivalued version of the corresponding result of
Gonzalez and Onieva [14, 2] for bounded operators in Banach spaces.

We note that the statement of Theorem 25 can be used to prove the homo-
logous result for Tauberian linear relations of [10, VIII. 8.4], namely that if
T € LR(X,Y), then T is F, if and only if 7' is Tauberian and T |j; is F'; for all
subspaces M of D(T) with reflexive completion.

The VIAR-property for Banach spaces is defined in [14] where it is shown
that if X is a Banach space, then X has the VIAR-property if and only if for every
Banach space Y the class of bounded F', -operators from X into Y coincides with
the class of bounded semi-Tauberian operators from X into Y.

The generalisation of this property for linear relations in normed spaces will
now be obtained.

DEFINITION 26. — A normed space X has the VIAR-property if no infinite
dimensional subspace of X contains an infinite dimensional subspace with al-
most reflexive completion.

THEOREM 27. — Let T € LR(X,Y) and Y be a Banach space. Then D(T) has
the VIAR -property if and only if the following properties on T are equivalent:
i) TisF,.
i) T s semi-Tauberion.
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PRrOOF. - Suppose that D(T) has the VIAR-property. Then every subspace of
D(T) with almost reflexive completion must be finite dimensional. Moreover, on
the one hand linear relations with finite dimensional range are continuous [10, V.
5.19] and on the other hand a result of Cross [10, V. 1.7] states that if S € LR(X,Y)
is closed, where X and Y are Banach spaces, then S € F', if and only if S has closed
range and finite dimensional null space. Thus the restrictions of semi-Tauberian
linear relations to subspaces of D(T) with almost reflexive completion are ', and
so the implication (ii))=-(i) is true by Theorem 25.

The converse implication follows from Corollary 21.

Now, assume that (i) and gi) are equivalent. Let M be an infinite dimensional
subspace of D(T) such that M is almost reflexive. Then, since Jy,yQu = QJx
(see the proof of Theorem 23) and M is a closed almost reflexive subspace of D(T)
we obtain that Q; is a bounded operator in Banach spaces with closed range and
null space M almost reflexive and so by Theorem 23 Q; is semi-Tauberian; but
Q7 1s not F', since dimM =oo. ]

We remark that the method used to prove the Theorem 27 can be used to
obtain the homologous result for Tauberian linear relations, namely thatif Y is a
Banach space and T € LR(X,Y), then D(T) has the VIAR-property if and only if
the properties, 7' is semi-Tauberian, and , 7'is F', , are equivalent. The part «only
if» of this last result was proved in [10, VIII. 8.6] with a different scheme of proof.

We end this Section with some examples of semi-Tauberian linear relations.

In [3] the well-known factorisation of Davis, Figiel, Johnson and Pelezynski
[11] of bounded operators in Banach spaces is reformulated for unbounded op-
erators acting between normed spaces as follows:

THEOREM 28. — Let T : D(T) C X — Y be given. Then corresponding to each
1 < p < oo there is a Banach space Z, and a factorisation A : D(T) C X — Z),
Jp:Zy =Y, JyT = JpA in which AGr is bounded, TGy = Jp(AGr) and J, co-
mcides with the injection in the DFJP factorisation of TG corresponding to p.

As an application of this result we obtain a procedure of construction of semi-
Tauberian operators.

THEOREM 29. — Let T : D(T) C X — Y be an operator. Then, for 1 < p < oo
the factorisation of JyT produces a Banach spaces Z, and a semi-Tauberian
operator J,. In general, Jp, is not F.

PROOF. — If Jy T'is thin, then sois TGy [3, 3.3] and by [22, I1. C. 8], J, is strictly
singular. In consequence, J, is not F'; if JyT is thin. ]

The notion of **-injection (see [22]) is generalised to linear relations in a
natural manner.
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DEFINITION 30. — We say that a linear velation T is a **-injection if T" is
mjective.

Notice that T is a **-injection if and only if the single valued Q7T is a
**_injection because N(T") = N((QzT)" by [10, VIII. 5.2].

Define T : I — Lo by T'(ay, ) := (a4, /7), (0, ) € L. Then T is a **-injection but
not Tauberian by [22]. In contrast to this example we should note that there may
not exist linear relations T for which 7 is a **-injection but not semi-Tauberian.

ProposITION 31. — Let T € LR(X,Y) be a **-injection. Then T is semi-
Tauberian.

PrOOF. — The proof is similar to that of corresponding result for bounded
operators in Banach spaces [22, 1. E. 27], with only minor changes.

It will be assumed without loss of generality that T is single valued (as was
noted in Definition 30). Moreover, since N(7") = R(T)* [10, III. 1.4], T is a **-
injection if and only if R(7”) is dense.

Let (x,,) be a bounded sequence in D(T') for which (Tx,,) is (Y, D(T"))-Cauchy.
Then the sequence y/'(Tx,,) converges for all ' € D(T"). Let ' € D(T) and & > 0.
Then &’ = lim T"y], for some (y,,) in D(1") and thus we choose ' € D(T”) such that
2" = T"y'|| < &/3M (where M := sup{||x,|| : » € N}). Since y'(Tx,) is Cauchy,
there is p € N such that | 7"y (x, —xy) |<¢&/3 for all n,m >p. Hence
| o (y, — ) |<| (@ — T'Y' )@y —xp) | + | T'Y (@, — ) <& for all n,m >p.
Thus (x,) is a(D(T), X’)-Cauchy. ]
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