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Numerical Treatment of a Time Dependent Inverse Problem
in Photon Transport.

S. PIERACCINI - R. RIGANTI - A. BELLENI-MORANTE

Sunto. — St studia un problema inverso unidimensionale per un’equazione integro-
differenziale del trasporto di fotoni, e si determinano le proprieta di una sorgente di
fotoni ultravioletti immersa in una nube interstellare. Un procedimento iterativo che
st basa sulla discretizzazione spazio-temporale del problema divetto, porta alla de-
terminazione della intensita della sorgente e delle sue variazioni al crescere del
tempo.

Summary. — The time-dependent intensity of a UV-photon source, located inside an
wnterstellar cloud, is determined by formulating and solving an inverse problem for
the integro-differential transport equation of photons in a one-dimensional slab.
Starting from a discretizazion of the forward problem, an iterative procedure is used
to compute the values of the source intensity at increasing values of the time.

In the framework of astrophysical applications, a great interest is devoted to
inverse problems allowing to evaluate some physical and geometrical properties
of UV-photon sources, that are located somewhere inside interstellar clouds.

Based on known model equations regarding both the photon transport theory
[1, 7, 10] and the nature of interstellar medium [5], contributions in this field are
given, among several others, in [6, 8] and more recently in [3] where time-in-
dependent inverse problems were considered, related to a source g(x) emitting
UV-photons inside an interstellar cloud. These problems were studied by using a
stationary version of the photon transport equation, where the time is not pre-
sent or is treated as a parameter [4].

On the other hand, the more general inverse problem dealing with the time
evolution of some physical properties of the photon source was recently studied
in [2]. Here, by assuming that the source g(x, t) is spatially homogeneous within a
region Vo € V € R® and that a time series of “far field” measurements of the
photon density is known, it was proved that it is possible to identify the time
behaviour of the source by means of a suitable time-discretization procedure of
the photon transport equation, leading to explicit formulae for the source in-
tensity ¢(¢) at discrete times ¢;, j = 0,1,...,J.
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In this note the following one-dimensional problem is studied. We consider a
slab V = {x : — L < < L} “representing” an interstellar cloud where photons,
produced by a source q(x,t) > 0, x € (— Lo, Lo) C (— L, L), t € [ty,ts], undergo
capture and isotropic scattering processes with constant total and scattering
cross sections o and o, respectively, with 0 < ¢, < ¢. Let ¥ = cii be the velocity
of photons (¢ is the speed of light) and x = 7 - 7 = cos &. Let us further assume
non-reentry conditions for the photons outgoing the slab. Then by rescaling the
time independent variable with t* = ct, the photon transport equation, the
boundary condition and the initial condition have the form

1
0 oM
O M@t == u = oM + % [ MGl )i+ Q,t)
—1

2) M(—L,u,t) =0, pue©,1); MUL,u,t)=0, uel—1,0)
(3) M(QC,,U,O) :MO(xnu)

where Q(x,t*) = q(x,t*/c) = q(x,t) and M(x, u, t*) is the number density of pho-
tons having a velocity component ¥ - 7= cu with u € [ — 1,1] and which at time
t=t/careatax €[ —L,L].

Assume now that the values Mj = M(L, j1,t}) of the photon density with x = L
and it > 0 are measured at the instants = jr, 5 =0,1,...,J where 7 is a con-
stant time interval. In fact, the measurements are made at some & “far from the
slab”, i.e. the values M (&, it + ) with ¢ = (@ — L)/iv are measured. How-
ever, since M (&, i, t* + 1) = M L, t, t*) we may assume that the values
M ML, ,u,t*) are known

A suitable discretization of (1) in the Banach space X = L[ —L,L]x
x[ —1,1]), endowed with the norm ||f| = f dxfﬂ[f(x W|dy, allows to prove
the existence of an explicit solution of the inverse problem in terms of a sequence
of values Q; = Q(x, t;) given by a formula which, however, tends to become ex-
tremely ill-conditioned when the time step t is decreased.

Hence, in order to numerically solve the inverse problem, we use a dif-
ferent strategy, based on an iterative approach: given an initial estimate Q](.O)
for the value Q;, we solve the forward problem integrating equation (1)-(3)
from t]* to t]* + AT, where AT is such that at time t* + AT the contribution of the
source at time ¢* has reached the boundary of the cloud. Let s be such that
t7 + 4T = ¢, . Then, we compare the photon number density computed on the
boundary at time ¢7, - with the set of measures. Let us denote by 4n;. the dif-
ference between the computed value and the measure. If |4n; | is smaller then a
given tolerance, we accept the estimate for the source, otherwise we properly
correct the estimate by assigning a new value Q(D and we repeat the process.
When a estimate Q( ) is accepted, we proceed Wlth the next time step, starting
again the process from thy
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As far as the forward problem is concerned, it is solved as follows. First, we
discretize the velocity field, considering N, values g, in the interval [ — 1,1]. The
integral in (1) is approximated by gaussian quadrature formulae, hence the va-
lues u,, » =1, ..., Ny, correspond to the gaussian nodes on the interval [ — 1,1],
which we assume labeled from the largest (1) to the smallest (uy, ). Let us de-
note by a, the corresponding weights. Further, let us denote by n(zx, u,,t*) the
approximation of M(x, u,,t*). Equation (1) is hence approximated by the fol-
lowing set of coupled equations:

8/@7&(96‘, Mo )

8.’)0 - Jn('%‘7 ,ur7 t*) +

9 «
4) g —n(x, 1, t) =

N,
Ts * *
- E;apn(ac,ﬂp,t ) + Q. t)

forr=1,...,N,.

Next, we consider a spatial discretization. Let us introduce the grid points
Tiy1/2 = —L +idx,fori=0,...., N, and dx = ZL/Nx Letx; = (961‘,1/2 + xi+1/2)/2
denote the cell centers. By using a WENO reconstruction procedure [9], equa-
tions (4) are approximated by

dn(a;, ., t*)

1 f £ *
dt* A (fi+1/2 ﬁ—1/2) - Gﬂ(xi,ﬂwt )

N,
O'
E Z_; (lp’i’l/(xi, ,up7 t*) + Q(x'u t*)v

fori=0,..,N,and r =1, ..., N,, where the numerical ﬂuxﬁ-ﬂ/z is obtained by a
fifth order WENO scheme.

Let #"(t*), Q(t*) € R+ denote the vectors whose elements are n(x;, 1., t*) and
Q(x;, t*), respectively, and let 7(f*) denote the matrix with entries 7} (¢*). After
the approximations in space and velocity previously introduced, equation (1) is
approximated by a set of coupled systems of ordinary differential equations
which can be written in a compact form as

(5) T g nex Qe r=1...N,

where
* = (4K * 1 /- 7 =P gk Os Y =D (px *
g-(, 0(t); Q")) = T (fm/z _fifl/z) —on'(t )—5—5;:1 ap’ (@) + Q).

Finally, each system of differential equations is solved using the MATLAB
function 0DE45.
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The way in which at each iteration we correct the source estimate is the
following:

(6) Q;k+1) Q(k)

Anj+sa k2071,...

The rule is based on the following consideration: if An;, ¢ > 0 this means that the
source at time ¢ was over-estimated and consequently we reduce Q"; on the
other hand, if An;;; < 0 the source was under-estimated and Q](.k) is therefore
increased.

The overall numerical scheme is sketched as follows.

Numerical scheme.

1. Given n = Moy(x;,u1,) for 1 =0,1,...,N, and r=1,..,N,; Qg)); ]\71_,» for
7=0,1,.
2. forj:O,l,..,st

21.fork=0,1,...
2.1.1. Compute the solution of (5) with g,.(t*, 7(?); Q;.k) ) on the interval [t* t]* o)
forr=1,...,N, '

2.1.2. Compute AnHq =L, it ) — M7+s; if |An;s| < ijH set Q; = Q](.k),
else update Q(k) according to (6).

We performed some preliminary numerical experiments in different situa-
tions. In order to have an “exact” solution for computing the errors, we first
solved the forward problem with a given source on a time interval [T, T]; than
we considered two times T and T such that 71 < Ty < Ty < T and solved the
inverse problem on the time interval [T, T]; the initial data nj(-’r = M(x;, 1, To)
and the set of measures M; are obtained from the solution of the forward pro-
blem.

Several test cases were considered, by assuming several kinds of time be-
haviour for the source, for example also considering a case in which sharp peaks
are superimposed to a smooth periodic trend. For this test we summarize here
some results.

We used two initial guesses, Q¥ = 0.1 (initial guess A) and Q(0> = 0.01 (initial
guess B); further, at each time step j > 1 we started from Q(O) Qj—1. A max-
imum number of 150 iterations was imposed. We remark that in our experiments
if such a number was reached, failure was not declared, but the final extimate
was accepted and the iteration proceeded. The given tolerance was ¢ = 1073,
Further,weset¢ =5,0, =0.2,L =1, Ly = 0.1. We assumed i = 14, N, = 8 and
N, = 100. The time step was given by 7 = 0.94x/y;.
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2.2

measures - 10°

Fig. 1. — Computed solution (dash-dot line) and exact solution (continuous line); dotted
line: measured data M; amplified by 10°.

The results obtained are summarized in figure 1, in which we plot (versus t*)
the results obtained for @; with initial guess B (dash-dot line); the computed
solution is compared with the exact one (continuous line). In the same figure we
plot the corresponding set of measures Mj used (dotted line), amplified by a
factor of 103.

From the figure it is clear that the qualitative behaviour of the computed
solution is quite satisfactory. In order to estimate the results, we compared the
computed and the exact solutions by analyzing the relative errors

1Q — Q)|
Q)

The values obtained are the following: the mean value of the relative error was
é, = 1.45 - 1073 with initial guess A and e, = 1.47 - 103 with initial guess B; the
maximum relative error was 1.85 - 102 with initial guess A and 1.92 - 10~2 with
initial guess B. We point out that in both cases the mean relative error has the
same order of magnitude of the relative tolerance used in the stopping cri-
terion.

Finally, in figure 2 we summarize the computational cost in terms of the
number of iterations needed at each step in order to satisfy the stopping cri-

() = j=01,...J.



778 S. PIERACCINI - R. RIGANTI - A. BELLENI-MORANTE

141 B

12f b

ML AR A Am\ H

100 200 300 400 500 600 700

Fig. 2. — Number of iterations versus the step counter j (initial guess A).

terion. Let us denote by K(j) the number of iterations performed at step j, in such
a way that Q; = QJK(’). Figure 2 show K(j) versus j, starting with initial guess A.
Similar results are obtained by using the initial guess B. Concerning the first
time step, we remark that, using the initial guess A, 34 iterations are needed in
order to satisfy the stopping criterion, while 58 iterations are needed when using
the initial guess B. In the subsequent steps, the initial guess at each step is good
enough that a moderate computational task is required in order to compute the
next extimate @; of the solution, except for those regions in which the solution is
steeper.
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