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On Supplements of Subgroups of Finite Groups (*).

XTANHUA Li1- A. BALLESTER-BOLINCHES

Sunto. — Nel presente lavoro viene introdotto e studiato il concetto di s-coppia per un
sottogruppo di un gruppo finito. Esso fornisce un modo uniforme per studiare l'in-
Sfluenza di alcune famaiglie di sottogruppi sulla struttura di un gruppo finito. Vengono
dati un criterio di appartenenza per un gruppo finito ad una formazione satura e
delle condizioni necessarie e sufficienti per la solubilita, la superrisolubilita e la
nilpotenza di un gruppo finito.

Summary. - In this paper the concept of s-pair for a subgroup of a finite group is in-
troduced and studied. It provides a uniform way to study the influence of some fa-
milies of subgroups on the structure of a finite group. A criterion for a finite group to
belong to a saturated formation and necessary and sufficient conditions for solubi-
lity, supersolvability and wnilpotence of a finite group are given.

1. — Introduction.

All groups considered are finite.

The relation between properties of subgroups of a group and its structure is
always a question of particular interest in the theory of groups. Of the various
families of subgroups that can influence on the structure of the group, those of
interest to us in this paper are maximal subgroups, Sylow subgroups and pro-
jectors associated to saturated formations.

It is well-known that each maximal subgroup of a soluble group is a com-
plement of a chief factor of G. Taking this elementary fact as starting point,
Deskins [5] and Mukherjee and Bhattacharya [8] introduced the interesting
concepts of normal index, completions and f-pairs, respectively. All of them are
associated with a maximal subgroup and turned out to be useful in studying the
normal structure of a group (see [1][2], [8], [10], [11] and their references). More
recently, the concepts of c-normality and c-supplementation introduced in [9]

(*) Supported by the National NSF of China (Grant N. 10571128) and NSF of Jiangsu
Province University (Grant N. BK2001133) and by Grant BFM2001 -1667 C03-03, MC, T
(Spain) and FEDER (European Union).
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and [3], respectively, also contribute to a better understanding of the normal
structure of the groups.

In this paper, the concept of s-pair for a subgroup H of a group G is in-
troduced and analyzed. When H is a maximal subgroup, then the 6-pairs for H in
G supplementing H are exactly the s-pairs for H in G. Moreover, a subgroup is c-
normal or c-supplemented if it has an s-pair of special type. Therefore s-pairs
provide a uniform way to study the influence of some families of subgroups on the
structure of a group.

Our main results spring from the following question: what do intrinsic
properties of s-pairs for a family of subgroups of a group G imply about G?.

We investigate in the paper how some conditions imposed on s-pairs for
maximal subgroups of Sylow subgroups imply that the corresponding group is
solvable, supersolvable or nilpotent (Theorems 2 and 3). Note that Sylow p-sub-
groups for a prime p are the projectors associated with the saturated formation of
all p-groups. In this direction, we obtain necessary and sufficient conditions for a
group to belong to a saturated formation provided that the maximal subgroups of
the associated projectors have special s-pairs (Theorem 1).

We shall adhere to [6] for notation, terminology and results.

2. — s-pairs for a subgroup.

We begin with the following definition:

DEFINITION 1. — Let H be a subgroup of a group G. A pair (A, B) of subgroups
of G is said to be an s-pair for H in G if (A, B) satisfies the following properties:

(i) G =HA and B = Coreg(A N H),
() if A1/B is a proper subgroup of A/B and A1 /B 2G/B, then G # HA;.

For brevity, we shall denote Xy = Coreq(X) for a subgroup X of a group G.
Obviously the pair (G, Hg) satisfies condition (i). Hence the set
S={A|H; <A:G, G=HA}

is non-empty. Let A be an element of S of minimal order. It is clear that (4, Hg)
is an s-pair for H in G. Thus we have proved:

PROPOSITION 1. — For every subgroup H of a group G, the set s(H) of all s-
pairs for H in G is non-empty.

It is clear that if H is a maximal subgroup of G, then every element of s(H) is a
0-pair for H in G (see [8]).
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A partial order is defined in s(H) by means of (4,B) < (C, D) if and only if
A < C.Inthiscase B < D also. [tis clear then what is meant by saying that (4, B) is
a maximal s-pair for H. Maximal elements in s(H) do exist. In fact, if (4, B) € s(H),
there exists a maximal element (C, D) € s(H) such that (4, B) < (C, D).

The following proposition is frequently used in induction arguments. Its proof
is standard.

PROPOSITION 2. - Let H be a subgroup of G and let N be a normal subgroup
of G contained in H. Let (C, D) be an s-pair for H in G such that N < D. Then
(C/N,D/N) is an s-pair for H/N in G/N.

We say that an s-pair (C, D) for H in G is normal if C is a normal subgroup
of G.

Let (A,Hg) € s(H) be the s-pair obtained above, where A is an element of
minimal order in the set of the normal supplements of H in G containing H;. If
(C, D) is an s-pair for H in G such that (A, Hg) < (C,D),then A < Cand D = Hg.
Assume that A < C. Then G # HA since (C,D) is an s-pair for H in G.
Consequently (4, Hg) is a maximal s-pair for H in G which is normal. In general,
A/Hg is not a chief factor of G as a subgroup of order 2 of the alternating group
of degree 4 shows. However A/H; is actually a chief factor when H is a maximal
subgroup of G.

Next we use s-pairs to characterize c-normality and c-supplementation.

Recall that a subgroup H of a group G is said to be c-normal (respectively,
c-supplemented) in G if there exists a normal subgroup (respectively, a sub-
group) K of G suchthat G = HK and H N K < Hg (see [9] and [3], respectively).

PROPOSITION 3. — Let G be a group and let H be a subgroup of G. Then:

1. H is c-normal in G if and only if there is a normal s-pair (A, B) for H in
G suchthat HNA = B.

2. His c-supplemented in G if and only ifthere is an s-pair (A, B) of H in G
such that HNA = B.

Proor. — We only give a proof for the case 2.

Suppose that H is c-supplemented in G. Then there exists a subgroup K such
that G = HKand HNK < Hq.If C = KHg,thenG = HCand HNC = H; = B.
Suppose that A/Hgz 2G/Hg and A is a proper subgroup of C. If G = HA, it
follows that C = A(C N H) = AH; = A, a contradiction. Therefore we have that
(C,Hg) is an s-pair for H in G.

The converse is clear.

Note that if K is normal in G, then C is normal in G. Therefore the proof for c-
normality is exactly the same to the one used for c-supplementation. ]
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3. — Main results.

Our main results involve maximal subgroups of projectors associated with
saturated formations. Recall that a formation is a class of groups § which is
closed under taking epimorphic images and such that each group G has an
smallest normal subgroup N with G/N € . This subgroup is called the F§-re-
sidual of G and it is denoted by G5. A formation ¥ is said to be saturated if a
group G € § provided the Frattini factor group G/&(G) is in .

If % is a formation, a subgroup H of a group G is called an F-projector of G if
HN /N is a maximal -subgroup of G/N whenever N is a normal subgroup of G.
It is well-known that if the formation ¥ is saturated, then every group has §-
projectors. Moreover if N is a normal subgroup of G and P/N is an §-projector of
G/N, then there exists an F-projector Py of G such that P = PyN (see [6,
Chapter III] for details). It is also well-known that a formation § is saturated if
and only if it is locally defined, that is, there exists a formation function f such
that i = LF(f). Moreover if i is saturated, then % is locally defined by a unique
formation function F' which is integrated and full; this F is called the canonical
local definition of ¥ = LF(¥) (see [6, Chapter IV] for details).

DEFINITION 2 ([2]). — Let § be a saturated formation with canonical local
definition F. Let A and B be subgroups of a group G such that B <G and B < A.
We say that A/B is §-central in G if (G/B)F P < Cg(A/B) for each prime
p € n(A/B), the set of primes dividing |A/B)|.

It is clear that if A/B is a chief factor of G, then A/B is §-central in G in the
sense of the above definition if and only if it is F-central in the classical sense (see
[6, IV,5.6]).

In [2], it is proved that a group G belongs to a saturated formation % if and
only if each maximal subgroup has a maximal f-pair which is -central in G. We
prove:

THEOREM 1. — Let § be a saturated formation. A group G belongs to T if and
only if for each maximal subgroup H of each F-projector of G, there exists an s-
pair (C, D) for H in G such that C/D is §-central in G.

PROOF. — Assume that G is a group in . Then G is the unique F-projector of
G. Let M be amaximal subgroup of G, and let C'/Coreg (M) be a minimal subgroup
of the primitive group G/Coreg(M). Then C/Cores(M) is an F-central chief
factor of G supplementing M in G by [6, IV,5.7]. Consequently (C , Coreq(M )) isa
maximal s-pair for M in G such that C/Coreqs(M) is F-central in G.

Suppose that for every maximal subgroup H of every §-projector of G there
exists an s-pair (C, D) for H in G such that C/D is ¥-central in G. We prove that G
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belongs to § by induction on |G]|.

Let N be a minimal normal subgroup of G. We see that G/N satisfies the
hypotheses of the theorem. To see this, let 7'/N be an -projector of G/N. Then,
by [6, 111, 3.7, 3.9], we can find an F-projector Ty of G such that 7' = TyN. Let
A/N be a maximal subgroup of 7/N. It is clear that A = 71N for some maximal
subgroup T of Ty containing N N 7. By hypothesis, there exists an s-pair (C, D)
for 7y in G such that C/D is $-central in G. Then G = A(CN). Denote
F = Coreg(A N CN). Suppose that (CN, F') is an s-pair for A in G. By Proposition
2,(CN/N,F/N)is also an s-pair for A/N in G/N. Moreover (CN /N) /(F/N)is &-
central in G/N. Assume that (CN, F') is not an s-pair for A in G. Then there exists
a normal subgroup S of G contained in CN such that (S, F') is an s-pair for A in G.
It is clear that n(S/F) is contained in #(C/D). Moreover [GF® S]<
[GF® CN] < DN < F for all primes p € 7(S/F). This means that (S/N)/(F/N)
is §-central in G/N. Consequently the s-pair (S/N,F/N) of A/N in G/N has the
required properties. By induction, we have that G/N € §.

Consequently, every proper epimorphic image of G belongs to . Assume,
arguing by contradiction, that G is not in %, so that it has a unique minimal
normal subgroup N and there exists an F-projector M of G such that G = NM.
Let M; be a maximal subgroup of M. Then there exists an s-pair (K, L) for M; in
G such that K /L is §§-central in G. Since L is a normal subgroup of G contained in
M and N is the unique minimal normal subgroup of G, it follows that L = 1 and
then 1 # GF@ < Cg(K) for all primes ¢ dividing |K|. If N were non-abelian, we
would have K < Cg(N) =1 and M = My, a contradiction. Thus N is abelian and
K < Cg(N) = N. This implies that G = MN = M;N, NNM =N nNM; =1 and
M = M, a contradiction. Consequently G € & and the theorem is proved. M

It is known that a group with cyclic Sylow subgroups is metacyclic. For
groups with non-cyclic Sylow subgroups, we have:

THEOREM 2. — Let G be a group with at least a non-cyclic Sylow subgroup.
Then G is solvable (respectively, supersolvable) if and only if for every maximal
subgroup H of any non-cyclic Sylow subgroup of G, there exists (A, B) € s(H)
such that A/B s solvable (respectively, supersolvable).

PrOOF. — Suppose that the result is false and let G be a counterexample of
minimal order. Let N be a minimal normal subgroup of G. If G/N has no non-
cyclic Sylow subgroups, then G /N is metacyclic and so G/N is supersolvable. Now
if G/N has at least one non-cyclic Sylow subgroup, we can argue as in the above
result to conclude that G/N satisfies the hypotheses to the theorem (here we
apply that solvable and supersolvable groups are subgroup-closed classes). The
minimal choice of G implies that G/N is solvable (respectively, supersolvable).
Since both classes are saturated formations, it follows that G is a group with a



572 XIANHUA LI - A. BALLESTER-BOLINCHES

unique minimal normal subgroup, N say. Moreover, N is non-Frattini. We dis-
tinguish two cases:

Solvable case. Since G/N is solvable, it follows that N is a direct product
N = Nj x N2 x Ny, where the N; are isomorphic non-abelian simple groups for
1 <4 <t.Suppose that ¢ > 1 and let p be a prime dividing |N|. If G, is a Sylow p-
subgroup of G, we have that G, is not cyclic. Let H be a maximal subgroup of G,.
We know that there exists (C, D) € s(H) such that G = HC and C/D is solvable.
Since N is not abelian and D is a normal p-subgroup of G, it follows that D = 1.
Now C contains a Sylow r-subgroup of G for each prime r # p. This implies that
N1 : C N Nq| is a power of p. Therefore Ny has subgroups of more than two
different prime power indices because |7(N1)| > 3. This contradicts the results of
[7]. Consequently ¢ = 1, that is, N is a non-abelian simple group. We can assume
that a Sylow 2-subgroup G of G is not cyclic, because otherwise the group would
be 2-nilpotent. Arguing as above, for each maximal subgroup P of G, there exists
(C,1) € s(P) such that G = PC, C is solvable and |[N : C N N| = 2°. Applying [7],
N = PSL(2, q) for a prime ¢ = 2 — 1 and N N C is a maximal subgroup of N of
index 2. Moreover N N C is the normalizer in N of a Sylow ¢-subgroup of G
(see [4]).

On the other hand, it is clear that G is isomorphic to a subgroup of Aut(N).
Moreover, |[Aut(N) : N| = 2 (see [4]). Hence either G = N or G = Aut(N).

Assume that G = Aut(N). Let Q be a Sylow g-subgroup of G. It is known that
D = Ng(Q)is a subgroup of order ¢g(q¢ — 1) and G = NN(Q) (see [4]). Let Do be a
Sylow 2-subgroup of D and let G2 be a Sylow 2-subgroup of G containing Ds.
Since Dy is a proper subgroup of Gg, it is contained in a maximal subgroup T of
Gs. By hypothesis, there exists (4, 1) € s(T) such that G = TA. Then N N A is the
normalizer in N of a Sylow g-subgroup of G. Without loss of generality we can
assume that N N A = N N D. This implies that N N A is a maximal subgroup of D
contained in N4(Q). Suppose that N N A = N4(Q). Then, if G were equal to AN,
we would have |A| = g(g — 1) and then A = D, a contradiction. Therefore A is
contained in N, A < D and so Gz = T, a contradiction. Consequently, D = NA(Q)
and D = A. But, in this case, we have that G» = T, a contradiction.

If G were equal to N, we would argue in a similar way to get the final con-
tradiction.

Supersolvable case. We have that G is solvable by the above case. This implies
that N is an abelian self-centralizing minimal normal subgroup of G and there
exists a core-free maximal subgroup M of G such that G = NM, NN M =1 and
M is supersolvable (see [6, A, 15.2]). It is clear that N is not cyclic. Let p be the
prime dividing |N| and suppose that N is a Sylow p-subgroup of G. Let P; be a
maximal subgroup of N. By hypothesis, there exists an s-pair (C,1) of Py such
that G = P;C and C is supersolvable. Then N N C is a non-trivial normal sub-
group of G. Since N is the unique minimal normal subgroup of G, it follows that
N =NnNCand G = C, a contradiction. Hence N is not a Sylow p-subgroup of G.
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In this case, we can find a non-trivial Sylow p-subgroup M, of M such that
P = NM,, is a Sylow p-subgroup of G. Let q be the largest prime dividing |G| and
let @ be a Sylow g-subgroup of G. If p = ¢, then N is contained in  and so Q is
normal in G because G/N is supersolvable. In particular, @ is contained in N, a
contradiction. Hence g # p. We can assume that @ < M. Since M is super-
solvable, it follows that M = N4(Q). Let P be maximal subgroup of P containing
M,,. By hypothesis, there exists an s-pair (H,1) of P3 such that G = PsH and H is
supersolvable. Then H contains s Sylow g¢-subgroup of G. Without loss of
generality we can assume that @ is contained in H. Thus H is actually contained
in M. Let M, be a Hall p'-subgroup of M such that M = MpM,,. Then
G =P3H = PsM = PsMpM, = PsM,, a contradiction. |

Nilpotent groups admit an analogous characterization.

THEOREM 3. — Let G be a group with at least a non-cyclic Sylow subgroup.
Then G is nilpotent if and only if for every maximal subgroup H of any non-
cyclic Sylow subgroup of G, there exists (A, B) € s(H) such that A/B is nilpotent.

ProoF. — Obviously every nilpotent group satisfies the required condition.
Assume that G is a group with at least a non-cyclic Sylow subgroup such that for
every maximal subgroup H of any non-cyclic Sylow subgroup of G, there exists
(A, B) € s(H) such that A /B is nilpotent. We prove that G is nilpotent by induction
on the order of G. Applying the above theorem, G is supersolvable. Suppose that »
is a prime dividing the order of G and let R be a normal Sylow r-subgroup of G.
Assume that R is not cyclic. Then R/®(R) is a non-cyclic Sylow r-subgroup of
G/®D(R) (note that ¢(R) is normal in G). If @(R) # 1, then G/ D(R) is nilpotent by
induction. This implies that G is nilpotent. Therefore we may assume that
@®(R) =1. Then R = N1 x N2 x --- x N5, where N; are minimal normal sub-
groups of G and |N;| = r. Let H; = N1 x --- X N;_1 X N;j;1 X --- x Ng. Itis clear
that H; is a maximal subgroup of R. By hypothesis, there exists an s-pair (4, B) of
H; such that G = AH;, B = (AN H;); and A/B is nilpotent. Let G- be a Hall -
subgroup of G. Since N;G,. is isomorphic to G/H; and G/H; is an epimorphic
image of A/B, it follows that N;G,, is nilpotent. This implies that G, is contained
in Cq(N;) for any ¢ with 1 <+ <s. Moreover, G,/ is nilpotent. Therefore G is
nilpotent.

Consequently, we may assume that every normal Sylow subgroup of G is
cyclic. Let P be the normal Sylow p-subgroup of G for the largest prime p di-
viding the order of G. Then P is cyclic. Let @ be a non-cyclic Sylow ¢g-subgroup of
G for some prime q. It is not difficult to prove that PG, satisfies the hypothesis of
theorem. Hence if PG, # G, then PG, is nilpotent. Now, by induction, G/N is
nilpotent. Therefore PG, is normal in G and so G, is also normal in G, a con-
tradiction.
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Consequently, we have that G = PG, for a prime ¢ such that G has a non-
cyclic Sylow g-subgroup. It P is central in G, then G is nilpotent and the result is
true. Assume that P is not central in G and let @ be a maximal subgroup of G,
containing the Sylow g¢-subgroup of Cg(P). By hypothesis, there is an s—pair
(C,D) of @ such that G = QC, D = (@ N C)g and C/D nilpotent. Then a Sylow g-
subgroup C, of C'is a normal subgroup of C. On the other hand, C}, = P is normal
in C. Hence C'is nilpotent and G = QCg(P). This implies @ = G, a contradiction.

|
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