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Numerical Treatment of a Time Dependent Inverse Problem
in Photon Transport.

S. PIERACCINI - R. RIGANTI - A. BELLENI-MORANTE

Sunto. — St studia un problema inverso unidimensionale per un’equazione integro-
differenziale del trasporto di fotoni, e si determinano le proprieta di una sorgente di
fotoni ultravioletti immersa in una nube interstellare. Un procedimento iterativo che
st basa sulla discretizzazione spazio-temporale del problema divetto, porta alla de-
terminazione della intensita della sorgente e delle sue variazioni al crescere del
tempo.

Summary. — The time-dependent intensity of a UV-photon source, located inside an
wnterstellar cloud, is determined by formulating and solving an inverse problem for
the integro-differential transport equation of photons in a one-dimensional slab.
Starting from a discretizazion of the direct problem, an iterative procedure is used to
compute the values of the source intensity at increasing values of time, and it is
applied in some numerical simulations, whose results are presented and discussed.

1. — Introduction.

In the framework of astrophysical applications, a great interest is devoted to
inverse problems allowing to evaluate some physical and geometrical properties
of UV-photon sources, that are located somewhere inside interstellar clouds.

Based on known model equations regarding both the photon transport theory
[1, 8, 11] and the nature of interstellar medium [6], contributions in this field are
given, among several others, in [7, 9] and more recently in [3, 5] where time-
independent inverse problems were considered, related to a source g(x) emitting
UV-photons inside an interstellar cloud, which is represented by a slab that
occupies a bounded region —L < x < L of the galactic space and is composed of
an homogeneous mixture of low-density gases and dust grains. These problems
were studied by using a stationary version of the photon transport equation,
where time is not present or is treated as a parameter [4].

On the other hand, the more general inverse problem dealing with the time
evolution of some physical properties of the photon source was recently studied
in [2]. Here, by assuming that the source q(x, ) is spatially homogeneous within a
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region Vo ¢ V c R? and that a time series of “far field” measurements of the
photon density is known, it was proved that it is possible to identify the time
behaviour of the source by means of a suitable time-discretization procedure of
the photon transport equation, leading to explicit formulae for the source in-
tensity q(t) at discrete times ¢;, j =0,1,...,J.

In this paper, such a discretization procedure is developed and a time dis-
cretization algorithm, leading to the explicit determination of the source in-
tensity, is applied by assuming a one-dimensional model of the cloud, that will be
represented by the slab V = {& : —L < < L} containing a photon source to be
identified. Then a numerical iterative approach is proposed in order to obtain an
approximation of the time-behaviour of the source at discrete times.

The mathematical formulation of this one-dimensional problem is given in
Section 2, where the photon transport equation and the initial and boundary con-
ditions are presented. In Section 3 the inverse problem consisting in the identifi-
cation of the source q(x, t) is treated, by deriving its explicit solution in terms of a
sequence of values ¢(x, ;) depending on known values of the photon densities at
discrete times ¢;. In Section 4 the numerical techniques allowing the determination
of an approximated solution of the above inverse problem are considered, and the
results of some numerical simulations are presented and discussed.

2. — The mathematical model.

We consider the slab of width 2L shown in Fig. 1, “representing” an inter-
stellar cloud where photons, produced by a source q(x,?) > 0, x € ( — Lo, Lg) C
(—L,L), t €[ty,ts], undergo capture and isotropic scattering processes with
constant total and scattering cross sections ¢ and oy respectively, with
0 < g5 < 0. Let ¥ = cii be the velocity of photons (c is the speed of light) and
1 =1 -7 = cosd. Let us further assume non-reentry boundary conditions for the

Fig. 1. — Geometry of the problem.
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photons at ¥ = — L and at « = + L. Then the photon transport equation, the
boundary condition and the initial condition have the form

1
B ON
(1) i N@ 18 == ous s~ coN + ‘% f NG, i, gl + eqle, t)
-1

(3) N(xvlua O) :No(x7ﬂ)

where N(x, u,t) is the number density of photons having a velocity component
¥-7=cu with u € [ —1,1] and which at time ¢ are at « € [ — L, L]. It is con-
venient to rescale the time independent variable by setting t* = ct and re-write
(1)-(3) in terms of the number density M (x, i, t*) = N(x, u,t*/c) = N(x, u,t) as

_ oM
ot " ow
(5) M(_Lmuvt*):()v /16(071]7 M(Lnuat*):oa /“‘e[_170)

1
(4) 9 Mty = — 1™ oyt % f Mz, 1, t)dgd + Q(, t*)
-1

(6) M(xnu70) :M()(QC,,U) :NO(xuu)

where Q(x,t*) = q(x,t*/c) = q(x, ).
The abstract version of system (4)-(6) in the Banach space X = L'([ — L, L]x
L +1

[ — 1,1]), endowed with the norm ||f|| = [ dx [ |f(x,)|du, can be put into the
form L1

) %M(t*) = B+EKME)+QE), t">0

M©O) = M,

where M(t*) = M(-,-,t*) : [0, +00) — X, Q(t*) = Q(-,t*) : [0, +00) — X are now
maps from [0, +00) into the Banach space X and the operators B, K are defined
as

8  Bf)x,w :—u%—af, D(B) = {f feX, ﬂ%{c € X, f satisfies

the boundary condition (5)}

11
©)  &N@w="7 [ fed, DK =X,
g}

The main properties of these operators have been discussed in [2] and may be
summarized by the following lemma.
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LEMMA 1.
(i) K € B(X), i.e. K is a bounded operator, with |K|| < o5 ;

(ii)) B € 64, —0;X), i.e. B s the generator of a strongly continuous semi-
group {exp (t*B), t* > 0} such that || exp ¢*B)|| < exp (— at*) VE* > 0.

In view of its application in the discretization procedure of (7) which will be
proposed in the next Section, it is useful to calculate explicitly the inverse operator
(I — B)™!. To this aim, putting (Al — B)f = ¢, from definition (8) we have that

3f Ato
890

f__

or equivalently

A,

where f must satisfy the boundary conditions (5). Integration with respect to
x €[ — L,x] yields

exp (’H—G w)f(x,u)— eXp<—M L)f( L, = 1 feXp (ﬂﬁ 90’)9(90'7#)03%’-
Iz Il s 1

Hence, if u € (0,1] then f( — L, ) = 0 and so we obtain

w  fep-, [ exp |

g (¢ — ac/)] g, wda', € (0,1].
‘L

Likewise, by integrating (10) from x to +L:
L
) 1 )
exp(“E7 L) £ - exp(*5 %) oo = [ e (0w
I 0 Jz I

X
and taking into account that f(L, ) = 0if u € [ — 1,0), we have

)g(m’w)dac’

(12)  flw,p) = |fex [ 7 @- w’)}g(ﬁc wdx',  pel—-1,0).

Equations (11) and (12) hold for every 1 > — g, see (i7) of Lemma 1. In particular,
if A=1/7r> 0, (11) and (12) give

1 f”exp[ 1+
W

L]exp[ 1470 0 ac)]g(x wda',  pel—1,0).
tlul J

7 (- x’)} 9@, wdx', e (0,1]
(13) I —tB) g =
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3. — The time dependent inverse problem.

As anticipated in the Introduction, assume now that the values
M M(L, ,u,t*) of the photon density with «x = L and i > 0 are measured
at the mstants = g, 7=0,1,...,J where 7 is a constant time interval. In
fact, the measurements are made at some & “far from the slab”, i.e. the
values M(&, i, t*+t*) with ¢ = (& — L)/iv and with &> L are measured.
However, since M(ac u,t* + 1) = M(L, ,u,t*) we may assume that the values
M M(L, 1, t;) are known

Let us discretize (7) as follows

Nn; —N; .
(14) %:B%ﬁl{nﬁ@j, j=0,1,....J, mny= M,

where Q; = Q(x, t]*). Here n; =mn;(x,u) approximates M;(x,u) = M(x,u, t;)
within an error which, as proved in [2], satisfies the inequality ||n; — M;|| <y, Vj,
where y is a suitable positive constant.

It follows from (14) that

(I—‘L’B)%j+1 :n7'+TK7L_7'—|—TQ_7', 7=01,....J
i1, 1) = [ — tB) U + tKm)w, ) + [ — tB) ' @1, p0).

Hence, by using (13) and the definition (9) of the operator K:

(15) mjy1 (2, 1) = f da’ eXp{ Lo (x — x’)] {nj(x’,ﬂ)

2
|

+1
+2 nj(x/,ﬂ’)dﬂ/HQj(x')}, e 0,1]

1+10

L
(16)mjyq (o, 1) = % 5!- dx’ exp {— (x — x’)} {nj(.oc’,,u)

+1
+T2ﬁf nj(x’,ﬂ’)dﬂ”erj(ﬂc’)}, uwel—1,0).

-1

In order to extract from (15) and (16) the unknown values of @;(2') in terms of the
measured densities M ;, some assumptions on the spatial distribution of the
source are needed. If, in particular, we assume that for each ¢* the source has a
uniform distribution Va € [ — Lg, Lo], so that

; = aconstant > 0, &' €[ — Ly, L)
(17) Q] 90/) _ { Q] 0,440

07 xlg[*LOaLO]’

then (15) and (16) become respectively:
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o if € (0,1]:

1+
T

X
_ 1 /
(18)mjq (2, 1) —a [dm exp [_

+ 520 [ @ au

1+70

X
_1 /
(19) njﬂ(ac,,u)—a:[dac exp[—

1
+ {1 —exp[—

1

+ 10
U

X
1
(20) mj 1, p) =— f dx’ exp [—
w T

+{ew|-1

+ 10
U

(x + Lo)

(x — Lo)} — exp {—
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(- x’)} {nj(x’, o)

+1
-L<x<-L

}

-1

b
+1

nj(xl,ﬂ)-i‘% f ni(a’, 1 )dyd!
-1

(x—ao

~

I
|
I

Q;
14017’

+1

—Lo < <L
T0
ni(@', 1) +78 f n; (@, 1)yl
3

}
e}

Lo<x<L.

/

~

(x—x

1+10
TH

‘L'Qj
1407’

o ifuc[—1,0)
1 1+ -
T0 T0O.
21) nja, 0 =— f da exp | — (& — ) [ mi', 1) + 57 f ni(@’, p)dyl
tlul J @ 2 J
+ {exp{—l +w(ac—FLo)} — exp[—1 +w(oc —LO)} } Q) ,
T Th 1+ot
—L<x<—-Ly
1 f 1+ i
10 10
(22) mjpq(ae, ) =— fdx’ exp|— (x—a) |4 n', 1) + = f ni(a’, ()
tlul J T 2 J
1+ 70 Q;
- - - % _Ly<x<
+{1 exp{ ” (x LO)]}IJrar’ Lo <x <Ly
1 f 1+
T0
(23) mja(e,0) = = f da’ exp [— (¢ — oc’)] {nj(xﬂﬂ)
t +1
+ % f nj(ac’,u’)d//}, Ly<x<L.
2
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The value of ;. 1(L, jt) = #j;1, which is obtained by setting « = L, u= i >0 into
(20), approximates the “far-field” density M7+1 M(L, i +1) =M@, it it )
measured at time ¢, +t If %;,1 is known through MHl, equation (20) gives

explicitly the Values of the source at time ¢
L +1
1) 1 / / /o~ 105 ’o ’
(24) Qj=—-M; 1 —— fdﬁc exp|— — n;(@', () +—5- fnj(x,/z)d,u
X R} 2 -1

j=0,1,...,J

where y is the (strictly positive) constant

@) 1 =ﬁ{exp[

and where n;(x, 1) is known from “step j”.

The set of equations (18-25) allows to determine the solution of the inverse
problem, consisting in the determination of the time evolution of a source with a
uniform spatial distribution as in (17). Starting with j = 0, the values of no(«’, i)
at any («',u') € [ — Lo, Lol x [ — 1,1], which are needed to calculate the in-
tegrals on the right hand side of (24), are given by the initial condition
Mo, 1), see (14). Since 7, = M, is known, then @y can be explicitly de-
termined. Correspondingly, inserting @y into (18)-(23) with j = 0 gives the
values of n;(x, 1) which allow to calculate the right hand side of (24) for j =1,
used to determine @1, and so on.

Therefore, the whole set of Q;, j =0,1,...,J can be determined, at least in
principle, in terms of the photon density nj(ac 1), to be calculated at the same
time ¢;, and of the data M]H measured at time ¢7 + 7. However, it will be ex-
plained in the next Section that the numerical treatment of (24) appears to be
very hard from a numerical point of view, and for this reason a different ap-
proach, consisting in a suitable iterative procedure, will be used to obtain
quantitative results for the solution of the inverse problem.

1+w

(L - Lo)} - exp[

REMARK 1. - If one is interested in considering a more refined spatial dis-
tribution of the source Q;(x) instead of the uniform one, see (17), then in general
the knowledge of one or more additional sets of “far field” measurements is
needed, in order to evaluate simultaneously other unknown parameters of the
assumed distribution, such as its mean and/or its variance. Alternatively, one
could identify the various Q;(x) starting from one far-field measurement, pro-
vided that the @;’s are assumed to belong to a suitable family F of functions of
x €[ —L,L], see [2].

In particular, the solution procedure developed in this Section is still effective
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if model (17) is replaced by

(26) Q](x ) { 2L0Q7 (ﬂ(x ) 90/ S [ - L07L0]

x' €[ — Lo, Lol’
where ¢(x') is a given, bounded and even function satisfying

0
o) > 0; f p(a)dx' = %

and where the @;’s are again the quantities to be evaluated (in this case, F
contains only ¢). In fact, by using (26) one easily obtains that the solution se-
quence {Q;} will still be given by (24) with the constant y replaced by

/= 2Lo { 1—|—ar(L_ ,)]
and the densities 7,1, =0,...,J are now determined as follows:
o if u € (0,1]:

I

nj+l(x7/'l) :M; ~L <x < _LO

T

1

N1 (2, 1) :a[l 1(@, 1) + 2LotQ;13(x, 10)], —Lo <x < Ly

1
nj1 (X, 1) =a[11(907 1) +2LotQily(x, )], Lo <x <L

e ifuec[—1,0):
1
112, 1) =m[12(9w) + 2LotQil4(x, 1)), —L <x < —Ly
1
Njy1(2, 1) Zm[fz(%ﬂ) +2LotQil5(x, )],  —Lo < <Ly
Io(zx,
anrl(xv ,U) = 21('|ﬂ|ﬂ), LO <x < L

where I1, I are the same integrals on the right hand side of (18)-(23), i.e.

+1
' } {nj(x'#) + % f ﬂf(%’,ﬂ’)dﬂ’}

-1

Ii(e, ) :f dx’ exp {—
L

L +1
/ ]' + / / S / ! /
L, ) = [ da exp [— wf" (ac—x)] {nj@c,mﬂ; Il "j(x,ﬂ)dﬂ}
X

-1
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and in addition the integrals

- 1
I3(x, 1) = f da'p(x") exp {— jﬂw (x — x’)]

,LO

Ly
1
Ly, ) = f dx’¢(x’)exp[— jﬂw (x—x’)}

Lo

Ly
1
I, 1) = f da' (') exp [— jﬂ“’ <x—x'>}

can be calculated when the appropriate ¢(x’) is chosen. O

4. — Numerical procedure and application.

Formula (24) turns out to be unsuitable from a computational point of view,
since the expressions (24) and (25) tend to become extremely ill-conditioned
when the time step 7 is decreased.

Hence, in order to solve numerically the inverse problem, we use a different
strategy, based on a iterative approach: given an initial estimate QJ(O) for the value
Qj, we solve the direct problem integrating system (4)-(6) from tr to &7 + AT,
where AT is such that at time t* + AT the contribution of the source at tlme t* has
reached the boundary of the cloud. Let s be such that ¢; + AT = ¢}, . Then, we
compare the photon number density computed on the boundary at tlme ¢ , With
the set of measures. Let us denote by 4n;. , the difference between the computed
value and the measure. If |4n; | is smaller then a given tolerance, we accept the
estimate for the source, otherwise we properly correct the estimate by assigning
a new value Q<D and we repeat the process. When a estimate Q(k) is accepted, we
proceed with the next time step, starting again the process from tr,

As far as the direct problem is concerned, it is solved as follows First, we
discretize the velocity field, considering N, values g, in the interval [ — 1,1]. The
integrals (9) are approximated by Gauss-Legendre quadrature rule, hence the
values u,, 7 =1,..., N, correspond to the gaussian nodes on the interval [ — 1,1],
which we assume labeled from the largest (x) to the smallest (uy, ). Let us de-
note by a, the corresponding weights. Further, let us denote by n(zx, u,,t*) the
approximation of M(x, u,., t*). Equation (4) is then approximated by the following
set of coupled equations:

9 " Op, (@, ., 1)
o @, w1, 1) = — 5

27) ot

N,
* Os * *
—on(a, f,,t )+§pz:;apn(w7up,t )+Q(x, 1)

forr=1,...,N,.
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Next, we consider a spatial discretization, following a method-of-lines ap-
proach. Let us introduce the grid points x;,1/2 = —L + idw, for i =0, ...., N,; and
Ax = 2L /N,. Let x; = (x;_1/2 +®;11/2)/2 denote the cell centers. By using a
WENO reconstruction procedure [10], equations (27) are approximated by

dn(x;, u,, t*) 1

N,
7 7 * Os * *
de* - Z (ﬁ+1/2 _ﬁ—l/Z) - O-n(xi; lurat ) + Eé apn(%ia /"p?t )+Q(xlat )7
e Zp:1

fori=0,...,N, and » = 1,..., N,, where the numerical ﬂqu‘i+1/2 is obtained by a
fifth order WENO scheme.

Let n"(t*), Q(t*) € RY denote the vectors whose elements are n(x;, u,, t*) and
Q(x;,t*), respectively, and let 7(t*) denote the matrix with entries 7} (¢*). After
the approximations in space and velocity previously introduced, equation (4) is
approximated by a set of coupled systems of ordinary differential equations
which can be written in a compact form as
dn"(t*)

dt*

(28) = g, (", n(t"); QE)), r=1,...,N,,

where

1 ; , T
96,0 QU = (e —fiae) — oW @) + % D aE) + Q)

1.2p

measures - 10°

0.8

0.6

0.4

0.2

0\ 1 1 1 1 1 1
2 4 6 8 10 12 14

Fig. 2. - Test 1. Computed solution (dash-dot line) and exact solution (continuous line);
dotted line: measured data M; amplified by 103.
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Finally, each system of differential equations is integrated using a proper
ODE solver.

The way in which at each iteration we correct the source estimate is the
following:

(29) QY =QP -, k=0,1,..

The rule is based on the following consideration: if An;, ¢ > 0 this means that the
source at time ¢ was over-estimated and consequently we reduce Q;k); on the
other hand, if An;; < 0 the source was under-estimated and Qj(-k) is therefore
increased.

The overall numerical scheme is sketched as follows.

Numerical scheme.

1. Given initial data n?,, = Mo(x;, 1) onr 1=0,1,..... N, and » =1, ..., N,; an in-
itial guess QE)O); a set of measures M; for j = 0,1, ..., J; a tolerance ¢
2. forj=0,1,..,J —s

1.61 7
1.4¢
1o} measures - 10° J

i \

0.8

0.6

04

0.2

4 6 s 10 iz 1

Fig. 8. — Test 2. Computed solution (dash-dot line) and exact solution (continuous line);
dotted line: measured data M; amplified by 10°.
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2.1. fork=0,1,...
2.1.1. Compute an approximate solution of (28) with g,.(t*, 7(t); Q;.k)) on the
interval [t7,t7, ] for r =1,...,N, '
2.1.2. Compute Anm =n(L, i, ]H) M3 | | < e set Q=@
else update Q(k) according to (29).

We performed some preliminary numerical experiments in different situa-
tions. In order to have an “exact” solution for computing the errors, we first
solved the direct problem with a given source on a time interval [T, T]; than we
considered two times Ty and Tr such that 77 < Ty < Ty < Tz, and solved the
inverse problem on the time interval [T, T¢]; the initial data n = M(xj, ., To)
and the set of measures M are obtained from the solution of the direct problem.

We examined three test cases. First, we considered a source given by

“ at* + b sin(ct*)
Q") =7

2
with a, b, ¢ given constants satisfying Q(t*) > 0; we assumed a = 1, b = 0 (test 1)
and a =1, b =4, ¢ =1 (test 2). Further, we considered (test 3) a source with a
more generic time behavior in which sharp peaks are superimposed to a smooth

2.2

measures - 1 03

2 4 6 8 10 12 14

Fig. 4. - Test 3. Computed solution (dash-dot line) and exact solution (continuous line);
dotted line: measured data M; amplified by 10°.
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periodic trend, analitically given by

Q@ﬁ:1+£%mﬂywﬂ+ﬁ%gmnWﬂ+%e%w”w+§e4W4ﬁ+ge*W”Bf

In all the tests we used two initial guesses, @, = 0.1 (initial guess A) and
QY = 0.01 (initial guess B); further, at each time step j > 1 we started from
Qjo) = @j_1. A maximum number of 150 iterations was imposed. We remark that
in our experiments if such a number was reached (as happened in one of the tests
here reported), failure was not declared, but the final estimate was accepted and
the iteration proceeded. The given tolerance was ¢ = 103 Further, we set ¢ = 5,
0s=02,L=1, Ly=0.1. We assumed i = 1y, N, =8 and N, = 100; the time
step was given by t = 0.94x/u;. Finally, the system of ODEs was solved using
the MATLAB function 0DE45.

The results obtained on the three test cases are summarized in figures 2, 3
and 4. In figure 2 we plot (versus ¢*) the results obtained for Q; for test 1 with
initial guess B (dash-dot line); the computed solution is compared with the exact
one (continuous line). In the same figure we plot the corresponding set of mea-
sures M7 used (dotted line), amplified by a factor of 103. In figures 3 and 4 we
report similar data and results obtained for the second and third test cases,
respectively, starting again with initial guess B.

From the figures it is clear that the qualitative behaviour of the computed
solution is quite satisfactory. In order to estimate the results, we compared the
computed and the exact solutions by analyzing the relative errors

Q; — Q)|
Q)

In Table 1 we report, for each test case considered and for both initial
guesses, the mean value of the relative errors and the maximum relative error
computed. The table shows that the errors are low even in test 3, which ap-
parently seems to be the most cumbersome one. The test problem in which
the errors are higher is test 2, both in terms of their mean value and in terms
of the maximum value. We point out that in all cases the mean relative error
has the same order of magnitude of the relative tolerance used in the stopping
criterion.

©)
0

(e); = j=01,...J.

Table 1. — Mean error and maximum relative error for the three test cases.

initial guess A initial guess B
Test # mean error max error mean error max error
1 2.96-1073 4.09-1072 2.98-1073 4.10-1072
2 6.84-1073 9.36 - 102 6.75-1073 9.39-1072

3 1.45-1073 1.85-1072 1.47-1073 1.92-1072
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30

25[ 1

”I“ ‘ 1 A _ \\l |

100 200 300 400 500 600 700

Fig. 5. — Test 2. Number of iterations versus the step counter j (initial guess A)
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Fig. 6. — Test 3. Number of iterations versus the step counter ; (initial guess A)
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Fig. 8. — Test 3. Difference in the number of iterations with initial guesses A and B
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Finally, in figures 5-8, we summarize, focusing on test 2 and 3, the com-
putational cost in terms of the number of iterations needed at each step in
order to satisfy the stopping criterion. Let us denote by K(j) the number of
iterations performed at step j, in such a way that Q; = QK(]). Figures 5 and 6
show K(j) versus j for test cases 2 and 3, respectively, starting with initial
guess A. In figure 5, the two peaks outside the figure boundaries correspond
to K(j) = 150 (the maximum number of iterations was reached without sa-
tisfying the stopping criterion). Similar results are obtained by using the
initial guess B. Concerning the first time step, we remark that, in test 2,
using the initial guess A, 34 iterations are needed in order to satisfy the
stopping criterion, while 49 iterations are needed when using the initial guess
B. For test 3, at the first time step 43 iterations are needed with initial guess
A and 58 with initial guess B. In the subsequent steps, the initial guess at
each step is good enough that a moderate computational task is required in
order to compute the next estimate Q; of the solution, except for those re-
gions in which the solution is steeper. In figures 7-8 we report, for both the
test cases 2 and 3, the differences between the values K(j) obtained by
starting with the initial guess B and those obtained by starting with the in-
itial guess A. Such results show that, as a whole, the computational cost is
quite similar when using the two different initial guesses. This is clearly due
to the fact that, as already mentioned, for j > 2 the starting values Q;.O) are
good enough and only the computational cost of the first time step strongly
depends on the chosen initial guess.
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