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Bollettino U. M. 1.
(8) 10-B (2007), 1-23

Normal Forms and Long Time Existence for Semi-Linear
Klein-Gordon Equations.

JEAN-MARC DELORT (*)

Sunto. — Presentiamo in questo testo due risultati di esistenza di lungo periodo per
soluziont di equazioni non lineari di Klein-Gordon, ottenuti mediante metodi di
forme normali. In particolare indichiamo come questi metodi permettono di ottenere
soluziont quast globali per tale equazione sulle sfere, a dispetto del fatto che tali so-
luzioni non tendono a zero quando il tempo tende ad infinito.

Summary. - We present in this text two results of long time existence for solutions of
nonlinear Klein-Gordon equations, obtained through normal forms methods. In
particular, we indicate how these methods allow one to obtain almost global solutions
Sforthat equation on spheves, despite the fact that such solutions do not go to zero when
time goes to infinity.

0. — Introduction.

Our aim in this talk is to present results — some old, some new — concerning
long time existence for a particular class of nonlinear evolution partial differ-
ential equations. We shall emphasize how normal forms methods can be useful to
tackle such problems. Our goal is to describe these questions in the less technical
possible way, to keep this text accessible to a general audience.

One of the basic questions in evolution problems for a nonlinear partial dif-
ferential equation is the one of the largest time interval over which a solution
with given initial data exists. Like in the similar problem for ordinary differential
equations, two different types of problems arise. One of them concerns equations
having a first integral which, in favorable cases, can be used to globalize a local
solution. Such an approach allows one to handle Cauchy data of any size, but only
quite special nonlinearities, coming most frequently from physics, give rise to

(*) Conferenza tenuta a, Torino il 3 luglio 2006 in occasione del “Joint Meeting S.I.M.A.I. -
S.M.A.L. - S.M.F. - U.M.IL. sotto gli auspici dell’E.M.S. Mathematics and its Applications”.
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conserved quantities providing first integrals. The second type of questions deals
with long time existence problems for small Cauchy data, which can be studied
for quite general nonlinearities. We shall discuss here the latter, for long range
nonlinear perturbations of the Klein-Gordon equation. We refer to the book of
Hoérmander [13], and references therein, for discussions of these topics in the
related case of nonlinear wave equations.

The first works concerning global solutions for nonlinear Klein-Gordon
equations with small, smooth, quickly decaying Cauchy data, are due to
Klainerman [14] and Shatah [19]. These authors treated cases in which the
nonlinearity was playing the role of a “short range” perturbation of the linear
part of the problem i.e. a perturbation that does not change too much the be-
haviour of solutions. More precisely, solutions of the linear Klein-Gordon equa-
tion on R? with C3°(R?) initial data decay uniformly like #~%/2 when ¢ — +oc.
Short range nonlinear perturbations are by definition nonlinearities V(u)u
such that the nonlinear potential, computed on a linear solution, satisfies
IV, )|~ = O ") when t — + oo with « > 1. For instance, for a quadratic
nonlinearity in d space dimension, V(u) = u, and the nonlinearity is short

range when x = g > 1.

The first case of a “long range” perturbation of the linear Klein-Gordon
equation was studied by Ozawa, Tsutaya and Tsutsumi [18] for a quadratic
nonlinearity in two space dimension. Using a normal forms method, due initially
to Shatah [19], they were able to reduce that long range perturbation to a short
range one. The first result we present here, proved in [6], concerns the case of a
cubic nonlinearity in one space dimension. This is again a problem falling in the
long range category, with the extra difficulty that it cannot be reduced to a short
range case by normal forms. Nevertheless, normal forms methods remain useful,
and allow one to prove a global existence result. Section 3 of this text describes,
on an example, the main ideas of the proof of this theorem.

We then switch to long time existence problems for nonlinear Klein-Gordon
equations on a special class of compact manifolds. We fall then in the category of
“very long range” perturbations of linear equations, as solutions of the corre-
sponding linear problem do not go to zero when ¢ — + oco. The main theorem we
state, obtained in collaboration with D. Bambusi, B. Grébert and J. Szeftel, as-
serts that a semi-linear Klein-Gordon equation on the sphere, with smooth data
of size & > 0, has when ¢ — 0 an almost global solution, i.e. a solution defined on
an interval of length ¢ for any N € N under a non-resonance condition on the
linear part of the operator. This condition says that the natural parameter ap-
pearing in the Klein-Gordon operator should avoid an exceptional subset of zero
measure, and can be though of as a sort of Diophantine condition imposed on that
parameter.

The proof of the result given in [2] combines an Hamiltonian approach, and in
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particular Birkhoff normal forms methods, and the proof of convenient multi-
linear estimates. In section 4 of these notes, we concentrate ourselves on the
latter, giving instead of the proof of the general theorem, the demonstration of a
weaker result for a toy model. We shall nevertheless encounter most of the
difficulties that have to be solved in general. In particular, we shall see that some
estimates necessary to implement the normal forms method follow from very
special properties of the spectrum of the laplacian on the sphere. This explains
why our result is limited to such compact manifolds (Actually, they hold true
more generally for Zoll manifolds, which enjoy similar spectral properties). In
the fifth section, we become more technical, outlining the modifications of the
arguments needed to implement the Hamiltonian approach, and indicating the
proof of the general theorem.

1. — The nonlinear Klein-Gordon equation.

Let us introduce the equation we want to study. Denote by (M,g) a
Riemannian manifold, by V : M — R, a smooth nonnegative potential, by m an
element of ]0, 4+ oo[. A solution % to the nonlinear Klein-Gordon equation with
nonlinearity «” is a function u, defined for some 7> 0 on ] — 7', T[ x M, with
values in R, satisfying

) OF — 4+ V +mPu = uP.

We complement this equation by Cauchy data for « and 9,u at time ¢ =0

2 Uli_g = o, Ottl;—g = w1

where uy,u; are given smooth functions from M to R. It is well known that if
up, %1 are smooth enough, and have enough decay at infinity, there is some 7" > 0
such that problem (1)-(2) has a unique smooth solution defined on ] — 7', T[ x M.
Our aim in these notes is to describe some results obtained in recent years
concerning lower bounds for 7' in function of the size of the Cauchy data, when
these data are small. We shall not try to give the most general statements, but
instead we will describe only the main ideas.

Let us consider the linear Klein-Gordon equation on R? with zero potential
(V = 0) and with smooth compactly supported Cauchy data

(0F — A+m*u =0
3) Uly_g = Uo
Ouly_g =11

with m > 0, ug,u; € Cgo(Rd). One of the main properties of this equation, holding
true including for m = 0, is finite propagation speed: if ug,u; are supported
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inside the ball centered at 0, of radius B > 0, then the solution is supported inside
the domain

{(t,2); x| < |t| + B}

whose upper part is represented below.

-B B

A fundamental quantity associated to (3) is the energy of the solution, defined
by

1
@) B)(t) =5 f (10eu(t, ) F + |Vuct, @) + mPludt, x)|?) da.
Rd
. d .
An elementary computation shows that %E(u)(t) = 0 i.e. the energy of the so-
lution is conserved. More generally, if one assumes that u solves
®) (0 — A+ mPu = g(t, x)

for a function g which is smooth enough and decaying enough when |x| — + oo,
one gets

d
M < f Bt ©)||gt, )| da.

R?

Moreover, if one makes act a € N%™! derivatives on the equation, one gets for
t>0

t
©) E@w(® < BowO) + [ [ 1@ w00, dude
0 R
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where 9* = 9}° ot opifae N1 Finally, another elementary property of
solutions of (3) is the dispersive estimate

) [t )|~ < C+ [t~ 2

which can be deduced from the explicit representation of the solution of (3) ob-
tained using Fourier transform.

Denote by H*(RY) the Sobolev space, defined in the special case of non-
negative integer s, as the space of functions u € L2(R%) such that

def " 1/2
®) lalfe (X Noul) < +oo.

aeN?, Ja|<s

Let ¢ be a small positive number. A very classical result, obtained combining the
energy inequality (6) and the fixed point theorem, asserts that if u, € H¥(RY),
wy € HS"Y(RY), with s > ¢ and if p € N,p > 2, the problem

(0F — A+mPu = uP
9 Ul = elo
Opt|,_y = eun

has for some 7 >0 a unique solution e C°]-T, T[,HS(Rd)) N
CY(1 - T, T[, Hs"1(R%). Moreover, the proof gives a lower bound for 7 in function
of &2 T > ce~P*1. The natural question is then to know if a better lower bound can
be obtained when say ug, u; € Cgo(Rd).

2. — Global existence for NLKG on R’

In this section, we shall recall results of global existence obtained in-
dependently by Klainerman [14] and Shatah [19] when the nonlinearity in (9) is
a short range perturbation of the linear equation.

THEOREM 1. — Assume in (9) that (p — l)g > 1. Then for any uy, u; € Cg"(Rd),

there is & > 0 such that for any ¢ € 10,&l, equation (9) has a unique smooth
solution defined on ] — oo, + ool x R,

This result, that asserts that (9) has global solutions if the Cauchy data are
small enough, is proved by Klainerman [14] and Shatah [19] for much more
general nonlinearities than those of (9): actually, one may allow any quasi-linear
nonlinearity, vanishing at least at order p at 0. Let us recall the principles of the
proof of that theorem. Consider inequality (6) with g =uP. Write 9%g =
puP~19% + - - - and forget all terms in the right hand side but the first one (the
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forgotten terms can be treated by a modification of the estimates below). We can
deduce from (6) that for ¢ > 0

t
(10) E@w(® < B@wO) + C [ utc, )|} BE@ (@) dr
0
whence by Gronwall inequality
t
11) E0"u)t) < E(0"u)0) exp [Cf |Jae(z, -)||g;1 dr|.
0

. .. d
To prove global existence, it is enough to show that there are s > > C>0,¢>0

so that for any ¢ € ]0, g[, any T' > 0 such that a solution exists on ] — T, T'[ x Rd,
one has

(12) ]SLTlf%[(Hu(t, Mg + 10, ) gos) < Ce.

Actually, the fact that one may solve (9) locally in time with data in H® x H*1
implies that if (12) holds true, then the solution exists beyond time 7. By the
usual ODE argument, it follows that the solution may be extended to the whole
real line. By definition of the energy, (12) will hold true if a uniform estimate can
be obtained for the left hand side of (11), so if C' > 0 may be found so that

t
(13) [t dr < ¢
0

for any ¢ > 0 such that the solution exists up to time t. If we conjecture that (7)
will hold true for the solution of the nonlinear equation — which is reasonable
smce for small solutions the right hand side of (9) is small — we bound (13) by
C f 1+ (p=1d/2 g < (' under our assumption (p — 1) > 1. In other words,
we have to control at the same time E(0*u)(t) and ||u(t |z~ over 1 =T, TT.
la|<s

More precisely, global existence would follow from the following two implica-
tions: there are large enough constants Ay, A; such that for ¢ small enough, and
all T for which the solution exists over ] — T, T

f e, 51 dt < A = sup 3 B@ u)(t) < —g
T [t|<T la|<s

(14)

T
A
sup S E@ ) < Ao = f ot Ol de < She
r

[t|<T a|<s
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Actually, if the upper bound of those T for which the assumptions in the left hand
side of (14) hold true is finite, one gets a contradiction: since the estimates in the
right hand side are given in terms of constants Ay/2, A;/2, the estimates of the
left hand side have to hold by continuity beyond time 7, contradicting the
maximality of that number.

The first implication (14) follows from (11) if one assumes that Ay has been
chosen large enough relatively to the data ug, %; and if ¢ is small enough, but the
second implication in (14) is not an evidence. As a matter of fact, we can always
estimate the L> norm of % from the L? norms of its derivatives through the
Sobolev inequality

(15) lulpe <C >0 (0%l gz,
|a|<[d/2]+1

but this provides no time decay to make converge the last integral in (14). To
circumvent this problem, Klainerman [14] introduced the “Klainerman vector
fields” given by

0y, + w0, j=1,....d

(16) .
;0 — 40z, 1<i1#j<d

and proved a Klainerman-Sobolev estimate, saying roughly

an ot | < 3 t‘)d/z S 120t e,

la|<s
where in the right hand side s is a large enough integer and Z runs among all
vector fields (16) and all usual derivatives 9, 0y, j = ., d. (Actually the right
estimate is not as simple as (17): we refer to [14] or Hormander [13] chapter 7,
for the exact inequality). The idea of the proof of theorem 1 is to replace (14) by
similar implications, but with E(9“u) replaced by E(Z"u). Since the vector
fields (16) commute to 8t2 — A+ m?, (11) remains true if 9%« is replaced by Z%u,
which implies the corresponding version of the first implication (14). The version
of the second implication, in which 0% is replaced by Z*, follows from (17), writing

T
p-1/2 dt
18) f luct, |Edt < Csup (S EZUu)) f S
\t|<T( \z\; ) o (L [P

using that E(p —1) > 1 and taking A; > Aj.
Summing up, we see that the main ingredients of the proof of theorem 1 are
an estimate of type (17) and a short range condition (p — l)g > 1. In the fol-
lowing section we shall consider one of the simplest long range cases

(p— l)g = 1. This implies either p =2,d =2 or p = 3,d = 1. As mentioned in
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the introduction, the case of a quadratic nonlinearity in two space dimen-
sions has been studied by Ozawa, Tsutaya and Tsutsumi [18] (see also [7]).
They proved that global existence for small rapidly decaying Cauchy data
holds true, using a normal forms method to reduce the problem to a short
range one. We shall discuss the case of cubic nonlinearities in one space
dimension below.

3. — Cubic Klein-Gordon equation on R.
Let us state the following theorem proved in [6].

THEOREM 2. — Let ug, u1 € C3°(R). There is &y > 0 such that for & € 10, &l, the
problem

(R —A+Du=u?
19) U,y = elo

O],y = eun

has a unique global solution u. Moreover

~ £ v iN12 _ 2_'%2 _x_z
(20) u(t, x) Re\/iag(t)exp[zt X 125 logty/1 2

when t — + oo, where a, € C*°(R), Suppa, C [ —1,1]

o ()f]

Let us make some comments. First, the result of [6] is much more general: it
applies to quadratic or cubic quasi-linear nonlinearities satisfying a “null con-
dition” i.e. a condition of compatibility to the linear part of the equation. For
arbitrary cubic nonlinearities, the solution exists in general on an interval of
length exp (c/az) (see Moriyama, Tonegawa and Tsutsumi [17]) and there are
examples for which blowing up in finite time happens (see references in the in-
troduction of [6]).

In the asymptotics (20), the logarithmiec perturbation in the exponential is due
to the long range character of the nonlinearity. In higher space dimensions, or
for linear solutions, this logarithmie modulation does not appear.

The proof of theorem 2 given in [6] is pretty long and technical, because
general nonlinearities satisfying the null condition are considered. In the case of
equation (19), the main ideas of [6] can be developped in a fairly simple way. This
is what we shall do below. For more details on this approach to global existence
for nonlinearity u?, we refer to Lindblad and Soffer [15, 16]. To prove theorem 2,
let B > 0 be such that ug,u; are supported inside [ — B, B]. Local existence
theory implies that for any fixed ¢y > 0 and ¢ small enough, the solution of (19)
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exists for 0<¢<t. Let for ¢ > T)>2B (Hr,) be the hyperbola
(t+2BY —a? = T2, drawn on the following picture:

(Hry)
To—2B

0 0

-2B -B B 2B

By finite propagation speed, any solution of (19) is supported, for ¢ > 0, in
|¢| <t+ B, and extending it by 0 outside this domain, one gets a solution defined
under (Hy,). In that way, one is reduced to solving (19) above (H7,), with Cauchy
data on this hyperbola. On the region above (Hr,) one can take hyperbolic co-
ordinates (7', X) related to the old coordinates (¢, x) by

21) t+2B =TcoshX, x = Tsinh X.

The equation of (Hy,) in these new coordinates becomes T' = T. Since the so-
lution « is expected by (20) to decay like ¢~1/2, we look for it in terms of a new
unknown w as

1
22 u(t,x) = —=w(T,X).
(22) (¢, %) T (T,X)
The first equation in (19) becomes then
% 15 1

The last contribution, which has a time integrable coefficient when 7 — +oo,
plays little role in the reasoning, and will be forgotten from now on.
Equation (23) has a natural energy

2
@4) 2D = [ (g + |5 + ) ax
R
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and one has (forgetting the — terms in the right hand side of (23))

T

d daxX C
@5) SE)T) < Rf (Orwlloof’ T < 7 1T, 7 B o)D)

Commuting 0% derivatives to (23), one gets in the same way as (10), (11), for
T>T,

@) 3 E@u(T) < S E@3w)To) +C f e N~ (D E(@;;w)(r))

la|<s la|<s la|<s

whence

@) 3 E@GwD < (Y BE@w(Ty) exp|C f iz, )2 —].

la|<s la|<s

Let us make a small remark: in the new coordinates (7', X), dx corresponds es-
sentially to Z = t9, + «0; in the old coordinates. In other words, the above es-
timates correspond to the estimates of the preceding section for the Klainerman
vector fields. Remark also that, even if we can prove the best estimate we can
hope for, namely ||w(z, )||;~ < Ce, then (27) will not give a uniform estimate for
E(05w)T) when T — +o0, but only a O(TC”Z) bound. Actually the asympto-
tics (20), expressed in the new coordinates, imply that no Ox-derivative of w can
be bounded uniformly in time. Consequently, we shall deduce global existence
from a weakened version of (14): there are s € N, large enough constants
Ay, Aq,C > 0, such that for ¢ > 0 small enough, one has the following two im-
plications:

VT > To, |[w(T, ) < Are = VT > To, Y E@w)T) <—° ° ETCA
28) la|<s B
VT > To, Y B@w)(T) < AgTOA = VT > T, [w(T, )|~ < 718

lal<s

The first implication follows immediately from (27) if constant Ay is large enough
relatively to > E(0"w)(Ty). The second implication cannot follow from a

a|<s
Klainerman—S(‘)l‘o_oleV embedding i.e. a control of ||w(T,-)||;~ by ||wl;2 + ||Oxw|| ;-
since this would give only a O(T?) bound for some J > 0. The idea to prove (28) is
to plug the information coming from the assumption of the second implica-
tion (28) inside equation (23). Actually, Sobolev embedding together with that
assumption show that |8§w| < CT? for some small 6 > 0 (if s in (28) has been
taken large enough). Consequently we deduce from (23) that w satisfies an ODE,
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for any fixed X,

(29) @+ Dw = 10 + 755 0

where g depends on w and is uniformly bounded. One has to show then that for
Cauchy data at time 7' = Ty small enough, this ODE has global bounded solu-
tions. If we had in front of w? an integrable power of 7, such a result would be
essentially a consequence of Gronwall inequality, and the solution would have the
same asymptotics as solutions of the linear equation (92 + 1)w = 0. In our case,
one uses instead a Poincaré normal form, which, through a change of unknown

1
w=7v+ TB(u Orv), where B is a convenient cubic perturbation, allows one to

eliminate most of the cubic terms, reducing the situation to a first order complex
ODE of type dra + ia = a% |a®a, with a real parameter a. It is then elementary

to check that this equation has global bounded small solutions, from which
one deduces the same property for solutions of (29). We shall not give here
more hints about this normal forms method, for which we refer to [6, 15, 16],
since we shall describe below similar reasoning in a more complicated con-
text. Once the boundedness of the solution w of (29) has been obtained, the
second implication (28) holds true, if one keeps track of the constants along
the proof. Theorem 2 follows from that, and from the asymptotics of solutions
of (29).

4. — Long time existence on some compact manifolds.

The results described above rely on the dispersive properties of the Klein-
Gordon operator on RY, which makes the L norm of the solution go to zero
as time goes to infinity. The aim of this section is to describe some results
obtained during the last few years in collaboration with several authors,
about long time existence for solutions of nonlinear Klein-Gordon equations
with small Cauchy data on convenient compact manifolds. In this case, we do
not have any time decay for linear solutions, and long time existence follows
from normal form methods performed on the PDE. Let us state the main
result we shall present, which was obtained with D. Bambusi, B. Grébert and
J. Szeftel [2]:

THEOREM 3. — Let M be the unit sphere of dimension d, V: M — R, be a
C*™ potential. Let f: M x R — R be a smooth function (x,u) — f(x,u) van-
ishing at least at order 2 at w=0. There is N C ]0,+ool, a subset of zero
measure, and for any m € 10,+oo[ — N, any N € N, any uy,u; € C*WM,R),
there are ey > 0,c¢ > 0, such that for any ¢ € 10, &l the nonlinear Klein-Gordon
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equation on R x M

OF — 4y + V + mPu = f(x,u)
(30) Uli_g = eUo
Oxt],_y = eun

has a unique smooth solution u defined on 1 —ce ™, ce N[. Moreover, for s

large enough, ||u(, )|y and |0, )| g1 are bounded uniformly on that
mterval.

REMARKS, e The theorem holds true actually on more general compact
manifolds than spheres, namely on Zoll manifolds i.e. compact manifolds without
boundary for which the geodesic flow is periodic.

e The result of theorem 3 was known yet in one space dimension i.e. when M
is the circle, or an interval (with Dirichlet or Neumann boundary conditions).
This was proved by Bourgain [4] (on a slightly weaker form than in the above
statement) and by Bambusi [1] and Bambusi-Grébert [3]. Actually, in one space
dimension, global existence holds true as a consequence of conservation of en-
ergy, and the statement of the theorem is then about uniform control of Sobolev
norms on intervals of length ¢V for any N.

e Let us point out a major difference with the results of sections 2 and 3: these
results did hold true for any value of the mass m > 0. We fixed it to be m = 1in
several statements since the homogeneity of the equation on R x RY allows one
to reduce to that case through rescaling. On the other hand, theorem 3 will be
proved only for m outside an exceptional subset of zero measure.

The proof of theorem 3 combines methods developed in previous work with J.
Szeftel [8, 9], with a Hamiltonian approach similar to the one used by
Bourgain [4], Bambusi [1], Bambusi-Grébert [3] (we refer also to the lectures of
Grébert [12]). Actually, theorem 3 is a corollary of a more “Hamiltonian” result
proved in [2], relying on the use of Birkhoff normal forms and on the construc-
tion of approximate canonical coordinates. In this section, we shall discuss in-
stead of the full Klein-Gordon equation a simplified model, for which we shall
prove a weaker result that theorem 3. We shall give some hints about the proof of
theorem 3 in the last section.

Consider

(Dt - Am)u = u/aiF/{

uli_g = &0

1
where D; = g%,/lm =4/—4y+V +m? (defined through spectral theory),
peN,peven,p>20<L<panduy e C®M,C). Local existence theory pro-

31
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vides a solution defined over an interval ] — ce P! ce P*![, and our aim is to
prove that actually the solution extends to ] — ce 2P*2, ce~2P*2[ (for another ¢ > 0,
and for ¢ > 0 small enough). Remark that the operator D; — A, is “one-half” of
the Klein-Gordon operator since

(Dt - Am)(Dt + Am) = _atz + Ag -V - m2-

Equation (31) has local in time solutions if wy € H*(M) with s> d/2.
Consequently, it is sufficient to find s large enough, ¢ > 0,C > 0, & > 0 such
that for any ¢ € 10,&[ and any T < ce 2’*2 for which a solution exists on
1—T,TI, one has

(32) sup |Jult, )|l < Ce.
tel-1.11

Instead of trying to control directly |lu(t, ~)||§p we shall introduce an equiva-
lent quantity. Denote

33) O,(u) :%m,u)m —Re (B(u,...,u, 4, ..., %), %)y
l p—L

where for s large enough, (-, )y, stands for the scalar product associated to
the H® norm, and (w4, . ..,u,) — B(u1,...,u,) will be a convenient bounded p-
linear operator from H® x --- x H® to H*.

Remark that the boundedness of B, and the fact that p > 2, imply that for
small u, Oz(u(t, ) ~ |Jult, -)||?{s, and so that one has just to control this new
quantity. Actually, we shall construct B so that

d
(34) 7 Os(ult. ) < Clhuct, .
whence for ¢ > 0 an estimate
t
(35) 0,(u(t, ) < 0,0, + C [ |[utz, )} de.
0
As long as u(t, -) remains small in H®, this inequality implies

t
et e < Cllu@, )z + € [ [tz DI e,
0

and since the first term in the right hand side is of size of order &2, the same will
be true for the left hand side when 0 < t < ce2’*2, This provides the wanted
estimate (32).

When one computes the left hand side of (34), plugging the expression for d;u
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given by (31) in the time derivative of (33), one gets

1 O(u(t,-)) = Rei(u'ul~", U) s

dt
4
—ReiZ(B(u,...,Amu,...,u,a,...,ﬁ),mm
(36) =1
4
+Rei> (B, w1, .., Ay, .1, %) g
j=1

+ Rei( Ay B, ..., @), u) g + O(|ult, )|[72).

Actually, we used that the contribution Re¢(A,,u, %)y, coming from (31) van-
ishes by self-adjointness of 4,,, and that the contributions coming from the
nonlinearity in (31), of type (B(u,...,u‘aP~" ... u,4,..., ), u)y can be ab-
sorbed in the last term of (36). To get (34), it is then enough to construct a B,
bounded on H*, and such that for any uy, ..., u, in L?(M)

ZB(ul,... Ay, - .. up)—ZB(ul,... Ay -+ ) — Ay By, . .. up)

j=t+1
(37) = -1,

Construction of operator B.

The construction of B relies on the assumptions made on M. Actually, if
M=5%and P= ,/— g+ V = Ay, the spectrum of P is made of a family of

clusters i.e. a(P) C U I,, where I; is a bounded interval containing the small
eigenvalues and ~ "~!

38) In:{n—s—a—%,n—s—aﬁ—%

where a € R, ¢y > 0,6 > 0. This structure of the spectrum is illustrated by the
following picture:

In

This result is due to Weinstein [20] and one can even take 6 = 1 (evenif 6 > 0
is the only information we shall need). Actually, the above property of the



NORMAL FORMS AND LONG TIME EXISTENCE FOR SEMI-LINEAR ETC. 15

spectrum is true more generally if M is a Zoll manifold i.e. a compact manifold on
which the geodesic flow is 2z-periodic, as was proved by Colin de Verdiere [5]
and Guillemin [12]. Moreover, the number of eigenvalues contained in each in-
terval I,, grows at most polynomially when 7 goes to infinity.

Denote by II, the spectral projector associated to I,, I, = 1;,(P). Since
Ay = VP2 +m?2, and since the eigenvalues of P restricted to the range of I7,,
differ from each other by at most O(n°), (A,, — ,Id)IT, has operator norm
Om=9) if 4, is some fixed element of o(P) N I,. This allows one, modulo some
small remainders, to replace A,II, by a scalar multiple 4/m?2 + /li of I7,,. To

avoid technicalities, for which we refer to [9], we shall assume in what follows
that

(39) Ay Il = \/ m? + /ﬁnn

for some 4, € R, with 4, ~ % + a (which reflects the fact that 4, € I,,). Actually,
(39) holds true when V = 0 and so P = |/—4,, since each I,, is then reduced to
one multiple eigenvalue, and (39) is almost true in general, by what we saw above.
Moreover, the structure of the spectrum implies that

+ 00
(40) Id=>Y 1,
n=1

+ 00
Let us in (37) decompose u; = 11, u;. We get
=1
¢

S Z[ZB(HWI, ooy AT, T 1)

n np,  j=1

p
- Z B(Hnluh T 7A’VVLH7ljuja e 7H7lpup)
j=t+1

- AmB(Hnlula s 7Hn7,up) - (Hnlul) e (H1z7,up):| =0.

Applying then I7,,, to this equality, and using (39), we see that we are reduced
to constructing B such that for any n4,...,%p11

(41) F’m()vnly ceey j-npﬂ )anﬂ [B(Hnlulv ces aHn,,up)] = anﬂ [(Hnlul) te (anup)]

where
4 p+1

(42) Fuly, ) = > \fm2+& = \m2+ &
j=1 J=t+1

We deduce from (41) that we shall be able to define B if we are allowed to divide
by function Fy,(4y,, ..., An,,,), and if the resulting expression has good enough
estimates to ensure that B will be bounded from H® x --- x H® — H5(s > 1).
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Since p is even, for every fixed ¢;,. .., &)1, m — Fy, (&, ..., &pyq) is @ non zero
analytic function, and so has only a discrete set of zeros. The union of these
zeros for ¢; describing the (countable) spectrum of P is a countable subset of
10, +-oc[. Consequently, for m outside this set, Fy,(4,, .., 4n,,,) # 0 for any
N1, .. .,Np1, which allows one to define B from (41). Nevertheless to get nice
estimates for B, we need lower bounds for F,,(4y,, ... ). Let us state the
following lemma:

np+1

LEMMA 4. — There is a zero measure subset N of 10,+ool, and for any
m € 10, +oo[ — N, there are ¢ > 0, Ny € N such that for any ny < --- < npq

(43) |Fm()~ma ce 7)an‘1)| >c(l+ np—l)_NO

This lemma, together with the following one, is the main technical result to be
proved to get theorem 3. Its meaning is that, for m outside NV, the left hand side
of (43) may be bounded from below by a convenient negative power of the third
largest among /y,, ..., Ay,,, (Or among ni, ...,y since 4, ~ n + a). The proof,
which may be found in [8 9], uses geometrlc tools and the special structure of the
spectrum of P discussed above. For an alternate proof in dimension 1, that could
be extended to our framework, see Bambusi [1], Bourgain [4], Bambusi-
Grébert [3]. To exploit (43) to prove that operator B is bounded on H*, we need
also:

LEMMA 5. — There is v € R, and for every N € N there is Cy > 0, such that
for any my < -+ < mpy, any ug, ... u, € LA

(1+np 1)0+N

(Op1 — mp) + 11 + DY -

(44) ||H (Hnlul i 'Hn,,up)”Lz < Cy

H LTl -

Mp+1

Let us indicate the idea of the proof of (44) when u; is an eigenfunction of P
associated to an eigenvalue /,, € I,. By duality, it is enough to estimate by the
right hand side of (44)

(45) [ttt 0 do
p—1
for any function u, 1 € L*(M), ||up41];. = 1. Denote by @ the product H I ,,u;
so that j=1
p—1
(46) 10%all - < CQA + 9, ) T T 1Tl
=1

from Sobolev embedding, for a v depending only on the dimension. To further
simplify, assume that u,; is also an eigenfunction associated to an eigenvalue
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/ We have then

Ypy1e

Gony = Jny) f a@)(IT,, )T, 1ty 1) dac
(47) :fa(x)[(Panup)(anﬂup+l) - (anup)(PHn,,Hup+l)] dx

= [ @, P11, )11, 000)

and since [a, P] is an operator bounded on L?, with operator norm smaller than
3 10%(8a)| .~ for a large enough k, one estimates (45) from (47) and (46) by
BI<k

P
48) Clhnyy — o) A 1y )" T T I
j=1

Since A, ~ n + a, this gives (44) when N = 1. The general case follows by in-
duction. We refer to [9] for the proof of (44) when the (unjustified) simplifying
assumptions that we made here are not satisfied.

Let us explain the origin of (44). In the special case P = /=4, on M = 5,
the image of each I7, is a space of spherical harmonics. It follows from ele-
mentary properties of these functions that the left hand side of (44) is identically
zero when mp,1 —n, > m,_ i.e. when the right hand side of (44) is small.
Inequality (44) is a generalization of a weaker form of that property to
P =,/—4,+V on a Zoll manifold M. Actually, it is proved in [9] that (44) can
even be generalized to any compact manifold without boundary.

Finally, let us indicate how lemma 5 can be used to prove that operator B
defined by (41) is bounded on H?® (s > 1). Actually, (43) and (41) imply
that HH%“[B(Hmul, e ,anup)]H 12 is bounded from above by the right
hand side of (44) (with v replaced by v+ Np). If u; € H®, one has that
11, u5]],, < Cey (1 + n;)" for a sequence (M /2. Then the quantity

e <
Hﬂnp_l(ﬂnlul---anup)HL2 is bounded from above by

49 Cyey, (A +mpy_g) N0

(1 + np—l)N =
1, 2 | 12| 7
((p11 —mp) +1p1 + ph e E i

where the negative power —s comes from the smoothness of u,,_1, and may be used
to compensate the power v + N of the small frequency 1 + 7,,_1. One has then to
prove that the suminn; < --- < n, of (49) may be bounded by C(1 + 1,41) ¢y,
for a sequence (cy,,,)y,., of /2. This may be done for large enough s, N using
that (49) gives essentially a convolution operator relatively to indices 7, 7, 11. We
refer to [8, 9] for technical details. This concludes the proof of the boundedness of
operator B on H*, and thus the proof of long time existence for equation (31).
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5. — Hamiltonian approach.

We shall describe the arguments that have to be added to the preceding ones
to get not only long time existence for equation (31), but the almost global result
stated in theorem 3.

Let us make first some remarks. We assumed in (31) that p was even, and we
used this, before the statement of lemma 4, to ensure that for any fixed
&1y &pi1)ym — Fp(&y, ..., &pi1) IS anon zero analytice function. It is also easy

1
to check that when p is odd and ¢ # Z%, function (42) is again, for any fixed

(&1, ..,¢p41) anon zero analytic function of m. Because of that, the lower bound
of lemma 4 still holds true in that case, which implies the extension of the so-
lution of (31) to ] — ce 2P*2, ce 2P*2[ for these values of (p, /) as well. On the

p+1

other hand, if we consider now the case of odd p and ¢ = , we see that

Fp(&i,...,841) =0 as a function of m if {&,.... &) = {1, &)
Consequently, equation (41) cannot be solved if {n1,...,n/} = {ne1, ..., %p1a }.
Define anyway an operator B by

(B0)  Bus, ... up) =, FyGys ooy 2y ) My (T u) -+ - (I, )

‘‘‘‘‘ Mp+1

where )’ means that we restrict summation to {n1,..., %/} # {%1,.. ., %11},
that is to those indices for which the lower bound (43) holds true. This defines a
bounded operator on H® x --- x H® — H*, but instead of (37), we shall get

l P
> B, Aty ) = Y Bl Ay, ) — A By, )
j=1

Jj=0+1
51) gy — R, )
with
(52) R(uy, ... up) = Zgl,”.,nﬁlnmﬂ ((Hmul) T (anup))a

the sum " being by definition restricted to indices satisfying {ns,...,n} =
{11, ..., Mpir }. If we go back to (36), we thus get

d . _ _
(53) %@s(u(t, J)) =Re (R, ..., u,u,...,0),u) + O(||u, -)||?ﬁ.)-
Instead of the standard H® scalar product, we could as well have defined

(U, V) g :f/ljnu - A vde,
M

in which case the first term in the right hand side of (53) would be minus the
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imaginary part of

151

M

(54) E” n f(”m“l) o (M) (M gy 1%e11) - - (an”p)(/l%: anﬂuml)d”-

By definition of > " and by (39), each term in this sum is real, since we have a
pairing of each IT,,u,j = 1,... ¢ witha Il u.k € {{+1,...,p + 1} with n; = ny.
Consequently, (63) reduces to (34), which shows as before that, including in the

1 . . .
case p odd and ¢ = Zi, we get an extension of our solution to an interval of

2

type ] — ce 2P+ g 22
An idea, to try to prove an almost global existence result for the solution of
equation (31), would be to write explicitly the 2p-homogeneous remainder in the
right hand side of (36), and to try to get rid of it, modulo remainders of higher
order, modifying the definition (33) of ®s(u) through a new contribution of order
2p. One faces then the following difficulty: the new expression one would have to
eliminate is now given by a much more complicated nonlinear operator than the
one in the right hand side of (37). Because of that, we are unable to perform a
simple symmetry argument, like the one indicated after formula (54), to show
that contributions that could not be eliminated by a normal forms method always

d
give a zero contribution to g Os(u(t,-)).

The idea used in [2] to get around such difficulties, and prove almost global
existence for the solution of (30), is to make use of the Hamiltonian character of
that equation. Consider the following Hamiltonian framework. On the phase
space H*(M, R) x H*(M, R), (s > 1), define a symplectic structure setting

(b

QAp.9,®. ¢ =@, @, = (q¢.0) - (d.p),

where (-,-) stands for the L? scalar product and (p,q), (p',q’) belong to
H(M,R) x H*(M, R). For a smooth function G defined on an open subset of the
phase space, introduce its Hamiltonian vector field

(56) Xep, @) =JVGp,q =(—V,Gp, ), V,Gp,q),

which is an element of H*(M,R) x H=*(M, R) (and for nice G’s, lies actually in
H3(M,R) x H*(M, R)). Set also for two smooth functions Gy, G

{G1, Gz} = 0Gs - Xg, = QXg,, Xg,)-
Define for a smooth enough real valued function »

p=4,20m, q=AYu.
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If f (x, u) is a primitive in » of —f(x, %) (where f is defined in (30)), vanishing at 0,
set

1
Gotp, ) = 5 [ (1432 + |4 %[") d
M

(57) G, ) = [ f, 4,1 ax,
M

G, ) = G2(p, @) + G(p, 9.
Then equation (30) may be rewritten
(58) @, =Xe(p,q).
If we use on the phase space complex coordinates given by

HM,R) x H\M,R) —H*(M,C)

9 (P.@) =~ +iq) = v
pvq \/ép q_ ’

we may write also (58) as
(60) v =1V;GW,v).

To prove almost global existence, one has to construct for any N € N a function
0,(v, ), equivalent to the square of the Sobolev norm, such that

61) %@sw(t, ).t ) < Cllott, 2.

Denote using (40)

—+00 9 9
Ow,0) = > nF| w7 ~ |[v|.

n=1

LEMMA 6. - There is N C10,+ocol of zero measure and for any
m € 10, +ool — N, for any N € I, there are s > 1 and a canonical transfor-
mation y, defined on a neighborhood of 0 in H¥(M, C), with x(0) = 0, y'(0) = Id,
such that O4(v,v) def @2 o y(v,v) satisfies (61).

One deduces from that lemma that the solution of (60) may be extended over
an interval of length ce=%, reasoning like after (34).

The proof of lemma 6 relies on Birkhoff normal forms, and is a variation on
similar results proved by Bourgain [4], Bambusi [1] and Bambusi-Grébert [3] in
one space dimension. The idea is as follows. Consider real valued homogeneous

functions of degree k + 1 hy(v, v), set h(v,0) = > hy(v, ¥) (Where the sum if finite,
e>2
but involves enough terms) and denote by @'(v, ) the flow of X), at time ¢. One
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looks for y as y(v,?) = @'(v, ). Since y will automatically be canonical, we get
using (58) or (60)

%(@2 o 7 (D), 5(0) = {G, 6" 0 7~ H(w(t), B(D)
={G oy, 60} oy (w(®), 0()).

Since y vanishes at order 1 at 0, conclusion (61) will follow if we prove that

(62)

(63) {6°,G o 1} (0,9) = O(|[v]| ), v — 0.
The definition of y = @' allows one to verify that
1
(64) Goyx~Y a(Adh)‘I.G
>0

where (Adk) - G = {h,G}. We thus need to construct & so that
(65) > 1,{@27 (AdW)- G} = O(|[v|3%®), v — 0.
q!
=0
Remind that Ga(v, ) = f |/171,,{2v|2 dx and expanding in Taylor series G write
M
G, v) =Y G®,0),
k>2

where G, is homogeneous of degree k -+ 1. Sorting by homogeneity the con-
tributions in the left hand side of (65), one gets a set of equations

(66) {62, {h4, G2} + T} =0

where I';(v,v) = Gk(v, V) + Ri(v,v) is homogeneous of degree k+ 1, K; de-
pending on &y, k' < k. Moreover, using a modification of lemma 5, one may prove
that each I';;, may be written

k+1
(67) I, 0) =Y Tiv,...,0,0,...,0)
=0 S——— N——

‘ k1t
where I” ﬁ is a (k + 1)-linear form such that for some v > 0, any N € N and any
Ny < e < Ny,

)U+N k+1

A +n_q
(1, 25]|
(a1 — mpe) + g + DY E n

(68) |IyUTyus,... Ty, upi1)| < Cy

(compare with the statement of lemma 5).
To solve (66), one would like to find fy, such that {h;, Ga} + I';, = 0. This is not
possible if k is odd, because of the contribution I” g”l)/ % for the same reason as the
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1
one we described at the beginning of this section. Anyway, if when ¢ = kit

one
2
sets
1 " 0
Fk (’?/Ll, . 7uk+1) = anwnkﬂfk(ﬂnlm, . 7an+luk+1)7
where the sum > " is extended to those indices for which {ni,...,n} =
{"s1,- .., M1}, one checks easily that

{60, MV, ... )} =0.
Consequently, equation (66) may be rewritten when k is odd
(68) {60, {h,,Go} + T} =0

where I',(v,?) = ['y(v,0) — T{%D2(v, ... »). One has thus to solve {h;, G2} +
. = 0 which, because of the elimination of the I'/**V/2 term just performed,
may be treated by similar methods as the ones used to solve equation (51).

To conclude, let us say that the result of [2]is actually more precise than what
we described above. The construction of canonical transformation y of lemma 6
allows one to bring our Hamiltonian equation (58) to canonical form, up to any
given order. We refer to [2] for precise statements.
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