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The Schreier Property and Gauss’ Lemma.

D. D. ANDERSON - M. ZAFRULLAH

“In memory of our advisors Paul Cohn and
Irving Kaplansky... two great mathematicians and
two great teachear”

Sunto. — Sia D un dominio d’integrita con campo quoziente K. Si ricordi che D é detto di
Schreier se D e integralmente chiuso e per ogni x,y,z € D\{0}, x|yz implica che
x =1-s dove rly e s|z. Un dominio GCD é di Schreier. Mostriamo che un dominio
d’integrita D é un dominio GCD se e solo se (i) per ogni coppia a,b € D\{0}, esiste un
ideale finitamente generato B tale che aD N bD = By e (1) ogni polinomio quadrato in
DIX] che ¢ il prodotto di due polinomi lineari in K[X] e un prodotto di due polinomi
lineart in D[X]. Dimostriamo anche che D ¢ di Schreier se e solo se ogni polinomio in
DIX] con un fattore lineare in K[X] ha un fattore lineare in DIX] e mostriamo che D é
un dominio di Schreier con campo quoziente algebricamente chiuso se e solo se ogni
polinomio non costante su D ¢ esprimibile come un prodotto di polinomi lineari.
Confrontiamo anche i due modi pivt comuni di generalizzare domini GCD. Uno e
mediante proprieta che implicano il Lemma di Gauss e Ualtro ¢ mediante la pro-
prieta di Schreier. La proprieta di Schreier non ¢ implicata da nessuna delle spe-
cializzazioni del Lemma di Gauss mentre tutte tranne una delle specializzazioni del
Lemma di Gauss sono implicate dalla proprieta di Schreier.

Summary. — Let D be an integral domain with quotient field K. Recall that D is Schreier
if D is integrally closed and for all x,y,z € D\{0}, x|yz implies that x = r - s where
rly and s|z. A GCD domain is Schreier. We show that an integral domain D is a GCD
domain if and only if (i) for each pair a,b € D\{0}, there is a finitely generated ideal
B such that aD NbD = B, and (i1) every quadratic in DIX] that is a product of two
linear polynomials in K[X] is a product of two linear polynomials in D[X]. We also
show that D is Schreier if and only if every polynomial in DIX ] with a linear factor in
K[X] has a linear factor in DIX] and show that D is a Schreier domain with algeb-
raically closed quotient field if and only if every nonconstant polynomial over D is
expressible as a product of linear polynomials. We also compare the two most com-
mon modes of generalizing GCD domains. One is via properties that imply Gauss’
Lemma and the other is via the Schreier property. The Schreier property is not im-
plied by any of the specializations of Gauss’ Lemma while all but one of the specia-
lizations of Gauss Lemvma are implied by the Schreier property.

1. — Introduction and basics.

Let D be an integral domain with quotient field K. Call D pre-Schreier if for
alla,y,z € D* = D\{0}, «x|yzimplies that x = rs where r|y and s|z. An integrally
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closed pre-Schreier domain is called a Schreier domain. Schreier domains were
introduced by Cohn [9] where it was shown that a GCD domain is a Schreier
domain. In this note we show that an integral domain D is a GCD domain if and
only if (i) for each pair a,b € D*, there is a finitely generated ideal B such that
aDNbD =B, = (B~H)! and (ii) every quadratic in D[X] that is a product of two
linear polynomials in K[X]is a product of two linear polynomials in D[X]. We also
show that D is Schreier if and only if every polynomial in D[X] that has a linear
factor in K[X] has a linear factor in D[X] and show that D is a Schreier domain
with algebraically closed quotient field if and only if every nonconstant poly-
nomial over D is expressible as a product of linear polynomials. We give non-
Bezout examples of Schreier domains with algebraically closed quotient fields.
We also compare the two most common modes of generalizing GCD domains. Of
these one is via properties that imply Gauss’ Lemma and the other is that a GCD
domain is Schreier which in turn is pre-Schreier. It appears that Cohn’s Schreier
property is not implied by any of the specializations of Gauss’ Lemma while all
but one of the specializations of Gauss Lemma are implied by the Schreier
property. Yet, both approaches when applied to atomic domains produce UFD’s.
We also show how to avoid using Gauss’ Lemma via Nagata type theorems.

To keep the article self contained we include a brief description of the v -operation
and related notions. For more information see Gilmer [12, Sections 32 and 34].

Let D be an integral domain with quotient field K. A fractional ideal F' of D is
a D-submodule of K such that dF is an ideal of D for some d € D*. Let F(D)
be the set of nonzero fractional ideals of D. For each A € F(D) define
A1 =D :x A= {x € K|xA C D}. Denote (A1 by A,. The association A — A,
is a function on F(D), called the v-operation, that has the following easy to es-
tablish properties: for a € K* and B,C € F(D)

1) (@D), = aD, (aA), = aA,,
(2)ACA, and A C B implies A, C B,, and
(3) (Av)v — Av-

In addition to these, the v-operation can be shown to satisfy the following
properties:

@@,) " =A",

) if A; € F(D) and if Y A; € F(D), (3 A, = (3 (A,

6) (AB), = (A,B), = (A,B,), (usually called v-multiplication), and
(Mif A; € F(D) and NA; € FI(D) then (N (A4)),), = N(A;),.

Call A € F(D) a v-ideal if A = A, and call A a v-ideal of finite type if A = B,
for a finitely generated fractional ideal B. Combining (1) and (7) a nonzero in-
tersection of principal fractional ideals is a v-ideal.

In Section 2 we show that D is a GCD domain if and only if every quadratic
polynomial (X) over D that splits as a product of two linear polynomials in K[X]



THE SCHREIER PROPERTY AND GAUSS’ LEMMA 45

also splits as a product of two linear polynomials over D[ X ] and aD N bD is a v-ideal
of finite type for every pair a, b € D*. Recall that an integral domain D is called a
GCD domain if GCD(a, b) exists for each pair a, b € D*. Equivalently, D is a GCD
domain if and only if LCM(a, b) exists for each pair a, b € D* if and only if aD N bD
is principal for each pair a, b € D* if and only if (@, b), is principal for all a, b € D*.
Using the last characterization and the properties of the v-operation it can be
shown that D is a GCD domain if and only if (ay, ag, . . . , a,), is principal for a; € D*.
For more on v-ideals and GCD domains the reader can consult Gilmer [12]. An
integral domain is called a v-coherent domain if aD N bD is a v-ideal of finite type
for each a, b € D*, and a v-coherent domain in which ((a, b)(a, b)H™! = D for each
pair a, b € D* is called a Priifer v-multiplication domain (PVMD) [25].

Gauss’ Lemma, initially proved for the ring of integers 7, gives that the
product of primitive polynomials is again primitive. Here a polynomial f(X) is
primitive if the coefficients of f have no nonunit common factor. Let us call an
integral domain D a Gauss’ Lemma (GL) domain if the product of every pair of
primitive polynomials over D is again primitive. It can be shown that in a GL
domain every irreducible element (atom) is a prime. So if every nonzero nonunit
element of D is a product of atoms (e.g., D has the ascending chain condition on
principal ideals) and D has the GL property, then D is a UFD. Now the GL
property is also satisfied by GCD domains. Note that over a GCD domain a
polynomial f(X) is primitive if and only if (A7), = D, here A denotes the frac-
tional ideal generated by coefficients of f. Call a polynomial f superprimitive if
(As), = D. Now a superprimitive polynomial is obviously primitive and as we
indicate in the sequel the product of two superprimitive polynomials is again
superprimitive. This led to the study of domains in which every primitive poly-
nomial is superprimitive, such domains are called PSP domains. These con-
siderations were made by Arnold and Sheldon [6]. Some further strengthenings
of the Gauss’ Lemma property were made in Anderson [5] of which the strongest
is: For every nonzero integral ideal A the associated v-ideal 4, is the intersection
of all the integral principal ideals containing A. He called this property the IP
property. All these strengthenings of Gauss’ Lemma were studied in [2] where
the following diagram was given: GCD= IP= PSP = GL= atoms are prime
(AP), with examples showing that no implications could be reversed. In Section 3
we show that while the IP property is independent of the Schreier property, the
rest are implied by the Schreier property. Our example is somewhat simpler
than that of [5, Example 3.2] and leads to a whole class of pre-Schreier domains
that do not satisfy the IP property.

One application of Gauss’ Lemma is to show that if D is a GCD domain then sois
the polynomial ring D[ X]. This is done by showing that the product of two primitive
polynomials is again primitive. Since every polynomial f € D[X]" is expressible as
a product f = af; where a € D* and f; is primitive, combining this with Gauss’
Lemma gives that every pair of elements of D has a GCD. In [9] Cohn showed that
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if D is a Schreier domain then so is D[X]. Products of primitive polynomials are
primitive over a Schreier domain but this does not help in the proof that D[X]is a
Schreier domain. In order to accomplish this task Cohn used a Nagata type the-
orem. In Section 4 we redo Cohn’s proof from a slightly different point of view and
show that using the notion of LCM splitting sets we can use a Nagata type theorem
to directly show that if D is a GCD domain then so is D[X].

2. — Polynomial characterization of Schreier domains.

Recently there has been some activity in using quadratic polynomials to
determine the divisibility properties of integral domains, see for instance
Waterhouse [22] and Rush [20]. This reminded us of a paper by Malik, Mott and
Zafrullah [16]. In [16] the following basic result was proved: Let D be a PVMD
with quotient field K such that for each pair a,b € D* there exist c¢,d € K* such
that (a,b)"! = (¢, d),. Then D is a GCD domain if and only if every irreducible
quadratic polynomial over D is prime. The proof of the if part was based on the
idea of taking a quadratic polynomial g(X) of a specific type in D[X] that splits in
K[X] as a product of two linear polynomials and concluding that g(X) must be a
product of two linear polynomials in D[X] and then using the rather stringent
conditions to show that aD N bD is indeed principal for each pair a,b € D*. One
aim of this section is to use the current state of knowledge to prove the following
improved version of the above theorem.

THEOREM 2.1. — A v-coherent domain D is a GCD domain if and only if every
quadratic polynomial in DIX] that splits in K[X] as a product of linear poly-
nomials also splits in D[X] as a product of linear polynomials.

The proof of this theorem consists of bringing together various pieces to
complete the picture. We shall use the notions of Schreier and pre-Schreier
domains. Several characterizations of pre-Schreier domains are found in
MecAdam and Rush [18] and some more in [23] where the term pre-Schreier was
coined. We use the following characterization of pre-Schreier domains.

PRrOPOSITION 2.2. — [23, Theorem 1.1(3)]. An integral domain D is a pre-
Schreier domain if and only if for each pair a,b € D* and for all x1,xs, ..., 2, €
aD NbD there exists d € aD NbD such that d|z; forall i =1,2,...,7.

This proposition can also be traced back to [18] but as stated in [23] it tells us
that if D is a pre-Schreier domain and if a, b are two nonzero elements in D then
every finite subset {x1,x2,...,2,} of aD NbD has a common factor in aD N bD.
This is all we need to prove the following proposition.
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ProprosITION 2.3. — An integral domain D is a GCD domain if and only if D
1s pre-Schreier and v-coherent.

Proor. — Let a,b be any two nonzero elements of D. Since D is v-coherent

there exist @1, 2, . .., 2, € DsuchthataD NbD = (a1, s, .. ., %y),. Since D is pre-
Schreier and since 1, %3, ..., %, € aD NbD there is an m € aD N bD such that
mlx; for each ¢ =1,...,n. Thus (x1,22,...,2,) CmD and hence aD NbD =

(1,22, ...,%,), €mD. But since m € aD NbD we have aD NbD =mD. So
aD N bD is principal for each pair a, b € D* and hence D is a GCD domain. For the
only if part note that a GCD domain is Schreier [9] and a GCD domain is obviously
v-coherent. O

To complete the proof of Theorem 2.1, we need to show that if every quadratic
polynomial over D that splits in K[X] as a product of linear polynomials also
splits in D[X] as a product of linear polynomials, then D is pre-Schreier. We want
the pre-Schreier property, but we do not care if it is delivered by considering a
specific type of quadratic polynomials or considering all quadratic polynomials
over D. This is where special quadratics over D come in. These are polynomials of
the type f(X) = a(X + %)X + %) such that a,m,n € D and f(X) € D[X] which
means that a|mn in D. These polynomials are sure to split in K[X]. These
polynomials were recently used by Waterhouse [22]. Now Rush [20] has shown
that an integral domain D is a pre-Schreier domain if and only if every special
quadratic polynomial in D[X] is expressible as a product of linear polynomials in
D[X]. Since [20] has not yet appeared and since the procedure involved is pretty,
we include the statement and proof below.

THEOREM 2.4. — An integral domain D is pre-Schreier if and only if every
special quadratic f(X) = aX +2)X +2) with a,m,n € D such that f(X) €
D[X] is expressible as a product of linear polynomials f(X) = (aX + )X + 9)
where a,fB,7,0 € D.

ProoF. — Let a|mn in D, a,m,n € D* and construct the following quadratic
polynomial: aX? + (m + n)X + ™t in D[X]. By the condition there exist
a,B,7,0 €D such that aX?+ (m+ n)X + "2 = (aX + )X + 9). Comparing
coefficients we get (a) & = ay, (b) m 4+ n = ad + fy, and (c) % = 4. Then (d) set
ad = u, fy = .

(1) From (b) and (d) we get u +v=m +n or u + v — m = n.

(2) From (a), (¢) and (d) we get mn = uv.

Substituting for » in (2) we get m(u + v — m) = uv which gives m(u + v) —
m2 =uv or m% — (w+v)m+uv =0. Factoring we get (m — w)(m —v) = 0. If
m = u then m = ad which forces n = fy (cf (b) above). But a = ay by (a). Thus
in this case a|mn implies that @ = ay where a|m and y|n.

2
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If on the other hand m = v, we get m = fy, n = ad, and a = ay. So, in both
cases a = rs where r|m and s|n. Now as a,m,n € D* are arbitrary, D is a pre-
Schreier domain.

Conversely, suppose that D is pre-Schreier and let for a,m,n € D*,
JX) =aX +2)X +%) € DIX]. Then almn and since D is pre-Schreier we
have a =rs such that »jm and sjn. Let m =7k and n=sh, k,heD.
Then f(X) =aX+2)X+2) =rsX+E) X+ L) = rsX +HX + 1) =
(X +ENr(X +1)) = (sX + k)X + h) and both factors are in D[X]. O

ProOOF OF THEOREM 2.1. — Let D be a v-coherent domain such that every
quadratic polynomial over D that splits in K[X] also splits in D[X] as a product of
two linear polynomials. Then in particular D is a v -coherent domain such that
every special quadratic in D[X] is a product of linear polynomials in D[X]. By
Theorem 2.4, D is a pre-Schreier v -coherent domain and by Proposition 2.3, D is
a GCD domain.

Conversely, let D be a GCD domain and let f(X) = aX?+ bX +c¢ be
any quadratic polynomial in D[X] such that in K[X] we have f(X)=
aX? +bX + ¢ = rX + t)(sX + u) where »,s,t,u € K. Since D is a GCD domain
GCD(a, b, c) exists and is a unit in K[X], so we can divide out by the GCD and
assume that GCD(a, b, c) = 1, that is, we can assume that f(X) is a primitive
polynomial. But then it is well known that D[X] is a GCD domain and every
primitive polynomial in D[X] is a product of primes in D[X] [12, Theorem
34.10]. Now f can not be a prime in D[X], for then it is a prime in K[X]. Hence
f is a product of linear polynomials in D[X]. O

From a slightly different angle we can state the following result.

COROLLARY 2.5. — For a v-coherent domain D the following are equivalent.

(1) For every polynomial f € DIX] of positive degree with f = gh where
g, h € K[X] are both of positive degree, there exist r,s € D[X] such that r has the
same degree as either g or h and f = ¥s.

(2) Forevery polynomial f € DIX] of positive degree, f has the same number
of linear factors in DIX] as it has in K[X].

3) Every polynomaial of positive degree in D[X] that has a linear factor in
K[X] has a linear factor in D[X].

(4) Every quadratic polynomial of DIX] that splits as a product of linear
polynomaals in K[X] also splits in D[X].

(5) Every special quadratic of Rush in D[X] has a linear factor in D[X].

6) D is a GCD domain.

Proor. - That (1) = 2) = 3) = (4) = (5) is obvious with or without the
hypothesis that D is v-coherent. Now by the proof of Theorem 2.1, (5) = (6) under
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the assumption that D is v-coherent. To show that (6) = (1) note that D[X] is a
GCD domain [12, Theorem 34.10] and that a GCD domain is Schreier [9]. Let
f = gh where g,h € K[X] and let a, f € D* be such that ag, fh € D[X]. So if
r = af, then rf = (ag)(fh). This implies that r|(ag)(fh). But since D[X] is a
Schreier domain 7 = st such that s|ag and t|h in D[X]. This forces f = (“S—g)@
O

It may be noted that the presence of v-coherence is not the only condition that
makes the six conditions of Corollary 2.5 equivalent. As Waterhouse [22] pointed
out, the presence of (5) makes every irreducible element of D a prime. Thus if we
replace “D is v-coherent” by “D is atomic” the six conditions of Corollary 2.5 will
still be equivalent. The well known examples of v-coherent domains are Priifer
domains, PVMD’s, and coherent domains. Interested readers may state their
own corollaries as “A Priifer domain is a Bezout domain if and only if...” , “A
PVMD or coherent domain is GCD if and only if...” , ete.

Now it often happens with a bunch of equivalent conditions with an accom-
panying hypothesis, some conditions are more equivalent than others. Here
conditions (1)-(3) of Corollary 2.5 are all equivalent to a fourth one: D is Schreier.
Let us put this as the following proposition.

PROPOSITION 2.6. — For an integral domain D with quotient field K the
following are equivalent.

(1) For every polynomial f € DIX] of positive degree with f = gh where
g, h € K[X] are both of positive degree there exist r,s € D[X] such that r has the
same degree as either g or h and f = 7rs.

(2) For every polynomial f € D[X] of positive degree f has the same number
of linear factors in D[X] as it has in K[X].

(3) Every polynomial of positive degree in D[X] that has a linear factor in
K[X] has a linear factor in D[X].

1) D is integrally closed and every quadratic polynomial of DIX] that splits
as a product of linear polynomials in K[X] also splits in D[X].

(5) D 1s integrally closed and every special quadratic in D[X] has a linear
factor in D[X].

(6) D is a Schreter domain.

Proor. — As before (1) = (2) = 3). For (3) = (4) note that if v € K is an
element integral over D then u satisfies a monic polynomial f(X) of minimal
degree over D. Now note that (3) guarantees a linear factor of f(X) in D[X],
say f(X) = (aX — p)g(X). But since f is monic a must be a unit and so we can
put a =1 to get f(X) =X — p)gX) where f €D and gX) € D[X]. Now
0=f(u) = (u— pg(u) and g(u) # 0 because of the minimality condition on f.
So u = f € D. Having seen that D must be integrally closed, we again note
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that if f € D[X] is a quadratic that has a linear factor in K[X] then (3)
guarantees a linear factor of f in D[X]. But this forces f to be a product of
linear polynomials in D[X]. This completes the proof of (3) = (4). Now
(4) = (5) is clear and for (5) = (6) we may use Theorem 2.4 and the fact that a
Schreier domain is an integrally closed pre-Schreier domain. Finally for
(6) = (1) note [9] that if D is Schreier then so is D[X] and use the same proof
as that of (6) = (1) in Corollary 2.5. O

NotE 2.7. — The equivalences: (4) < (5) < (6) can be found in [20] and
(1) & (6) is in [18] while (2) and (3) appear to be new.

Now looking at (2) one may ask: What if the quotient field of the Schreier
domain is algebraically closed? The answer is quite apparent in light of
Proposition 2.6, yet for the record we state the following result.

COROLLARY 2.8. — An integral domain D is a Schreier domain with algeb-
raically closed quotient field K if and only if every polynomial f(X) over D is a
product of linear polynomials.

Proor. — If every polynomial over D is expressible as a product of linear
polynomials then the same holds over the quotient field K and so K is al-
gebraically closed. Next if every polynomial over D splits as a product of
linear polynomials then every monic over D has a linear factor. So D is in-
tegrally closed. Finally since every polynomial splits over D, so do all the
special quadratics and by Proposition 2.6, D is a Schreier domain. Conversely
if D is Schreier with algebraically closed quotient field, then Proposition 2.6
ensures that every polynomial over D splits as a product of linear poly-
nomials. O

It may be noted that any Schreier domain D with algebraically closed quo-
tient field is a domain in which there are no irreducible elements, because for
each nonzero nonunit a € D*, X? — a is a product of two linear polynomials over
D which gives a = (v/a)* a product of two nonunits. Such domains are called
antimatter domains in [10].

The ring of algebraic integers is an example of a Schreier domain with al-
gebraically closed quotient field. It would be interesting to find other examples.
The rather obvious other examples are valuation domains with algebraically
closed quotient fields. There are indeed plenty of them. For a start let P be a
prime ideal in the ring of algebraic integers. Then Rp is a valuation domain with
the property that every polynomial over Dp splits as a product of linear poly-
nomials over Dp. This of course is not a groundbreaking discovery but does lead
us to a slightly better result.
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PROPOSITION 2.9. — Let D be an integral domain with quotient field K # D .
Then there exists a valuation domain V containing D such that every poly-
nomial over D is expressible as a product of linear polynomials over V.

PROOF. — Let K be the algebraic closure of K and let D be the integral closure
of D in K. Then D* is integrally closed and so has a valuation overring V con-
taining D® and hence V is a valuation domain with quotient field K. Now as
D C D* CV C K we have the result. O

This proposition leads to the question: Must each D as constructed in
Proposition 2.9 be a Schreier domain? This question seems to be a bit hard and so
is left to an interested reader. Up to now we have seen examples of Bezout do-
mains each with algebraically closed quotient field, is there an example of a non-
Bezout Schreier domain with algebraically closed quotient field? The answer is
yes as shown in the following example.

ExampLE 2.10. — (Coykendall) Let C denote the complex numbers,
D = C[X], K = C(X), K the algebraic closure of K and let D* be the integral
closure of D in K. Further let M be a maximal ideal in D* and let Q be the
algebraic closure of the rationals Q. Then R = Q +MD4, is a Schreier domain
with quotient field K and S = Q + MDS, is a pre-Schreier domain. Neither
domain is a Bezout domain.

ILLUSTRATION. — Let M be a maximal ideal of D*. Since D is a Pr iifer domain
[15, Theorem 101] DY, is a valuation domain. We show that D{, = C + MD{,. For
this note that D},/(MD§,) ~ D*/M which is algebraic over D/(M N D). But
M N D is a nonzero prime ideal of D = C[X] and so M N D is generated by a
linear polynomial, because C is algebraically closed. But then D/(M N D) = C.
This makes D}, /(MDY,) algebraic over C. Next D, © C and so Df, 2 C + MDj,.
To see that the containment is not proper let v € Dj,\ C + MDj,. Then for no
m € MDY, can we have v +m € C. But since D};/(MDY,) is algebraic over C,
v+ MDYj, should be algebraic over C, which is algebraically closed and so
v+ MD§, = ¢ + MDj, for some ¢ € C.

Now set R = Q +MDj, and note that R is a D + M construction of [7] and
that R is integrally closed [7, Theorem 2.1 (b)]. Next, since (MD?LW)_1 =D}, Ris
a pseudo valuation domain. (Recall that a quasi-local domain (D, M) with maximal
ideal M is called a pseudo valuation domain (PVD) if for all ideals A, B of D we
have A C B or BM C AM [14].) So, MD{, is a divisorial ideal of 2. Finally since
Dj, is a valuation domain with algebraically closed quotient field, D, is anti-
matter and so for each nonzero x € MD{, we have r,s € MDj, such that x = rs.
This forces (MD}J‘M)2 = MD§,. But a PVD with maximal ideal idempotent is a
pre-Schreier ring by Proposition 3.7 of this article and an integrally closed
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pre-Schreier domain is Schreier. That R and S are not Bezout follows from
[7, Theorem 2.1 (i)].

Now, a special quadratic in D[X] looks very factorable. Is there an example
that shows that sometimes a special quadratic may not be factorable in D[X]?
In other words, is there an element that is not primal? The answer can be
given in a number of ways. For instance in a non-integrally closed one-di-
mensional local domain no irreducible element is prime but an irreducible
primal element is prime. But here we give a concrete example that has some
other uses.

ExampLE 2.11. - Let (V, M) be a valuation domain with quotient field
K #V such that M~ =V and let L be a nontrivial extension of K. Then in
D =V + XL[[X]] the element X 1is not primal and so for a € L\K the special

quadratic X(t + %)t + XT/“) cannot factor in the polynomial ring D[t].

ILLUSTRATION. — Factoring the special quadratic requires that X = rs where
r|aX and s|X /a. Exactly one of r, s can be of degree one in X. Say r is of degree
one in X then s(0) # 0 and hence must be (an associate of) an element of V, so
there is no harm in assuming that s = s(0). On the other hand » = yX|aX. So %
must be an associate of an element of V. Since a € L\K, y must be in L\K. But
this is impossible because rs = X = yXs which forces ys = 1 or s = 1 € L\K. This
is a contradiction delivering the conclusion that we cannot write X = rs such that
r|aX and s|X/a.

The above example may also serve as an example of a domain that is not pre-
Schreier.

3. — Mixing Gauss’ Lemma and the Schreier property.

There are many ways unique factorization domains can be generalized. Of
these, two ways in which an atomie domain is still a UFD are the following.

(1) Cohn’s Approach.

We know from [9] that a GCD domain is a Schreier domain, a Schreier domain
is pre-Schreier, and in pre-Schreier domains every atom (irreducible element) is
prime. So a pre-Schreier domain has the atoms are primes (AP) property. This
gives the following diagram:

(A) GCD = Schreier = pre-Schreier = AP property
As we shall find out in the sequel, none of these implications can be reversed.

(2) The Gauss’ Lemma Approach.
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We note that a UFD D satisfies Gauss’ lemma: Over a UFD the product of
two primitive polynomials over D is again primitive.
By a prlmltlve polynomial f(X) € D[X] here we mean the coefficients of

fX) = Z a; X" do not have nonunit common factor. Stated in ring-theoretic

=0
terms, a polynomial is primitive if the ideal generated by the coefficients of f(X),
that is, Ar = (ap, a1, . .., a;) is not contained in any proper principal ideal. Let us

call a domain D a GL domain (GL for Gauss’ Lemma) if over D the product of two
primitive polynomials is again primitive. It is well known that domains that
satisfy Gauss’ Lemma do not have to be GCD domains. Here’s an indirect way
of finding out. A primitive polynomial f € D[X] is called superprimitive if
(Af)’1 =D, or equivalently (As), = D. Not all primitive polynomials are su-
perprimitive. Here is a quick example.

ExampLE 3.1. — Take a one dimensional local domain D which is not a
valuation domain. Then D must have two irreducible elements a,b which are
not associates of each other. Then h = aX +b is primitive but not super-
primitive.

ILLUSTRATION. — Suppose that (a,b), = D. Now since D is one dimensional
local, according to Kaplansky [15, Theorem 108], there is a least positive integer
n such that a|b”. Now note that (a) = (a,b") = (a,b"), = (a,ab"1,b"), =
(a,(@b™1,b"),), = (a,b" (a,b),), = (a,b" 1), which means that a|b"! contra-
dicting the minimality of #.

Example 3.1 gives us an example of a primitive polynomial that is not su-
perprimitive. On the other hand a superprimitive polynomial is always primitive.
For if not, let f be a superprimitive polynomial over D and suppose that there is
d € D such that Ay C dD. Then, D = (4y), C dD and so d must be a unit. We say
that a,b € D are v-coprime if (a,b), = D, i.e., aX + b is superprimitive.

A domain in which a primitive polynomial is superprimitive is said to have the
PSP property. Now all these concepts have been well studied in Arnold and
Sheldon [6] and at a later date in Anderson and Quintero [2] . But for the sake of
completeness we shall make necessary statements and give their proofs. First let
us see how PSP works, but for this we need the Dedekind-Merten’s Lemma: Let
f and g be two polynomials in D[X] and suppose that deg(g) = m. Then
A" A, = (A" Ay, [12]

PRroPOSITION 3.2. — A PSP domain is a GL domain and a GL domain has the
AP property.

Proor. — Let f and g be two primitive polynomials over the PSP domain D. So
(Ap)y =D = (4;),. We have to show that (4y), = D. Now by Dedekind-Merten,
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we have (4;)"" A, = (A;)"Ay,. Hence (49)" ' A,), = (Ap)" Ay,),. Now using the
v-product rule we see that the LHS is ((Af)””lAg)v = (((Af)v)m”(Ag)v)v =D.
Now the RHS using the v-product is (A5)"Ap), = (Ap),)" Ay = (Ag),. Thus
(Afg)v =D.

Next suppose that D satisfies the GL property and assume that D has an
atom a that is not a prime. Then there exist b, ¢ € D such that a|bc but a does not
divide either of b,c. Then bX + a and ¢X + a are both primitive. But in the
product (bX + a)(cX + a) = beX? + (b + c)aX + a® every coefficient is divisible
by a, a contradiction forcing the conclusion that there is no atom in a GL domain
D that is not a prime. O

Now looking at the domain D = V + XL[[X]] constructed in Example 2.11 it
is easy to see that a polynomial f € D[t] is primitive if and only if f has a unit
coefficient. So D has PSP and hence GL, yet D is not pre-Schreier and hence not
GCD.

From the above considerations of the Gauss’ Lemma approach we can con-
struct the following picture:

(B) GCD property = PSP property = GL property = AP property

Now we have two diagrams, (A) and (B); so the question arises: Both of them
end at the same property (AP), are they equivalent?

We now use some more of our knowledge of the pre-Schreier property and
Example 2.11 to show that the pictures (A) and (B) are two different pictures.
First let us recall from [24] that if A = (ay, a1, ae, ..., a,) is a finitely generated
nonzero ideal in a Schreier domain such that ag,aq,as, ..., a, have no nonunit

common factor then A~! = D. In other words, if f(X) = 3" ¢;X’ is a primitive

polynomial over a Schreier domain then (Af)’1 =D. Thatliso, a Schreier domain
has the PSP property. Now because in [24] the author only used the char-
acterization of pre-Schreier domains the same proof applies to the following
proposition.

PROPOSITION 3.3. — A pre-Schreier domain has PSP. In particular, in a pre-
Schreier domain every pair of coprime elements is v-coprime.

Now dropping the word “property” to save space we have the following
picture

GCD = Schreier = pre — Schreier = AP

4 Z 4
GCD = PSP = GL = AP

or GCD= Schreier = pre-Schreier = PSP = GL = AP
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Now we prepare to show that this picture is the best possible. Recall that an
integral domain D has the IP property if for each nonzero integral ideal A of D,
A, is the intersection of principal integral ideals . That is, D has IP if for each
integral nonzero ideal A we have A, = NdD where dD ranges over principal
integral ideals of D that contain A. As indicated in [2], the IP property implies
the PSP property. So if we give an example of a domain D that is not a pre-
Schreier domain but has the AP property we have established that the PSP
property does not imply the pre-Schreier property. This can be amply estab-
lished if we show that the ring constructed in Example 2.11 satisfies the IP
property. For this we first note that the construction in Example 2.11isa D + M
construction from a valuation domain of the type L + M where L is a field. Now
we quote the following result from Anderson [5].

THEOREM 3.4 [5, Proposition 2.3 (1)]. — Let V be a nontrivial valuation do-
main of the form K + M where K is a field and M s the maximal ideal of V. Let
R be the subring D + M where D is a proper subring of the field K. Then R
satisfies the IP property if and only if D satisfies the IP property and D is not a
field.

COROLLARY 3.5. —- The construction in Example 2.11 is an IP domain that is
not Schreier.

This means that IP # pre-Schreier. Now our study of mixing Gauss’ Lemma
and the (pre-) Schreier property would be complete if we can show either that
IP= pre-Schreier or that pre-Schreier=- IP.

To show that IP A pre-Schreier we need a quasi-local pre-Schreier domain
that has a divisorial maximal ideal that is not principal. (Any maximal ideal that is
contained in a principal integral ideal would have to be that principal ideal!). Let
us look for quasi-local domains that have divisorial maximal ideals which are not
principal. It is easy to see that if (D, M) is a PVD that is not a valuation domain
then M = D naD for some x € K [23, Proposition 4.1]. Now since an intersection
of principal fractional ideals is a v-ideal, in light of the above discussion we have
the following proposition.

ProposiTION 3.6. — A PVD (D, M) that is not a valuation domain does not
satisfy the IP property.

Now all we need is a pre-Schreier (or Schreier) PVD that is not a valuation
domain. Here we quote parts of Theorem 4.4 of [23].

ProposITION 3.7 [23, Theorem 4.4 (i) and (iii)]. — Let (D, M) be a PVD that is
not a valuation domain. Then D is a pre-Schreier domain if and only if
M? =M.
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Now it so happens that the rings R,S of Example 2.10 have the precise
credentials for the Schreier property and for the pre-Schreier property and both
are PVD’s. Now we include, just for record, the following well known result.

ProprosITION 3.8. — A PVD (D, M) with the GCD property is a valuation
domain.

ProOF. -- We show that if D is a PVD that is not a valuation domain then it
cannot be a GCD domain. If D is a PVD that is not a valuation domain then (a)
the maximal ideal M is divisorial as we have remarked earlier. So for allA C M
we have A, C M and (b) there must be a pair of elements a, b in D such that a}b
and bja. Now suppose on the contrary that D has the GCD property. Then
d = GCD(a, b) implies that @ = a;d,b = byd where a; and b; are coprime. But
since a GCD domain is Schreier, a;, b; coprime implies a,, b; v-coprime, i.e., (a;,
b1), = D. This means that at least one of a;, b; is a unit. But then a|b or bla, a
contradiction. O

From Example 2.10 we have a pre-Schreier PVD that is not a valuation do-
main and hence not a GCD domain by Proposition 3.8.

THEOREM 3.9. — The pre-Schreier (Schreier) property implies neither GCD
nor IP property.

We must point out that the case of IP= Schreier has been dealt with in [5],
but as our procedure provides a whole class of such domains and is simpler, we
have included it here.

Now let us recall the last diagram and adjust it with our current state of
knowledge. We had:

GCD = Schreier = pre-Schreier = PSP = GL = AP

From [5] we recall that GCD = IP and from the above discussion we know that
IP # pre-Schreier and pre-Schreier # IP. This gives us the following picture:

GCD = Schreier = pre — Schreier = PSP = GL = AP
N\ 7
1P

Looking at the diagram we note that IP is the strongest property in the
Gauss’ Lemma mode of generalizing GCD domains and IP has no relationship
with the pre-Schreier property as Examples 2.10 and Example 2.11 show. Finally
with reference to [2] and [5] no arrows can be reversed.

Let us get back again to Example 2.11. In [8] a somewhat elaborate con-
struction is employed to construct an antimatter domain that is not pre-Schreier.
Below we offer Example 2.11 as an easier alternative.
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PRrOPOSITION 3.10. — The construction V + XL[[X]] in Example 2.11 is an
antimatter domain.

ProoOF. — Recall from [10] that a valuation domain (V,M) is an antimatter
domain if and only if M~! =V and this was required in Example 2.11. So in
V + XL[[X]] all the nonunits that are associates of elements of V' do not have any
atomic factor. This leaves us with associates of elements of the form /X" where
l € L*. Now clearly X" is not an atom for » > 1. But [X is not an atom because for
every nonunit v € V* we have (X = v(%X ). O

4. — Schreier property or Gauss’ Lemma?

Having seen how the Schreier property fares in comparison with various
stronger forms of Gauss’ Lemma one may ask: Is Gauss’ Lemma a must?

The answer seems to be: Gauss’ Lemma is a part of our heritage and so is a
must. However, there are situations in which Gauss’ Lemma does not help and
there are results that help us bypass Gauss’ Lemma. Nagata’s theorem for
UFD’s shows that if D is a UFD then so is D[X] without even touching a poly-
nomial and Cohn’s “Nagata’s theorem for Schreier domains” does precisely the
same for Schreier domains. Before we go on further it seems pertinent to recall a
few facts along with Cohn’s Nagata type theorem.

Recall that a nonzero element « is called completely primal if every factor of x
is again primal. By definition every factor of a completely primal element is again
completely primal. According to Cohn [9] the product of two completely primal
elements is again completely primal [9, Lemma 2.5]. Thus, with the same proof as
in [9, Lemma 2.5], we have the following lemma.

LeEmMmA 4.1. - If S is a multiplicative set of a domain D generated by a set of
completely primal elements and if S’ is the saturation of S then S’ consists of
completely primal elements which are either in S or factors of elements of S.

LeEMMA 4.2 [9, Theorem 2.6]. — Let R be an integrally closed integral domain
and S a multiplicative subset of R.

(i) If R is a Schreier domain, then so is Rg.

@ii) (Nagata type theorem) If Rg is a Schreier domain and S is the sa-
turation of the set generated by a set of completely primal elements of R, then R is
a Schreier domain.

REMARK 4.3. — (1) Note that our wording of (ii) of Theorem 4.2 is slightly
different from that of Cohn’s actual theorem. This is because Cohn’s statement is
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slightly vague. His proof works quite nicely if we assume that Cohn identifies S
with its saturation (cf Lemma 4.1 here).

(2) In the proof of [9, Theorem 2.6], Cohn does not use the assumption that R
is integrally closed. So, Theorem 4.2 above also holds for pre-Schreier domains.
For the sake of clarity we restate this theorem below.

THEOREM 4.4. (Cohn’s Theorem for pre-Schreier domains). — Let D be an
ntegral domain and S a multiplicative set of D.

(i) If D is pre-Schreier, then so is Dg.

(i) (Nagata type theorem) If Dg is a pre-Schreier domain and S is the
saturation of the set generated by a set of completely primal elements of D, then D
s a pre-Schreier domain.

Now the main use for Gauss’ Lemma is to show that if D is a GCD domain and
if X is an indeterminate over D then D[X]is a GCD domain. The proof that D[X]
is a GCD domain then involves noting that every nonconstant polynomial
f(X) € DIX] can be written as f(X) = af1(X), where f1(X) is a primitive poly-
nomial ete. In the case of Schreier domains we cannot write every nonconstant
polynomial f(X) € D[X] as af1(X) where f1(X) is primitive. For it can be shown
that this is equivalent to D being a GCD domain. Theorem 4.2 (Theorem 2.6 of [9])
holds an answer to this but for that we need to prepare a little. This preparation is
essentially to promote our view of the pre-Schreier property; we believe that
completely primal elements are the building blocks of the pre-Schreier property.

LEMMA 4.5 [3, Theorem 3.1]. — A nonzero element c of D is completely
primal if and only if for all d € D*, ¢D NdD 1is locally cyclic. Moreover, if
{c1,¢2,...,cn} s a set of nonzero completely primal elements of D then Nc;D is
locally cyclic.

PROOF. - This lemma is part (3) of Theorem 3.1 of [3], except for the moreover
part. For that we proceed by induction. Note that the case of n = 1 is clear and

n = 2 follows from the first part. Suppose that N¢;D is locally cyclic for? = n — 1.
n—1

n
Let x1,22,...,2, € ﬂ ¢;D. Then xy,22,...,%, € ﬂ ¢;D and by the induction

n—1

hypothesis there 1s te ﬂ ¢;D such that xl,xz, ...,xr €tD. But then
X1,%2,...,%, €tDNec,D and smce ¢y, is completely pmmal there is s € tD N ¢, D

such that xy,x,...,2, € sD. But sD CtDne¢,D C ﬂci . O
i=1
LEMMA 4.6. — A nonzero element c of D is completely primal if and only
if clagbj fori=1,...,m, and j =1,...,n implies that ¢ = cice where ci|a; for
all © and cz|b; for all j.
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Proor. — Suppose that ¢ is completely primal and that c|a;b; fori =1,...,m,
andj = 1,...,n. Now since c is primal in D and a;,b; € D we have for ¢ = 1 the

following picture: c|aib1,aib2,a1bs,...,a1b, = ¢ = c(j) (j) where c(j)|a1 and c(j)|b~
)

for j=1,...,m. Since each of ¢}’ is completely prlmal because c is and since
ai,c € ﬂc D we conclude by Lemma 4.5 that there is an » € D such that
1)|7‘|a1,c. Thus ¢ = (%) = e Since for each j we have ¢!|r we conclude
that (5)\cg)|bj for each j=1,...,n. Thus we have shown that c|a;b;,
a1bz, arbs, ..., a1, implies that ¢ = r;s; where 71|a; and s;|b; for all j. Using
the same procedure we can show for each ¢=1,...,m that c|a;bs,
a;bs, a;bs, ..., a;b, implies that ¢ = r;s; where 7;|a; and s;|b; for allj =1,... ,n.

Since ¢, by, b, ..., b, € Ns;D and since the s; are completely primal (being
factors of ¢) we conclude that there is a t such that s;|t and t|c,b;. Set
¢ = t(§) = 7;8; and note that s;|¢ for all ¢ which forces ({)|r; for all i =1,... m.
But 7;|a; for i =1,...,m. Thus we conclude that c|a;b; for i =1,...,m and
J=1,...,n implies that ¢ = cic2 where cy|a; for all i and cz|b; for all j.

Conversely, suppose that c|a;b; for i =1,...,m,and j = 1,...,n implies that
¢ = c1cz where cqa; for all 7 and ¢ |b; for all j and consider (c) N (x) for any x € D*
. We show that (c) N (x) is locally cyclic. For this let a1, a2, ..., @, € (¢) N (x). We
can write x; = xh; and conclude that c|xh;. Then by our assumption ¢ = ¢ ¢z such

that c; |x and ca|h; for ¢ = 1,..., 7. But then m = xcy € (¢) N (x) and m|x; for each
1. Thus (¢) N (x) is locally cyclic for each x € D* and by Lemma 4.5 ¢ is completely
primal. O

LEMMA 4.7. — If D is integrally closed then every completely primal element
of D is a completely primal element of the polynomial ring D[X].

Proor. — Let ¢ be a completely primal element of D and suppose that for
f.,g9 € DIX] we have c|fg. Let f = Z a; X' and let g = Z b;X’. Recall that D is

integrally closed if and only if for h k e K[X], Ay, C D 1mphes that A,A, C D
(see [17, Theorem 1.5] for an easy proof). Replacing f by~ -in the above statement
we conclude that in our case c|fg implies that c|a;b; for ¢=1,...,m and
j=1,...,mn. Now since c is completely primal in D and a;,b; € D we have by
Lemma 4.6 that ¢ = c;ce where ci|a; and cz|b;. But then c|fg in D[X] implies that
¢ = c1¢g such that ¢;|f and ca|g. This shows that every completely primal element
of an integrally closed D is primal in D[X]. But then every factor of a completely
primal element in D is completely primal in D and hence is primal in D[X]. O

THEOREM 4.8 [9, Theorem 2.7]. — Let D be an integral domain. Then D is a
Schreier domain if and only if D[X] s a Schreier domain.

ProoF. — Let D[X] be a Schreier domain. Then since D[X]is integrally closed
we have D integrally closed. Nowlet ¢, a,b € D* such that c|abin D. But then c|ab
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in D[X] and so ¢ = ¢;(X)c2(X) where ¢1(X)|a and ca(X)|b. But by degree con-
siderations ¢;(X) € D. So every nonzero element of D is primal in D. Conversely
let D be Schreier. Then by Lemma 4.7, all the elements of D* are completely
primal in D[X] and indeed D* is a saturated multiplicative set in D[X]. Now
D[X]p- = K[X]is a PID and hence a Schreier domain. Thus Theorem 4.2, forces
D[X] to be a Schreier domain. |

Now the role of Gauss’ Lemma in showing that if D is a GCD domain then so is
D[X]is the following. It shows that if D is a GCD domain then the product of any
two primitive polynomials over D is again primitive. But as we have already
noted in Section 3, if D is (pre-) Schreier then D has PSP, so we can conclude that
if D is Schreier then the products of primitive polynomials in D[X] is again
primitive. Now recall from [9] that a GCD domain is a Schreier domain. So by
Theorem 4.8, if D is a GCD domain then D[X] is at least a Schreier domain. It is
easy to see that over any domain D the factors in D[X] of a primitive polynomial
are again primitive. Now using the GCD property of D we can show that every

m m
polynomial f(X) = 3" ¢,X" in D[X]" can be written as f(X) = d( 3 %Xi) where

= m =
d = GCD(ay,as, ...,Za,(:@) and (Z %Xi) is primitive. Note that alpgimitive poly-
nomial of degree 0 is a unit inllg. Next because of the degree restrictions every
primitive polynomial can be expressed as a finite product of irreducible elements,
and in a Schreier domain every irreducible element is a prime. So every primitive
polynomial in D[X]is a product of primes and the task of showing that D[X]is a
GCD domain can be accomplished as in the last part of [12, Theorem 34.10].
Recent work has provided a more efficient method of showing that if D is a GCD
domain then so is D[X]. But for that we need to prepare a little. A saturated
multiplicative set S of D is called a splitting multiplicative set of D if every
nonzero element d of D can be written as d = st where s € S and ¢ is v-coprime to
every member of S. A splitting multiplicative set S is called an lem splitting set if
in addition, for every pair of elements a,b € S we have aD NbD in S. For a
detailed study of these concepts the reader may consult [1] where the following
result is attributed (on page 30) to [13] and to [19]. ([19] came from Schexnayder’s
dissertation [21] which was cited in [13].)

THEOREM 4.9. — Let S be an lem splitting set of an integral domain D. If Dg is
a GCD domain, then so is D.

Based on these observations we state and prove the following well known
theorem.

THEOREM 4.10. — If D is a GCD domain and X an indeterminate over D, then
D[X]1is a GCD domain.
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Proor. — Note that by Theorem 4.8, D[X] is a Schreier domain, and that in a
Schreier domain every pair of coprime elements is v-coprime (cf Proposition 3.3).
Now we show that D* is a splitting set in D[X]. Let f € D[X]". If deg (f) = 0, then
f =11, so let us assume that deg(f) > 0. Then because D is a GCD domain,
f =ag where a € D* is the GCD of the coefficients of f and g is a primitive
polynomial and hence is coprime to every element of D*. But since D[X] is
Schreier, g is v-coprime to every element of D*. This establishes that D* is a
splitting set of D[X]. That D* is an lem splitting set follows from the fact that for
all x,y € D* we have xD N yD prineipal and that leads to «D[X] N yD[X] princi-
pal. Now to complete the proof we note that (D[X])p- = K[X]a PID and hence a
GCD domain, forcing by Theorem 4.9, D[X] to be a GCD domain. O

There are of course other results that give the same conclusion as in Theorem
4.10. Look up for example [4, Theorem 2.2] where it is shown that D[X]is a GCD
domain if and only if D* is a splitting set of D[X].
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