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Contractivity and Asymptotics in Wasserstein Metrics for
Viscous Nonlinear Scalar Conservation Laws.

J. A. CARRILLO - M. D1 FRANCESCO - C. LATTANZIO

Sunto. — In questo articolo sono riportati alcuni risultati recenti riguardo il compor-
tamento asintotico nel tempo di leggi di conservazione scalari in una dimensione
spaziale e con densita di probabilita come dati iniziali. Tali risultati sono quindi
applicati al caso di leggi di conservazione viscose con diffusioni nonlineari degeneri.
Le proprieta di contrazione nella distanza di trasporto massimale e di uniforme
espansione delle soluzioni forniscono Uesistenza di profili asintotici dipendenti dal
tempo per un’ampia classe di equazionti di convenzione-diffusione con nonlinearita
arbitrarie e diffusione degenere.

Summary. — In this work, recent results concerning the long time asymptotics of one-
dimensional scalar conservation laws with probability densities as initial data are
reviewed and further applied to the case of viscous conservation laws with nonlinear
degenerate diffusions. The non-strict contraction of the maximal transport distance
together with a uniform expansion of the solutions lead to the existence of time-de-
pendent asymptotic profiles for a large class of convection-diffusion problems with
Sfully general nonlinearities and with degenerate diffusion.

1. — Introduction.

Transport metrics [35, 36] have recently received a lot of attention due to the
fascinating applications in the understanding of the long time asymptotics of non-
linear diffusion equations [30, 15, 2, 31, 32, 13]. In most of these results the transport
distance used is the euclidean Wasserstein distance that is proven to be contractive
for the corresponding flows. Transport distances with different index were proved
to be contractive for one-dimensional nonlinear diffusions in [16, 14] and used to
analyse p-laplacian type equations in [1, 2]. The contraction in higher dimensions of
these distances find geometrical obstacles due to focusing solutions [34].

The contraction of transport metrics for evolutionary partial differential
equations of probability metrics has been shown to be an extremely powerful tool

(*) Conferenza tenuta a Torino il 3 luglio 2006 in occasione del “Joint Meeting S.I.M.A.I. -
S.M.A.L. - S.M.F. - U.M.IL. sotto gli auspici dell’E.M.S. Mathematics and its Applications”.
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in many different situations: kinetic theory [9, 6], fluid mechanics [7, 19, 29],
geometric problems and Ricci curvature [32, 36, 28], conservation laws [5, 12, 8],
semiconductors equations [21] and many others.

In this work, we first review the main results obtained in [12] describing the
long-time asymptotics of nonlinear scalar one-dimensional conservation laws in
terms of transport metrics. The main ingredients are the contraction of the
maximal transport distance and a suitable scaling based on the maximal trans-
port moment reminiscent of similar scalings used for the nonlinear diffusion case
in [33, 13, 11, 17]. However, the use of the maximal transport distance posed new
technical challenges to apply this strategy. As a result, long time behavior is
described in terms of a time dependent family of functions playing the role of a
typical asymptotic profile of the system.

The main advantage of this approach being that it gives results for quite
general nonlinearities.

In this paper, we present a further application of this strategy to the case of
general convection-diffusion equations in one dimension. Diffusion is assumed to
be degenerate, and thus, solutions typically show finite speed of propagation. We
will show that the maximal transport distance is a contractive metric for this
system. The expansion of the solutions is controlled uniformly in terms of the
maximal transport moment. These two facts allow us to analyse the long time
behavior of convection-diffusion equations with quite general nonlinearities
based on a scaling involving the maximal transport moment.

2. — Transport distances in one dimension.

All the models considered in this work preserve the total mass and enjoy a
minimum principle which ensures the solution remains nonnegative if initially so.
Therefore each solution can be interpreted as a curve in the space P(R) of
probability measures on R. For a given p € [1, + oo), we shall use the notation

Py(R) = {u € P(R) : f|m\pdu < +oo}.
R

We then recall the definition of p-Wasserstein distance between uy, 1ty € Pp(R)

(., 113) = inf{ f f e — ylPdn(e,y), 7 e r(w)},

R?

where I'(y;, i) is the set of transport plans between u; and uy, i.e. I'(1q, 1) is
the set of probability measures # on R? such that x, and u, are the marginal
measures of 7, see for instance [35]. When y; = u;dx, where u;,us € LI(R)N
NP,(R) and dx is the one-dimensional Lebesgue measure, the p-Wasserstein
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between u; and x, can be written (dropping da for simplicity) as

+ o0

Ayl = inf [ o= T@[Pu@de,

T:M2:Ttu1

where the constraint us = Tyu; (which is usually referred to as the density u
being the push forward by T of the density u,) is expressed by the condition

f (@ yus(e)dic = f o(T(@)us ()de,
R

R
for any ¢ € CS(R). Due to the property

P<q = dpQuy,pe) < doluy, i),
one can introduce the co-Wasserstein distance

ooy, ) == MM dyy(py, i) = sup dyp(py, piz).
p—+o0 p>1

In one space dimension, the Wasserstein metrics d,, p € [1, + oc], have a simple
interpretation in terms of the pseudo-inverses of the primitive of the involved
measures yx; and g, [16, 35]. Let us denote the distribution functions of y;,
1=1,2, by

Fi(@) = ;((— o0, 2]), «€ R, 1=1,2

and let us define their pseudo-inverses F; 1.70,1] — R as follows
F7HO) =inf{w: Fi(x) > &}

Then, for any p € [1, + oo,

(2.1) dp(uy, i) = || Fyt = F2_1||LP([0.1])'

REMARK 2.1 [Interpretations of the d..]. — The above representation formula
(2.1) provides an interesting interpretation of the d., in terms of the supports
of the involved measures. More precisely, suppose that the supports
K; = supp(y;), © = 1,2, are compact. Then, one can easily prove the estimate

sup{|inf K; — inf Ky|, | sup K1 — sup Ka|} < doo(ug, 1t5)-

Clearly, such an interpretation only makes sense if both measures y; and u, have
compact support.

An alternative interpretation is possible when the supports of x; and u, are
connected (possibly unbounded) sets of R: we observe that for a fixed amount of
mass ¢ € (0, 1), the quantity F| L — Fy 1(£) measures the distance between the
two points x; and a2 in which the two measures y; and u, respectively “reach the
same amount of mass &”. More precisely, x; and xy are defined as the unique
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points such that

ffldmfzdﬂz

o1 — a2| = |F71(E) — F3 (O]

and we have

Therefore, (2.1) implies that d..(x, ;) controls the quantity |x; — a2 for all
choices of the intermediate mass ¢ € (0, 1).

The maximal transport distance has been used to give simple proofs of growth
estimates for the support of solutions in [14, 11] to nonlinear diffusion equations
and for the stability of some particular solutions for fluid equations in [29]. For
future use, we define the “maximal transport moment” of a compactly supported
density, see also [34], as follows.

DEFINITION 2.2 [Maximal transport moment]. — Let v € L}F(R) be compactly
supported. Then, the maximal transport moment of v is defined by

m[v] := sup{|z|, x € supp(®)} = dw(v, ),

where dy s the Dirac mass centered at zero.

3. — Results for the inviscid case.

In this section, we quickly review the main results on the contraction of the
oo-Wasserstein distance and their consequences on the asymptotic behavior of
nonlinear scalar conservation laws given in [12]. Let us consider a general scalar
conservation law

with initial condition u(x, 0) = #%(x), where the flux function f(u) is convex and
u € L>®(R), supp(%) compact, % > 0 and, without loss of generality,

[a@ds =1
R
Let us denote this set of initial data as B.

The first interesting piece of information in [12] on the connection of optimal
transport distances and conservation laws is that the flow of convex scalar con-
servation laws is a non-strict contraction with respect to d... This result is based
on the fact that solutions of strictly convex scalar conservation laws can be ob-
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tained through the solutions of the associated Hamilton-Jacobi equation via the
Hopf-Lax formula. This allows for explicit formulas for the pseudo inverse
function of solutions, and thus, for explicit estimates of the L>°-distance between
pseudo-inverses functions of two solutions. This idea is fully developed in [12],
where the following result is shown:

THEOREM 3.1 ([12]). — Given u and v solutions to (3.1) with initial data
u,v € Brespectively. Assume that both initial data either belong to BV(R) orthat
their support has a finite number of connected components. In addition, assume
that the flux f € C' in (3.1) is convex. Then, for any t > 0,

32) Ao (u(t), v(8) < doo(@, V).

Contractivity properties of optimal transport metrics are at the basis of
recent results of fine asymptotic behavior for fully nonlinear diffusion equa-
tions [13, 11, 17]. Time dependent asymptotic profiles are obtained given the
asymptotic behavior of suitably scaled solutions of the equations. The main
idea is that the scaling should be related to a measure of the expansion/dis-
persion of the solution in time. In the case of nonlinear diffusions, the euclidean
Wasserstein distance and the second moment of solutions were respectively
used as contractive metric and measure of expansion for solutions.

In [12], the above contractive property for solutions of scalar conservation
laws was used to derive such time dependent asymptotic profile for general
convex fluxes with an additional assumption allowing for control of expansion of
the support. More precisely, we assume that the flux f : [0, + c0) — [0, 4+ 00) is a
C! convex function such that £(0) = /(0) = 0 and such that

(3.3) Jae(,1), r n—>f(1ﬂ)1’“ is convex on (0, + 0o).

Under the requirement (3.3), it has been proven in [27] that the L °-norm of
any solution w(t) to (3.1) with initial data in B decays to zero as t — + oc.
More precisely, using the results in [18], they are able to show [27,
Proposition 2.1] that

C
8.4) O <7 (SO )

for all ¢ > 0. This uniform decay of the L*°(R) norm implies a uniform di-
vergence of moments of the solutions and in particular of the maximal
transport moment

(3.5) meo[u] = sup{lx|, € supp(u)} = doc(u, do),

introduced in Definition 2.2. This moment will be our preferred expansion
measure for the solutions of the scalar conservation law. This uniform divergence
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of moments together with the scaling properties of the distance between solu-
tions and some geometric-like inequalities allow to prove the following theorem
about intermediate asymptotics for scalar conservation laws:

THEOREM 3.2 ([12]). — Let f be a flux satisfying the conditions above. Given
the set

then there exist a fixed t* >0 and a one parameter family of functions
{Up*} o € M N Bwith connected support such that, for any uy € M N B either
having a support with a finite number of connected components or belonging to
BV(R), we have

(3.6) doo(T [uo], U*) — 0, as t— + oo,
where the map T, is defined as
3.7) (THlul)@) = meo[u®)lulme[u®)l, t)

being u the solution to (3.1) with initial datum u. Moreover, for any fixed t > t,
Up* is characterized as the unique fixed point of 7;: M — M.

Hereafter we shall refer to the map 7 defined above as generalized Toscani
map as introduced in [33, 17]. The objective of this work is to show that these
ideas can be extended for general one-dimensional convection-diffusion equa-
tions.

In the next two sections, we show how to generalize the contraction property
of the distance d., for the viscous Burgers’ equation and viscous conservation
laws with degenerate nonlinear diffusion.

4. — Contraction for viscous Burgers’ equation.

In this section we focus our attention on the viscous Burgers’ equation

1
(4.1) Ut + (éuZ) = Uye,
with initial datum
(4.2) w(@,0) =u € LL(R)

and, without loss of generality, total mass equal to one. The ideas of this section
are inspired by the results in [20]. By means of the classical Hopf-Cole trans-
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formation [24]

(4.3) Hu)(x,t) := wlx,t) = %u(x,t) exp <—% fu(g“, t)dC),
we rewrite (4.1)-(4.2) as follows:

Vi = Vo N
@4 Ve, 0) = pla) = S exp (—% / ﬂ(C)dC>

and the initial datum i has total mass equal to

(4.5) m=1-¢x

By following the same argument as in [20], we obtain the following theorem.
THEOREM 4.1. — Let p € [1,+ oo). Let u; and ug be solutions to (4.1) with

compactly supported initial data g, Us € Li(R), both with total masses equal to
one. Then the Wasserstein distance d,(u1(t), uz(t)) satisfies the estimates

(4.6) dp(ur (), u2(t)) < €%ty Tio),
forp €[1,+o00),

(4.7) oo (U1 @), u2(®)) < doo (U1, U2),
Jorp =+ oo

Proor. — We shall make use of the one-dimensional representation formula
(2.1). We recall that the two solutions u;(-,t) and ug(-,t) are supported on the
whole real line R at any fixed ¢ > 0, due to the effect of the linear diffusion [24].
Therefore, the two distribution functions

Fya.f) == f wetdz,  i=12

—00

are strictly increasing and therefore invertible. Since we want to use (4.3) in order
to deal with Wasserstein distances involving solutions of the heat equation, we
also introduce the auxiliary distribution functions

Gilie, t) = f vz tide,  i=1,2,

where y; = H(u;) as in (4.3). For the same reasons as before, both y; and w, have
IR as support and the two distribution functions G; and G are invertible. In order
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to find the relation between the F;’s and the G;’s, we introduce the function
a : [0,m] — [0,1] defined by

at) =1 — e #
and we compute

Gi(x,t) :ft//i(z,t)dz = —f&exp <_§ fuﬂy,t)dy)dz

—00

1 X
=1—exp <_§ fui(%t)dy) = a(F;(x, 1)),

which implies
(4.8) FIUED =GN a©@),0, ¢€©,1), i=1,2

Hence, we use (4.8) and change variables in the following integral estimate

1 m
2
(a0, ua(t) = Of P ED-Fy Eol'de= Of G0 0= Gy . O T

m

§2\/Ef G, 1) — G5y, t)[Pdn = 2+/e d£<%(t),wz—(t)>_
0

m

Since the heat equation is contractive with respect to all the p-Wasserstein
distances (see e.g. [16]), we have

A2 (), us(®)) < 20/ d) (W l/fz<0>>
m m

NG f G111, 0) — G5 (n, 0)Pdiy
0

1
= Ve [ IF{1E,0) - F'(C 0 e #dé < Ve, i)
0

and the proof of (4.6) is complete. The proof of (4.7) easily follows by taking
p / +oo. O

REMARK 4.2. — We stated the above theorem under the assumption of %; and
U having compact support only to have

(4.9) oo ity 1) < + 00.

Actually, the assumption on the supports can be replaced by (4.9), which should
be interpreted according to the observations in Remark 2.1.
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5. — Contraction for viscous conservation laws with slow diffusion.

In this section we examine the contractivity properties in the d., distance for
the nonlinear viscous conservation law

with nonnegative initial data in B. The nonlinear diffusion g shall verify
g ) >0 and ¢'(0) =0. The latter condition, a slow diffusion condition,
guarantees that the equation (5.1) enjoy finite speed of propagation (see e.g.
[25]), which implies in particular that its solutions u(-,t) have compact sup-
port for any ¢ > 0, if the initial data #%(-) are compactly supported. This
property is necessary to take advantage of the contractivity results already
proved in the inviscid case [12] and reviewed in Section 3. Moreover, as in
[12], we do not require any specific hypothesis on the nature of the nonlinear
flux f and on the nonlinear diffusion g. The proof of the desired contractivity
property will be obtained via the operator splitting method applied to (5.1)
[22], taking advantage of the results already available for the inviscid con-
servation law [12] and the nonlinear diffusion equation [16]. Our main result
states as follows.

THEOREM 5.1. — Let uy(x,t) and us(x, t) be the weak entropy solutions to (5.1)
with nonnegative initial data 4y (x), tiz(x) € BN BV (R). Assume that f and g are
locally C? functions, f is convex and ¢'(0) = 0.

Then

(5.2) oo (U1 (D), u2(8)) < doo (1, Ug).

Proor. — Following [22], we consider approximate solutions u;, and us,, of
our solutions %; and us defined via operator splitting method. Let us show briefly
how to construct such an approximation for a general solution « to (5.1) with initial
datum #.

Fix a time T > 0 and a time step At > 0 such that NAt = T, then we define
an approximate solution %" by induction. For % = 0, we choose as first term %°
the initial datum «. Then, if «"(x) is the approximate solution at a time t,, = n/\t,
n=0,...N —1, we construct the successive term u"+!(x) as follows. Let us
denote with S} the semigroup defining the unique weak entropic solution for the
Cauchy problem associated with the nonlinear conservation law

ue +f(u), = 0.
Then we define
w" P () = Sy ().

Similarly, we denote with S? the semigroup defining the unique weak solution for
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the Cauchy problem associated with the nonlinear diffusion equation
Ut = JU) -
Thus, we define
w" (@) = SE " P w) = (Shy o Shu(x)
and finally we define
Un(, ) = u" (),

for any (x,t) € R x (¢, ty 1] and n=0,...N — 1.
Since both S} and S? do not increase total variation and L> norm, we conclude
that

[, D)l o < 28] o

and
(s Dl gyery < 18l gyr

for any n and t > 0. Hence, the Helly’s compactness theorem and the continuity
of u,, as a function of ¢ with values in L'(R) imply there exists a subsequence Uiy,
such that for any ¢ € [0, T']

(5.3) U, (-, 8) = U, 1) in Ljpo(R)

and bounded almost everywhere. Moreover, the uniqueness of entropy solutions
for degenerate parabolic equations [10] implies the whole sequence u,, converges
to the unique entropy solutions of (5.1) with initial datum % € BV(R) N L*(R).
Moreover, since both semigroups Stl and St2 enjoy finite speed of propagation, for
any fixed ¢ > 0 the support of «"(-, %) is bounded uniformly with respect to # and
therefore the convergence in (5.3) is indeed in L(R).

Let us now apply the above approximation arguments to our solutions %; and
uz and let us denote with u;, and ug, the corresponding approximating se-
quences such that for any ¢ € [0, T']

(5.4) Ui t) = wi 1) in LAR), i =1,2,

and bounded almost everywhere. From the results in [16, 12] we know that, for
any t > 0, t € (¢,,t,.1] for some n and

Do (U1, (), 22 (8) = o (U, 15) = Ao (SAUShut ™), SH(Shus )
(5.5) < doo(Shpuy 1 Shus™) < doo L uy ) <

< doo(ala 77/2)
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Moreover, since

doou,v) = lim d,(u,v) = supdy(u,v),
p—+o0 p>1

from (5.5) we conclude

(56) dp(ulaz(t); u2n(t)) < doo(aly 77/2)-

Using the weak lower semi-continuity of the d,’s with respect to the convergence
established in (5.4) (see, e.g. [35]), from (5.6) as n» — + oo we obtain

(57) dp(ul(t)7u2(t)) < 171021#1315‘ dp(ul,n(t)7u2,n(t)) < doo(ﬂh?j@)-

Finally, passing into the limit for p / 4+ oo in (5.7), the proof of (5.2) is
complete. O

6. — Intermediate asymptotics via generalized Toscani map.

In this section we use the results proven in Section 5 to the study of the large
time asymptotics of nonnegative compactly supported solutions to the degen-
erate diffusion-convection equation

(6.1) e+ f(U)y = gy,

where f : [0,+00) — [0,+ c0) and g : [0,+ oc0) — [0,+ c0) are supposed to be
twice continuously differentiable, f is convex and ¢(0) = ¢’(0) = 0. To perform
this task, we use the generalized Toscani map introduced in Theorem 3.2 above
(see [12, 13]) to scale the solution u(t) by its own maximal transport moment (see
Definition 2.2 above). For future use we also introduce the functional space

Mpy :={v € BNBV(R) : {m[v] =1}

which is dense on M with the distance d., as shown in [12, Theorem 5.8].

We now introduce the generalized Toscani map of the equation (6.1). Let
% € Mpy. Lett > 0and let u(¢) be the solution to (6.1) at time ¢ with initial datum
4. We define

(6.2) T[u)@) == mo[u@®] ume[u@®)]x, 1)

It is easily checked that m.[7:[#]] = 1 for all £ > 0 and for any % € Mpy, and
thus, the map 7 : Mpy— Mpy is well-defined. Let us now state the main result
of this section.

THEOREM 6.1. — Assume that f and g are locally C? functions, f is convex and
9(0) = ¢'(0) = 0. Then, there exist a fixed t* > 0 and a one parameter family of
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Sumctions {U*}y. € M N B such that, for any u € Mpy we have
(6.3) Ao (T4[u](@), Ug®) — 0, as t— + oo,

where T ul(x) is defined by (6.2). Moreover, for any fixed t > t*, U;° is char-
acterized as the unique fixed point of the generalized Toscani map T : M — M.

Proor. — We shall only discuss the general outline of the proof, which follows
the same strategy as in the proof of [12, Theorem 3.4] (see also [13, Theorem 2]).
The main steps of the proof are:

STEP 0. — Uniform Expansion of Solutions: The first important ingredient of
this argument is to show that our chosen measure of expansion of the solution,
the maximal transport moment m[%(t)], diverges uniformly in the set of initial
data in Mpy as t — + oc. This fact is guaranteed by the temporal decay esti-
mates of the L° norm for convection diffusion equations proven in [26, Lemma
2.7] (which is based on a previous result in [4]). Under the conditions of this
theorem, they show an L! — L>® decay estimate that depends only on the L!
norm of the initial data, namely

(6.4) I @)l o r) < WH%l(J&)ﬁl, t>0,

where
10 = [ @) ~gndp, 70,
0

This information and the arguments performed in [12, Lemma 3.1] and [13,
Lemma 2.1] imply that we have a uniform expansion of the solution, in the sense
that

(6.5) tlim mg[u(t)] = + oo uniformly in the set Mpy.

STEP 1. — Contraction Estimate in d.,: We first establishes a contraction
result for the map 7; (for large enough %) in the set Mpy metrized by the
Wasserstein d.. Given two elements i, 42 € Mpy, let u; and uz be the entropy
solutions having #; and g as initial data respectively. We define for any ¢ > 0

M. (?) := min{m[u1 ()], moo[ue @)1}
and we introduce the mass-preserving scaling

Mmoo [u; ()]

al(%,t) = al(t)uz(al(t)x,t), al(t) = T(t), 1= ].,2

After the above scaling procedure, one of the two between %; and uy (hamely, the
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one with less maximal transport moment) remains unchanged, while the other
one is rescaled in such a way that %; and s have the same maximal transport
moment. Moreover, for further use we observe

(6.6) Tilii(@)] = Moo 0 (Mo, t), i =1,2.

Atthis moment, a technical lemma based on a geometric inequality comes into play:
consider any two probability densities ., v on R such that # # v on a set of positive
Lebesgue measure and m[#] = m[v]. For a > 1 let v,(x) := a %v(a"'x). Then,

(6.7) oo (2, 0) < 2o (U, 04)
for any a > 1. We refer to [12, Lemma 3.2] for its complete proof.

Since my[u;(#)] > m.(t) for ¢ = 1,2, we can apply the result in (6.7) which
implies

(6.8) oo (U1 (D), u2()) < 2 doe(ur (X), uz(t)).

A trivial scaling property of the Wasserstein distances and the identity (6.6) yield
oo (T ilt1], T [5]) < Moo () o (1 8), U2 (1)),

which, together with (6.8) implies
oo (Tl Tilh2]) < 200 ()" dog (211 (£), us(8)).

Finally, thanks to (6.5) and to the contraction result of Theorem 5.1 we have, for a
sufficiently large t*,

(6.9) Aoo (T t[ur], Tiluz]) < ) doo (w1, Uz)

for a suitable function [t*, 4+ c0) 2t — f(t) € (0,4 0o0) such that f(t) < 1 for all
t > t* and such that f(t) — 0 as t — + oc.

STEP 2. — Extension and Fixed Points: Using that the set Mpy is dense on M
with the distance d., as proven in [12, Theorem 5.8], it is a simple matter to
extend by continuity to M the generalized Toscani map. We can then apply
Banach’s fixed point Theorem for ¢ > t*, which yields the existence of the desired
family of fixed points {U;*} € M. The convergence statement in (6.3) follows
easily from the contraction estimate by choosing one of the initial data to be the
fixed point itself.

STEP 3. — “Regularity” of Asymptotic Profile: Finally, one can easily prove
that the family of fixed points is a subset of M N B due to standard regularizing
effect results for convection diffusion equations with bounded measures as initial
data, see for instance the quite general result in [3]. O

REMARK 6.2. — We remark that an explicit decay rate with respect to time can
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be determined in the formula (6.3), depending on the rate of divergence of the
maximal transport moment, which in turn depends on the L> decay rate of (). In
this context, we observe that the decay rate in the estimate (6.4) only depends on
the nonlinear diffusion function g. Such a decay rate can be improved in those
cases in which the convection part dominates the diffusive part for large times.
For instance, when f(u) = 4% and g(u) = «™ with 1 < ¢ < m + 1 the following
estimate is valid (see [26, Lemma 2.10] or [23, Lemma 2.1])

@] (ry < C(H@”Ll(:[%))t_l/qv t>0.
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