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Remarks on the Existence of Many Solutions of Certain
Nonlinear Elliptic Equations.

E. N. DANCER - SHUSEN YAN

Sunto. — In questo lavoro, si mostra come i cambi di variabile unitamente ai metodi
utilizzati per trovare soluzioni ad uno o piwl picchi, possono essere usati per provare
che varie equazioni alle derivate parziali non lineari hanno molte soluzioni.

Summary. — We show how a change of variable and peak solution methods can be used to
prove that a number of nonlinear elliptic partial differential equations have many
solutions.

1. — Introduction.

Consider the problem

M = au—|u|’ in Q

1
(1) u = 0 on 0Q

where Q is a smooth bounded domain in R".

There are many works concerning the multiplicity of solutions for (1). A
popular method to study (1) has been to use order theoretic and Morse index
techniques as in [1]. See the discussion in Remark 1. But it seems very difficult to
obtain more than three non-trivial solutions by these techniques. So, to find more
solutions for (1), a new idea is needed.

In this paper, we continue a recent theme in work of ours ([7], [8]) by showing
that (1) has many solutions by using a change of variable and then using peak
solution ideas. The many peak solutions come about for rather different reasons
to those in [7] and [8] and the locations of the peaks are very different. Here the
locations are determined directly by the shape of the domain and not by the first
eigenfunction of the Laplace operator on the domain Q with Dirichlet boundary
condition. Once again, we obtain many more solutions than can be obtained by
the usual variational and topological techniques, such as the order theoretic and
Morse index techniques discussed above.
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We mainly consider the case p = 2 and » < 5. Many generalizations will also
be discussed in Section 3.
The main result of this paper is

THEOREM 1. — If p = 2,n < 5, then, for any integer k > 0, (1) has at least k
solutions when a is large.

2. — Proof of the Main Result.

PRrROOF OF THEOREM 1. STEP 1. — We use the change of variable u = ¢ 1o,
where &2 = a~1. Then our problem becomes
2) —EMm=v—% inQ v=0, ondQ.

This is the type of equation where we can apply peak solution methods.

STEP 2. — Let f(t) = t — t2. Then, f(t) = 0 has a solution ¢ = 1 with f/(1) < 0.
By standard techniques, (2) has a unique positive solution ¢, satisfying

0<¢, <1, inQ,
and
3) ¢, =1+0(e ) uniformly on K CC Q,
where ¢ > 0 is a constant depending on K.
STEP 3. — We then obtain many solutions for (2) for small ¢ by looking for

solutions with & negative peaks superimposed on ¢, in the interior of € (for
arbitrary k). That is, we look for solution of the form

&

k .
(4) ¢, — @7)(90 %L) + higher order terms,
1

i
where w and x; € Q are to be determined.
By (3), we see that the limit equation for a peak is

w=(1—w) — (1 —w)’ on R", we H'(R").

That is,
(5) —Mw=u?—w in R", we H(R").
. n+2 . .
Since n <5, we see 2 < et Thus equation (5) has a unique (up to a

translation) positive solution . Note that w decays exponentially and it is non-
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degenerate in the sense that the linearized operator:

(6) — A+ v — 2w

has kernel (in the space of decaying functions) spanned by {g—ww i=1,-- n}
(3

See [13], [2] and [4]. Note that we assume that n < 5 here because if n > 6, (3) has

no positive decaying solution by a Pohozaev identity.

Now, it is clear that the function w in (4) is the radial positive solution of (5).
So, we are in the situation of § 5 of [9] except that we are putting negative peaks
on a positive solution rather than vice versa as in [9].

Since w is non-degenerate, we can easily carry out a Liapounov-Schmidt
reduction argument. So the problem of finding a solution with the form (4) is
reduced to a kn dimensional problem (which is variational). To solve the corre-
sponding finite dimensional problem, we can use a maximization process as in
[7], [8] and [9] to prove that the finite dimensional problem has a solution
x = (1, --,a,) € R, such that x is close to a point which maximizes d(z, 9Q) if
k=1, z € Q; and maximizes p(z) if k£ > 1, where

Note that the maximum is easily seen to exist and occurs at (21, ---,2;) with
dz;,002) > 6 >0, z; #%, 1 #7. Since these solutions are clearly distinct for
different k, we obtain the required result. We will give more details in
Appendix B.

To close this section, let us make a few remarks.

REMARK 1. — A popular method to study (1) has been to use order theoretic
and Morse index techniques as in [1]. The general procedure can be described as
follows:

(i) For a > 21, where /; is the i-th eigenvalue of the —4 in Q with Dirichlet
boundary condition, one can prove that (1) has a positive solution y by using the
sub-solution and super-solution method,

@) If a > 72, then one can apply the mountain pass theorem in the order
interval

(— oo,y] = {u € HY(Q),u <y},

to obtain a second solution, which cannot be the zero solution because zero has
Morse index strictly larger than 1if a > Zs.

(iii) If @ > 22 and «a is not an eigenvalue, one can find a third non-trivial
solution by a simple degree calculation. In fact, by homotopy invariance (by
varying a), the sum of the indices relative to the order interval (— oo, ] is 0 for all
a > 1. Buty hasindex 1 for a > /; since it is stable, and a mountain pass solution
has index —1. So the existence of the third non-trivial solution ug follows.
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One can obtain a little more information about the critical groups of u3 (and
sometimes allow a to be an eigenvalue) by Conley index techniques, but it seems
very difficult to obtain more than three non-trivial solutions by these methods.
Critical groups are defined in [1]. Here, we show that if a is large, we can obtain
many more solutions by using the peak solution methods and a good deal more
information on what the solutions look like.

REMARK 2. — It follows from the definition of p(z) that the asymptotic loca-
tions of the peaks are determined by a modified sphere packing problem, while in
[7] and [8], the locations are determined by the locations of the global maxima of
the first eigenfunction of — 4, and at least for generic 2, the peaks are close to each
other which contrasts with the case here.

REMARK 3. — None of the above solutions is the mountain pass solution (which
must exist) for small ¢. Itis easy to see that solutions with more than one peak are not
mountain pass solutions. On the other hand, the method in [9] can be easily modified
to prove that the mountain pass solution has a peak within order ¢ of the boundary.

REMARK 4. — If n = 2, the methods in [3] and [9] can be used to prove that the
only solutions of (2) of bounded Morse index for small positive ¢ are solutions with
a finite number of negative peaks on the positive solution, where some of these
peaks could be within order ¢ of the boundary (as in the mountain pass solution).

3. — Some Generalizations.

Our method in Section 1 can be generalized to the subecritical case
2 .
1<p< Z—i_Z To carry out the reduction argument, the only property we need

is that the following problem
(7 —tw=|w—1P +@w—-1) inR", we HY(R),

where p < (n + 2)/(n — 2), has a positive decaying solution (necessarily radial up
to translation), which is also non-degenerate. The existence of a solution is
standard. The question is the non-degeneracy. By the results in [13], [2] and [4],
which also give the uniqueness, a sufficient condition is that the nonlinearity
f@ = [t — 1P + (¢t — 1) satisfies the following conditions:

(f): Ot) <pon(0,1), O) > O(a)on (1,a), and O is qon—increasing on [a, c0).
Here O(t) = tf'(t)/f(t), and a > 1 is the constant with f f=0.
0

From the above discussion, we have the following generalization of
Theorem 1.
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2 .
THEOREM 2. — Suppose that 1 < p < Z—J_rz, and f(t) satisfies (f). Then for
any integer k, (7) has at least k solutions when a is large positive.

In Appendix A, we will check that condition (f) holds if p € [2,3]. The non-
degeneracy and uniqueness continue to hold if p is subcritical and close to [2, 3]
(by a limit argument), and we suspect it holds for all subcritical p. For our
purposes, it would suffice to obtain one non-degenerate solution in cases where
uniqueness fails.

REMARK 5. — By Theorem 2, (7) has more and more solutions as a become
larger. Moreover, if 2 is a ball, then solutions with more than one peak are not
radial. Thus, if 2is a ball and a is suitably large, (7) has a solution with two peaks,
and thus (7) has infinitely many solutions by rotation.

On the other hand, one can easily obtain bounds for all the solutions of (7)
if p is subcritical for fixed a. We clearly have an upper bound because the
positive solution is the maximal solution. Thus, the difference of this maximal
solution and any other solution is positive. By using a standard blowing up
argument, the proof of the bound reduces to the non-existence of bounded
positive solutions of —Au =u” on R"™ or on a half space with Dirichlet
boundary conditions. See [10] and [11]. We can then deduce for fixed a and
“generic” 2 (in the sense of [14]) that the number of solutions for (7) is finite
(by using the results of [14]).

Our method applies to more general nonlinearities. For example, there are
similar results for

(8) —du=aw—u?—|u’, inQ, wu=0,ondQ.

We proceed as before.

STEP 1. — Using the change of variable v = ¢ v and ¢ = a~/2, (8) becomes
9) —EMm=v—e’?— P, nQ, v=0, ondQ.

STEP 2. — We let v, be the positive solution of (9). Then v, is exponentially
close to b, in the interior of Q, where b, satisfies

b, — eb? — b3 = 0.

Note that b, is close to 1.

STEP 3. — We now put k negative peaks on v,. To determine the limit problem
for a peak, as in the proof of Theorem 1, one may first use the following problem
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as the limit problem:
(10) dw=1-w) —|1—w?, inR", weHR".

As we have seen in the proof of Theorem 1, the terms in the energy expansions
are exponentially small. But both ev in (9) and b, — 1 are algebraically small. We
modify the limit problem to the following one to avoid the awkward algebraic
terms of &:

(11) dw = (b, —w) — ew — b? — |w—b,[*, inR", we H'(R".

By using the implicit function theorem in the space of radial functions, we can
prove that (11) has a solution w, in the neighborhood of the positive solution of
(10). This solution is also non-degenerate. We then look for peak solutions of the
form

k .
V(y) — Z w, (y . %l) + higher order terms,
i1 g

and we can proceed as before. We obtain the following theorem.

THEOREM 3. — Suppose that n < 3. Then for any integer k, (8) has at least k
solutions when a is large positive.

Note that we can replace —u? by u? because our arguments do not depend
upon the convexity. It is also clear that our methods can be applied for many
other nonlinearities, such as the simple cubic nonlinearities which appear in
many applications. We stress that, when we study — &24w = f(w) in Q, it is cri-
tical for our arguments that, if the positive solution ¢, is close to 1 on compact
sets, then f'(1) < 0.
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Appendix A.
Verification of the Condition for Non-degeneracy

Let f(t) = |t — 1|” + (¢t — 1) and let O@) = tf'(t)/f(t). In this section, we will

2
check that if p € [2, 3], then condition (f) holds. Thus, if p € [2,3] and p < nt
-2’
the positive solution of (8) is non-degenerate and unique.
Here, we will prove that if p € [2, 3], then

i) e@) <p,in(0,1);
(ii) O is non-increasing in (1, 4 0o).

We only prove (ii). It is similar but easier to prove (i).

Verification of (ii). We have

t(pt — P +1)
o) = G- i1 t>1.
Letz = t% Then
1 p-1
o = VP2
P +z
We have
0) 22h(2)
@ + 27
where
hz) =p—(p— 122 +pB— ! + 2272
do(t) . . . .
Note that 7 < 0 is equivalent to //(z) > 0 for z > 0. Direct calculation
shows

W@ =—(p—1%p -2 +p(p— DB - pa > +2(p — D2 .
Hence the critical points of (z) are given by the non-negative zeros of
n@@) =—(p—2)(p—1) +p@B — pkr + 2"

Now 7 is strictly increasing for z > 0 (for p < 3), #(0) < 0 (for p >2) and w(l) =
2p(3 —p) > 0. Hence the only nonnegative critical point z* of % lies in [0, 1]. Now

) = h(z") — (p— 1) 72"k (%)
= p— @2 (p- D)W
>0,

since 0 < z* < 1. Hence our claim follows.
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Appendix B.
Proof of the Existence of Peak Solutions

In this section, we give a little more details than in [9] on how the computa-
tions are conducted. We do not give complete details because it is a very
straightforward modification of the ideas in [9, 12, 17]. Here f(t) = t — 2.

Since w, ,, (x) = w(e~Y(x — a;)) is not zero on the boundary of Q, where w is the
positive decreasing solution of (5), we define P, ow;, as the solution of

(12) —&a—fOv = —fA —w,,) —f(Dw,, inQ, v=0, onIQ.

Let ¢, be the positive solution of (2). We look for k-peak solutions of (2) of the
form

k
(13) ¢£ - ZPS,.QWX,%‘,; + .
i=1

The function v in (13) is a higher order term, and

vel, = { (%2 N\ o 1<ick 1<j<n
3 axi‘j ) . 9 ) ] )

where
1/2

(u,v), :f(aZVqu—i—uv), e, = (),
Q

Note that P, ow,, is a modification of w;, to satisfy the boundary conditions and,

by the maximum principle, it is easily seen

PS,Qws.l = Wey + O(e—d(?/,aﬂ)/a).

We are interested in solution where {x;} almost maximizes
p2) = min(d(z;, 09Q), |z; — 2|, 1,7 =1,--- .k, i #j}.

This ensures that x; are bounded away from each other and the boundary. In
fact, we will look for those (x1, - -,2;) in the 6 neighborhood of the (z1,- - -, 2;),
which maximize p. (These may not be unique). Denote this ¢ neighborhood by S.
Now, by a standard Liapounov-Schmidt reduction, we can solve for v, ,, uniquely,
and obtain the following estimate:

14 [0l < Ce 21O P

where > = —f'(1),y > 0 and ¢ > 0 is positive and fixed. This is very similar to the
arguments in [9], [12] [17]. By estimate (14), we can easily see, as in [12] or [17],
that v, , makes a higher order contribution to the energy. In the estimates below,
we will omit the contribution of v, ,.
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Now, firstly note that
$.(2) =1 — g1 (AE0D+oD)
&

if z is not close to Q. This follows from the proof of Theorem 2.1 in [5].
We will work with the energy

1) = f %SZ\VMZ — Gy, v)
Q

where G,(y,1) = F($,(y) — 1) — F@,) +@,y)E, F' = f,F(0) = 0. Then, if ;
is not close to 0Q, we have

(15) I(P[:"ng_’:cj) — A — Tog + O(671:’1}/(l+(7)Gl(93_7u09))7
where

g = [ (P =00+ Do — 8,
Q

o >0, and

A :j %W@\Z — Fy(), where F1(0) = 0,F|t) =f(1 —1).
RN

Moreover,

(16) Coe~ 107 w09 < 7, < Oy (1-0e M 09
- e

for any 0 > 0, where C; and C; are positive constants.

To prove (15), we multiply equation (12) by P; ow;, to remove gradient terms
in I(P, ow;,,) above. Then estimate (15) can be proved by repeating Step 1 of the
proof of Lemma 3.1 in [9]. To prove (16), we first replace 2 by R"™ (which only
affects the remainder term). It is best to use Theorem 1.2 and the argument on
p. 100-101 of [6]. (This avoids the convexity which is used at the end of Step 1 of
Lemma 3.1 in [9]). (As in [6], we can actually prove a more precise estimate than
Proposition 5.2 in [9]).

Next we consider, the energy of a sum for «; not close to each other or to the
boundary

k
I (Z Pa,Qws,ﬂcy>
J=1

(17)

k
I(Pg, ws‘acj)_

+ higher order terms,

k k
Fy <Z wm@) - Z Fy(w, ;) — Zfl(wa,xf)xj
=1 =1

i<j
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t
where f1(t) =f(1 —t) and F1(t) = f fi(s)ds. This follows as in Proposition 5.3 of

[9] (where there is a more detaileod discussion of the higher order terms) or in
[12]. The key point is to multiply (12) by P, ow: ., integrate by parts and use this
to remove the gradient terms.
We now follow the argument on p10-14 of [12] to prove that the integral in
17) is
1 n
—=%e Z @7}(6*1|aci — ;) + higher order terms

1<i<j<k

where 7 > 0. (To prove that 7 > 0 in this formula, we need to assume that
fA =y <f'Qy for y < 1though in fact this could be removed by modifying the
idea on p. 100-101 of [6]). Hence we see that

k k
1. ~
I( § Ps,Qwe,xj> =ke"A — E Tew; — é ye" E ?/l)(871|90i — OCJD
j=1 i=1

1<i<j<k
~+higher order terms.

Note that the energy decreases if some x; gets close to the boundary or some
x;,x; gets close. Hence, exactly as in [12] §4, we can maximize

k
I (Z Pe,Qwsﬁxj + vs,x)

Jj=1

over S and show that, for small ¢, the maximum occurs in the interior of S and
hence is a critical point of /. Hence we have a solution of our original equation.
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