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Bollettino U. M. 1.
(8) 10-B (2007), 1055-1069

Some Remarks on Prym-Tyurin Varieties.

GIULIANO PARIGI

to Fabio

Sunto. — Gli scopi del presente lavoro sono 1 seguenti:

a) In [2] Beauville ha dimostrato che se un certo endomorfismo u di una Jacobiana
J(C) ha nucleo connesso, la polarizzazione principale su J(C) induce un multiplo di una
polarizzazione principale sull immagine di u. St viformula e st completa questo teorema
provando “costruttivamente” il sequente:

Teorema. Sia Z C J(C) una sottovarieta abeliana e Y la sua varieta complementare.
Z ¢ una varieta di Prym-Tyurin rispetto a J(C) se e solo se la sequenza:

0—-Y—=JC) —Z—0
e esatta.

b) In [5] Izadi pose la questione se ogni p.p.a.v. fosse una varieta di Prym-Tyurin
rispetto ad una corrispondenza simmetrica senza punti fissi. In questo lavoro si fornisce
un contributo ad una possibile risposta negativa a questa domanda costruendo una
classica varieta di Prym-Tyurin esplicitamente tale che una tale varietd non possa mai
essere definita da una corrispondenza senza punti fissi.

Summary. — The aims of the present paper can be described as follows:

a) In [2] Beauville showed that if some endomorphism w a Jacobian J(C) has con-
nected kernel, the principal polarization on J(C) induces a multiple of the principal
polarization on the image of u. We reformulate and complete this theorem proving
“constructively” the following:

Theorem. Let Z C J(C) be an abelian subvariety and Y its complementary variety. Z
18 a Prym-Tyurin variety with respect to J(C) if and only if the following sequence

0—=Y—=JOC) —Z—0

18 exact.

b) In [5] Izadi set the question whether every p.p.a.v. is a Prym-Tyurin variety for a
symmetric fixed point free correspondence. In this work a contribution to a possible
negative answer to this question is provided by building a classical Prym-Tyurin variety
explicitly, but this variety can never be defined through a fixed point free correspondence.

Introduction.

Prym-Tyurin abelian were initially introduced by Tyurin in [10] as a natural
generalization of Prym varieties.



1056 GIULIANO PARIGI

Given a smooth and projective curve C of genus g and its Jacobian variety
(J(C), ®), we shall refer to those abelian subvarieties Z in J(C) for whom the
induced polarization is multiple of a principal polarization = on Z.

In his basic work, Welters ([11]) proves that every principally polarized
abelian variety (p.p.a.v.) is isomorphic to some Prym-Tyurin variety and sug-
gests that a rigorous study of correspondences on curves is needed for a deeper
knowledge of geometry of the abelian varieties.

Now, it is well-known that for a generic algebraic curve C the Jacobian J(C)
does not contain proper abelian subvarieties. Hence, we have been brought to
consider curves which could have special symmetric correspondences, that is to
say to consider special curves such that the period w of their Jacobian satisfies
the Hurwitz relation:

am = WA, where det (4) = 0.

Those correspondences were introduced and studied by Scorza and Rosati in the
first decades of 1900 but were made “handier” by Albert ([1], 1935) who con-
structively showed that the period matrix w of a curve having a special corre-
spondence is actually an impure matrix, i.e. such that

(or o)

w= )

w3 W2

On the other hand, in terms of End(J(C)), that corresponds to the existence of a
non-surjective endomorphism of J(C) which is fixed by Rosati’s involution, whose
image defines an abelian subvariety Z in J(C). Moreover, it is easy to realize that
given a principally polarized abelian variety Z, there exists a smooth and pro-
jective curve C whose Jacobian J(C) has an endomorphism ¢ such that Z can be

constructed as Im (¢) — J(C) (e.g. [8], page 374).
The aims of the present work can be summarized as follows:

a) In [2] Beauville showed that if some endomorphism % of a Jacobian J(C) has
connected kernel, the principal polarization on J(C) induces a principal polar-
ization on the image of u.

Consequently, given an abelian subvariety Z of J(C), considering the norm-
endomorphism Nz of Z, and the abelian subvariety Y of J(C) complementary to Z
(see [8], pp. 125-127), our methods allow us to reformulate and to extend the
theorem stated by Beauville, proving “constructively” (i.e. using the matrix of the
canonical polarization of J(C) the following:

THEOREM. — Let Z C J(C) be an abelian subvariety, Y its complementary
variety. Z is a Prym-Tyurin variety with respect to J(C) if and only if the fol-
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lowing sequence:

0-Y—JOY4Z -0

1S exact.

b) Anyway we remark that it does not seem straightforward to char-
acterize the principally polarized abelian subvarieties of J(C) by means of
particular special correspondences on C. The only known result in this di-
rection is the one achieved by Kanev ([6], 1987). In that work Kanev proves
that, given a principally polarized abelian subvariety Z of a Jacobian J(C), an
effective fixed point free correspondence on C defines a multiple of the given
principal polarization on Z.

In 2001 Izadi in [5] set the question whether every p.p.a.v. is a Prym-
Tyurin variety for a symmetric fixed point free correspondence. In this work
we provide a contribution for a possible negative answer to this question by
building a Prym variety explicitly, but this variety can never be defined
through a fixed point free correspondence, consequently confirming that
Kanev’s condition is only sufficient.

Acknowledgments. The author wishes to thank Prof. V. Kanev for his pre-
cious help as far as b) is concerned. Besides, he also wishes to thank Dr. Grazia
Butini who, although engaged in a different and distant science, has been able to
be close to him during all the development of this work.

1. — Subvarieties of abelian varieties.

1.1 — Basic concepts.

Let C be a smooth and projective curve of genus g and let J(C) be its Jacobian.
Let us suppose that there exists an endomorphism ¢ € End(J(C)), non-surjective
and symmetric with respect to Rosati’s involution. If we consider its rational
representation p,(¢), the rank of the matrix A,, matricial representation of p, (o),
cannot be maximum, so that det(4,) = 0. Let us now recall the well-known
theorem by Scorza and Albert:

THEOREM 1.1 (Scorza [9], page 278 and Albert [1], theorem 3, page 154). — Let
w be a Riemann matrix; w is impure (e.g. Introduction) if and only if there exist
a € Myqo(C) and A € Moy 2,(Z) such that the Hurwitz condition, i.e. aw = wA,
where det (A) = 0, is satisfied (e.g. [4]). O
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It follows that the Jacobian J(C) can be represented by an impure period
matrix w, that is of the following kind:

()

W= .

w3 w2

Furthermore Z := Im (o) turns out to be a proper abelian subvariety of J(C).

REMARK 1.2. — Supposing w; € M, 2,(C) and wp € M, 2,(C) for r e Z
such that 0 < » < ¢. Since w is the period matrix of a complex torus, we have that

the matrix P := <$ ) is nonsingular (@ is the complex conjugate matrix of w). On

the other hand, we have

wr 0 w; 0
w 0
O#det(?) = det ?3 “2 = +det o1
D) w 0 we s
w3 W2 w3 W2

= idet<21> -det(?).
w1 w2

That implies that ([8], proposition 1.1.2) both w; and wy are the period matrices of
two complex tori.

REMARK 1.3. — If we consider the vector space Vi spanned by the first r
vectors of the basis {ej,...,¢e,} of V' = (Y, that is to say:

Vi=1{e,...,ep} =2 C",

and if Py, : V — V; is the natural prjection, it is obvious that asserting that w;
is the period matrix of a complex torus is equivalent to asserting that, if
n; = Py,(;), 1 =1,...,2r, the elements {7, ...,#n,,} form a complete basis for
the lattice 4; C A defined by

Ay = (g, o)y
Hence the complex torus we have defined is
Y =Vi/4.
At the same time, if
Vo i=1L{ers1,...,60} 2 C9",

since the matrix o has the form (1), the elements Ag,41,. .., A2, have non-zero
components only with respect to {e,;1,...,e,}, so they are elements in V5.
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Anyway we shall call 127-+1, .. ,129 those elements in V2, but we shall keep
calling Agy41, ..., the same elements in CY, that is to say with the first »
components all equal to 0. Now, asserting that ws is the period matrix of a
complex torus means that.

/12 = <127a+1, ceey Zgg>71 .
is a lattice in V5 and that
Z = V2 //12

is a (g — r)-dimensional complex torus.

1.2 — A natural embeddimyg.

Let J(C) be a Jacobian for a curve C and X be an abelian variety with
dim (X) = p, 0 < p < g, such that an embedding " : X — J(C) exists. We want to
see if it is possible to describe the map F' “in coordinates” in order to point out its
analytic and rational representation.

More precisely it is easy to prove the following:

PROPOSITION 2.1. — Let F : X — J(C) be an embedding with X = CP/I".
Then, unless we use a holomorphic coordinate change with non-zero determinat
in CY, F must necessarily be describable in one of the following ways:

1) F(lz1,...,2p)r) =1[21,...,2p,0,...,014
——
9-p
or
@) F([z1,...,2p1r) :=10,...,0,21,...,2514.
——
9-p

REMARK 2.2. — Really, we should have described F' this as follows:
F([Zlv .. ,Zp]) = ([elv cee 76_(])]/1 )

where g — p coefficients are zero and the other p coefficients coincide with
?1,...,2p, in this order. Anyway, the two forms (1) and (2) are sufficient for our
goal.

Now we define an application iy : C97" — CY such that:

17(21, .., 2g—) = (0,...,0,21,...,25),

and immediately we notice that iy : C97" — CY defines a complex matrix
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(0
*=\14,.,

in relation to the standard bases.

i7(A2) C 4, so this matrix is the analytic representation p,(iz) of the
morphism iy : Z — J(C).

Besides, if we call:

i€ My, (C):

- 0
A= Msg2g-n(7),
<1d2(gy>> € May2g-n(2)

it is straighforward to understand that the equality

®3) i-mp=w-A
holds. Consequently, the two matrices a and A define a morphism Z — J(0),
which by construction will be the above-defined morphism i, and the matrix A
will be the matrix of the rational representation p,(iz) of that morphism. On the
other hand, it is easy to see that iy is injective.

1.3 — Polarizations in J(C).

Since J(C) is principally polarized, there exists a non-singular, unimodular,
skew-symmetric matrix H € My,5,(7) such that for C := H ! € My;9,(7) the
Riemann conditions:

w-C-of =0

w-C- @& >0

both hold. The skew-symmetric matrix C is called a principal matrix for w

_ (Hy Hy
Hence, let H = ( H, H,

unimodular, skew,symmetric matrix associated to the principal polarization @ in
J(C) and let C(C := H™') be a principal matrix for w.
C € Msy2,(7), and it can always be written in the form:

> , whith H € Mz(q,y)_g(g,,«)(Z) be the non—singular,

C; C . |
C = (C; Cj ), with Cl c M2127(74)

and C3 € Mz(g,y.)zy(zt).

In [1, theorem 1], Albert shows that C; is a principal matrix for the Riemann
matrix w;, consequently, det (C1) # 0 and C le Ms,.2,(Q). Then we can assert
the following:
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PRrOPOSITION 3.1. — Let J(C) be a g-dimesional Jacobian, whose period matrix

. . . . . wr 0
w 18 an impure Riemann matric having the form: w = (wl o >, where
3 W2

w1 € M, 2.(C). Let H be a polarization on J(C), where Hy € My 24—r(7),
and let C := H™ ! be a principal matrix for o € Msgoy. Then if i : Z — J(C) is
the immersion defined in (3), we have that:

) i5(0) = Hy.

2. — Prym-Tyurin varieties.
2.1 — Some definitions.

Before deepending the analysis of principally polarized abelian varieties,
it will be useful to describe the set of abelian subvarieties of an abelian
variety X in terms of the endomorphism algebra End,(X). In order to do
that, Lange-Birkenhake (e.g. [8], page 125), given a polarization on X,
associate to every abelian subvariety Z of X an endomorphism N, the
norm-endomorphism, and a symmetric idempotent ¢z and then prove that
the symmetric idempotents are in one-to-one correspondence to the abelian
subvarieties of X. This leads to a criterions for an endomorphism to be a
norm-endomorphism.

For a more comfortable reading, here we enunciate the definition and the
main proporties of the norm-endomorphisms. However, although such en-
domorphisms can be defined for abelian subvarieties of any abelian variety en-
dowed with any polarization, also in order to fix our notations, here we prefer to
consider only the case in which X is a Jacobian variety J(C) and the polarization
on J(C) is the canonical principal polarization . Finally we recall that, given any
abelian variety Z, to fix a polarization L on Z induces an isogeny ¢; : Z —~Z
depending only on the class of L in NS(Z). The exponent e(L) of the finite group
Ker(¢; ) is called the exponent of the polarization L. Then, there exists a unique
isogeny v, :Z — Z such that y, ¢, =e(l)z and ¢; -y = e(L),, the multi-
plications by the integer e(L) on Z.

Then, consider (J(C), ®), and let Z be an abelian subvariety of J(C) with ca-
nonical embedding iy : Z — J(C). Define the exponent of the abelian subvariety
Z to be the exponent e(i*(@)) of the induced polarization on Z and write
e(Z) := e(1*(0)). We have the isogeny:

Viey=eY)@ilg) : Z — Z.

With this notation, we have:
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DEFINITION 1.1. — We define the norm-endomorphism of J(C) associated to Z
(with respect to ©) by:
Nz =iy i o€ EndJ(C)
i.e. as the composition:
1O 2o 70 45 7 7 8 g

We immediately have:

LEMMA 1.2 (see [8], lemma 5.3.1). — For any abelian subvariety Z of J(C):
1) =Nz and  N%=e(Z)Ny,

where ’ denotes the Rosati involution with respect to the polarization 6. O

Moreover, we can prove (see [8], corollary 5.3.3) that the relations in (1)
completely characterize the norm-endomorphisms.

In other words, we obtain the following criterion for an endomorphism to be a
norm-endomorphism.

PRroOPOSITION 1.3. — For f € End(J(C)) and Z := f(J(C)) the following state-
ments are equivalent:

i) f =Ny,
i) f' = f and f? = eZ)f. O

We end this paragraph with an observation pointing out how the norm-en-
domorphisms depend on the polarization @ on J(C).

Back to the previous notation, if Z is the abelian subvariety embedded in J(C)
associated to the Riemann matrix:

W= ,
w3 W2
that is Z = C97"/(w2), and dim (Z) =g —», and if H € mg,2,(7) is the non-

singular, unimodular skew-symmetric matrix associated to the polarization @ on
J(C), H can be written in the form

H H
H= ( 1 Hy ) |
H; H,
which Hy € May2-(7) and Hy € Ma-r)2-r)(7).
As usual, we set C := H™' € M, 2,(7) and we write:

e
C_(Cs C4>7
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with Cy € Ma,.2,(7) and Cy € Moy 25—r(7). It is easy to prove that:

ProposiITION 1.4. — The rational representation of the norm-endomorphism
Ny relative to the variety Z and to the Jacobian J(C) defined by the impure
matrix w can be written, with respect to suitable bases, in the form:

0 0 0 0
Pr(Nz) = e(Z) < CsCrt Iz(gm) = <H41H2T Tag-n) )
O

REMARK 1.5. — It immediately follows from the previous proposition that the
correspondence ¢ associated to N, in the isomorphism between Corr(C) and
End(J(C)) is necessarily a special correspondence.

2.2 — The Beauwville’s criterion.

In this paragraph we analyze the principally polarized abelian subvarieties of
a Jacobian J(C). First we remember that in [13], Welters proved that every
principally polarized abelian variety Z is a so-called Prym-Tyurin variety, that is
to say that given a principally polarized abelian variety (7, Z) there exists a
smooth and projective curve C with a Jacobian (J(C), ®) such that Z is an abelian
subvariety of J(C) with:

@ J30) = e=

for some integer e. Necessarily e is the exponent of Z in J(C). We also say that Z
is a Prym-Tyurin variety for the curve C and that e is the exponent of the Prym-
Tyurin variety Z.

The problem we have to face now is to state a criterion to understand if an
abelian variety Z of a Jacobian J(C) can be principally polarized. The decisive
step in that direction is given by the following:

THEOREM 2.1 (Beauville [2], page 607). — Let u be an endomorphism of a
Jacobian J(C) and p a positive integer. Assume

1) uis symmetric;
i) u? = pu;
iii) the kernel of u is connected.
Then the principal polarization on J(C) induces p times a principal po-

larization of the image of u. (In particular, the image of u is principally
polarized,). O
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Keeping what we stated in lemma 1.2 in mind, this theorem can be re-
formulated this way:

THEOREM 2.1". — Let Z be an abelian subvariety of J(C). If Ker(Nyz) is con-
nected, then Z is a Prym-Tyurin variety.

ProoF. — We want to give a “more constructive” proof of this theorem, in-
volving the unimodular and skew-symmetrie matrix

H, H ,
H= 7.
(Hs H4> € May24(7),

which is associated to the polarization ® on J(C) (with

Cl C2 -1
= =H).
¢ <CS Cy ) )

To do that, we need the following:

LEMMA 2.2. — Ker(Ny) is connected if and only if the rational representation
pr(Nz) - Hi(C,7) — H\(Z,7)
18 surjective.
PRrROOF. — Since N : J(C) — Z is a surjective homomorphism, we can use the
Stein factorization of N:
Jc) X2 z
®) g\ S h
J(C)/(Ker (Nz))o
where & : J(C)/(Ker(Nyz)), — Z is an isogeny and the fibers of g are connected.

So we obtain a commutative diagram:

m1(C, co) ) m1(Z, 2)
6) AN /" h,
m (Xa 1’0)
where we indicated X := J(C)/(Ker(Ny)),, where (Ker(Ny)), is a finite-indexed
subtorus of J(C) in Ker(Ny).

Now being the diagram (6) commutative and p,(Ny) surjective, &, is surjec-
tive too.
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On the other hand, #: X — Z is a covering of Z and we can suppose that
(o) = zp.

Then it can be claimed that k., is injective too; that is to say, there exists an
isomorphism A, : 71(X,x9) — m1(Z,29). Consequently, the fiber of & in the dia-
gram (5) is only constituted by a point, therefore £ is an isomorphism too. Since g
has connected fibers, Ker(N ) is connected.

Let us now show the opposite implication. Now, supposing that Ker(Ny) is
connected, we have an exact sequence of complex tori:

0 — Ker(Nz) — J(C) — Z — 0.

If we call A, the lattice of the torus Ker(Nyz), by applying the snake’s lemma we
find that the induced sequence of lattices is exact too:

0— A4 — H(C,7)— H(Z,7)— 0.

Hence ¢,(nyz) is injective. O

Let us go back to the proof of the theorem. Considering Nz as an application
Nz : J(C) — Z, by proposition 1.4 the matrix representing it with respect to
suitable bases is:

M(p,(Nz)) = (eC5C ", e Idag—r) € Mag_r) 24(7),

with eC5C1 ! € My 2,(7), C;1 € May2,(Q). Since p,(Ny) is surjective, the ap-
plication 72" — 729~ induced by the matrix eC3Cy ! has to be surjective too,
therefore (e.g. [7], page 419) one can determinate a unimodular minor of order
2(g — r) in eCsCy le My 2:(7), since by construction obviously the inequality
g —r <r must hold. We also recall that C; is a skew-symmetric matrix in
MZ’V‘,ZT(Z)) whereas Cg € Mz(q,,a)_rzy-(Z).

For our aim, by the skew-symmetry of Cj, to the canonical form:

0 Ty

0 T
7 C T
M 1 . 0

Il

—Zr 0
On the other hand, by Schur’s formula,
det (Cy) - det (Cy — C3C1CH) =1
holds, and with a straightforward calculation immediately implies

Hy = (Cy— CsCTICI)Y ™ € My ryag-n(7),
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so we have that: det (H,) = det(C;). We know that det(Hy) =dj - ... d2

g—r—1"
dgﬂ., with d;|di11, 1=1,...,9 —r —1, and (see [8], page 368), d,_, = e, where

e = e(Z) is the exponent of the variety Z in J(C). Consequently, e? divides
det (Cy). By (7) we obtain:

2 2 _ g2 g2 2
oy ewy=dy-dy e

Since by hypothesis eC5C; ! has a unimodular minor of range 2(g — 7) it is easy to
realize that we have:

that is to say:

® Hy= 0 €

Since we already know from proposition 1.3.1 that 1,(©) = Hy, the proof is
complete. O

This theorem can easily be inverted. In fact, let Z be a principally polarized
abelian variety. Then (Z, Z) defines a Prym-Tyurin variety for some curve C.
Since & defines a principal polarization we can identify Z with its dual variety via
the isomorphism ¢z. Then w, = Idy; and if i5 : Z — J(C) is the natural embed-
ding, the equation defining the norm-endomorphism N of Z reads:

9) Ny = izig.
Now, let Y be the abelian subvariety of J(C) complementary to Z, i.e.:
(10) Y = Im (e(Z)Idyc) — Ny).
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Then, we have Y =Im(®j) C (ker(Nz))., since Nz-Njy=0. As Y and
(ker(Nyz)), are abelian subvarieties of the same dimension, Y = (ker(Ny))..
Moreover, (ker(Nyz)), = (ker (7AZZ))O since N; =y, ’AL', 17 1a a closed immersion and
;i is an isogeny. In order to show that ker (%Z) is connected, consider the exact
sequence:

0—-Z—JC)—JC)/Z — 0.

But the dual sequence is exact too:

0 — (J©)/2) — JC) % 7 — 0

SO ker(%z) ~ (,]/(5)/Z). In particular, ker(%z) is connected. Moreover, by (9),
ker(Ny) is connected too.
Finally we can conclude:

THEOREM. — Let Z be an abelian subvariety of a Jacobian J(C). Z is a Prym-
Tyurin variety if and only if ker(Nyz) is connected, that is if and only if the
following sequence is exact:

0-Y —=JC)—Z—0,

where Y is the abelian subvariety of J(C) complementary to Z. O

2.3 — Kanev’s condition.

First of all, let us recall that our definition of a Prym-Tyurin variety coincides
with the one given by Bloch-Murre ([3]): we suppose that ¢ € End(J(C)) is
symmetric with respect to the Rosati involution of (J(C), ®) and verifying the
equation:

(11) Z+m—2a—m—-1)=0

for m € 7., . Then the abelian subvariety Z = Im (¢ — 1) of J(C) is a generalized
Prym variety in the sense of Bloch-Murre if the induced polarization is multiple
of some principal polarization of Z.

Obviously the two definitions are equivalent: if Z is a Prym-Tyurin with
_exponent e for the curve C, then the endomorphism ¢ =1— N, satisfies
Z =Im (1 — o) and the equation (11) with m = e.

So the problem is to characterize the principally polarized abelian sub-
varieties of J(C) by means of particular special correspondences on C. The only
known result in this direction are those achieved by Kanev in 1987, particularly
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the following:

THEOREM 3.1 (Kanev [6]). — Let Z be an abelian subvariety of exponent e of the
Jacobian J(C). Suppose there is an effective fixed point free correspondence L on
C x C of bidegree (d,d) with y;, = 15¢) — Nz. Then Z is a Prym-Tyurin variety
for the curve C. Moreover, there are theta divisors on J(C) and Z on Z such that
15,(0) = eZ. a

It is better to recall the following:

DEFINITION 3.2 (e.g. [8], page 400). — A correspondence I between the points
of a curve C is said to be fixed point free if

I Ac=0,

where Ag is the diagonal of C x C.

The question proposed in Izadi in [5] whether every p.p.a.v. is a Prym-
Tyurin variety for a symmetric fixed point free correspondence is very nat-
ural. The following example intends to be a contribution for a hypothetic
negative answer to this question and confirms that Kanev’s conditions is only
sufficient.

ExampLE 3.3. — Let us suppose that Z is a p-dimensional Prym-Tyurin
subvariety of a g-dimensional Jacobian J(C), with e(Z) = ¢. Let us also suppose
that there exists a correspondence L, effective and fixed point free on C x C' of
bidegree (d, d), with y; = 1;¢) — Nz. Then g = pg + d (e.g. [8], prop. 11.5.2).

Letf : C — C’ be a duble (and branched in two points) covering of smooth and
projective curves with g(C) = g and g(C’) = ¢'. Let Z be the abelian subvariety of
the Jacobian J(C), complementary to the abelian subvariety Y = Im (f*), and let
1: C — C be the involution corresponding to the double convering f.

It is clear that (see [8], theorem 12.3.3) Z is a Prym-(Tyurin) variety of the
kind: 13,(0) = 25 and dim(Y) = dim(Z) = ¢’

By Hurwitz’s formula, we have that ¢’ = ¢g/2, so this implies (see also [8],
prop. 11.5.2): ¢ = 2-(g/2) + d, and consequently d = 0. Hence for such a Z no
fixed point free correspondence L on C x C representing it may exist, i.e. this is
the only way of constructing the p.p.a.v. Z as a classical Prym variety.

In conclusion, in order to answer Izadi’s question, one should in addition
prove that there is no other Prym-Tyurin construction of Z which can be ob-
tained from another correspondence which is fixed point free and defines on Z m
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times the theta divisor, m > 2. At the present time, such a construction is not
known yet.
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