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PHH Harmonic Submersions are Stable (*).

Monica ALICE APRODU

Sunto. — Si prova che le applicazioni armoniche di tipo PHH sono (debolmente)
stabili.

Summary. —- We prove that PHH harmonic submersions are (weakly) stable.

1. — Introduction.

A harmonic map between Riemann manifolds is called (weakly) stable if
the Hessian of the energy functional is (semi) positive definite, see, for ex-
ample [Urk93], Chapter 5. In particular, an energy-minimizing map is stable.
Lichnerowich has proved in 1970 (see [Li70]) that holomorphic maps between
Kéhler manifolds are (weakly) stable; away from these particular mappings,
we do not dispose of many other examples of harmonic maps which are
(weakly) stable.

In the joint paper [AABO0], we have introduced a class of harmonic maps,
defined on a Riemann manifold, with value in a Kihler manifold, called PHH
harmonic maps which have a behaviour somewhat similar to that of holomorphie
maps. Holomorphic maps between Kéhler manifolds are typical examples of
PHH harmonic maps, but examples of different flavour have been found in
[AA99].

The aim of this paper is to prove that PHH harmonic submersions are ac-
tually (weakly) stable, yet another property which relates maps in this class to
holomorphic maps (compare to [BBABR&9]). Throughout the paper, we use the
notation of [BWO03] and [Urk93] (dg¢ for the linear tangent map, d¢* for the ad-
joint map, ete).

(*) This work was partially financed by a NATO fellowship and the ANCS contract
2-Cex 06-11-22/25.07.06.
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2. — Preliminaries
2.1 — Linear Algebra Definitions

We recall some basic facts on linear algebra used in the sequel.
Let (V,9) and (W,h) two euclidean vector spaces and L : V — W a linear
map.

DEFINITION 1. — The adjoint operator of L is the map L* : W — V char-
acterized by

g, L*(w)) = (L), w), for all veV weW.

DEFINITION 2. — The L-horizontal component of Vis the space defined by
HY .= (KerL)" =ImL".

We denote by gy the restriction of the inner product g to H”.

REMARK 3. — If W is endowed with a complex structure J such that:

1) hJX,JY)=h(X,Y), for any X, Y € W;
(2) ImL is J-invariant;

then on H“ we can define a linear complex structure: Jy := L~'JL and
L : (H",Jy) — (W,J) becomes a complex linear map.

REMARK 4. — For the complex linear map L : (H%,Jg,gr) — (W, J, h) defined
above, by a simple computation it can be proved that:

gHL(JH—,JH —-)= gHL(—, —) if and only if LL*J =JLL".

2.2 — PHWC maps [Lou97], [BBABR89].

Let ¢ : (M™,g) — (N?*,J,h) be a map defined on a Riemann manifold with
value in a Kéhler one. For any point x € M, we consider d¢;, : TN — T.M the
adjoint of the tangent map dg, : T.M — Ty N and HY := H%: the horizontal
space of dg at x.

If Im dp, is J-invariant, then one can define an almost complex structure Jy ,
on the space HY by

T = dp," oy o dy,,

see the previous discussion.
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Similarly, if the spaces Im dg, are J-invariant for all x, then we define
the almost complex structure on the horizontal distribution H?, by Jy =
dptoJ odp.

DEFINITION 5. — Notation as before.

(i) Themap ¢ is called PHWC (i.e. pseudo-horizontally weakly conformal)
at « if and only if Im dg, is J-invariant and gl is Iy -Hermition.

(i) The map ¢ is called PHWC (pseudo-horizontally weakly conformal) if
and only if it is PHWC at any point of X.

From Remark 4 it follows that the PHWC condition at a point « is equivalent
to: dg, o dg} commutes with J .

This notion appears for the first time in [BBABR&9] in relation with stability
of minimal immersions.

2.3 — PHH maps [AAB00], [AA99].

Let (M™, g) be a Riemannian manifold, (N2", J, h) be a Kiihler manifold, and ¢
a smooth map from M to N. Denote VAN/[ the Levi-Civita connection on M, VV the
Levi-Civita connections on N, and V the induced connection in the bundle
-1
o TN.

DEFINITION 6. — A map ¢: (M™,9) — (N**,J,h) from a Riemannian
manifold to a Kdhler manifold is called PHH (i.e. pseudo-horizontally homo-
thetic) if and only if

1) ¢is PHWCG;
2) Jy s parallel in horizontal directions (i.e. V%J u =0 for every
X € H?).

The above Definition 6 has a local version. If ¢ is PHWC at x, we say that ¢ is
PHH at «x if and only if

do, (VY de,(TY)).) = Jpwde, (V) dps(Y)),)

for any horizontal tangent vector v € T,,M, and any vector field Y, locally defined
in a neighbourhood of ¢(x). By definition, a PHWC map is PHH if and only if

dp(V¥dp*(JY)) = Jdp(V¥dp*(Y)),

for any horizontal vector field X on M and any vector field Y on NV, i.e. pis PHH if
and only if it is PHH at any point « of M.

This condition emerged as a natural generalization of the horizontal homo-
theticity. It has a special interest in conjunction with harmonicity, when nice
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geometric properties are satisfied, [AABOO]. Several non-trivial examples of PHH
harmonic submersions can be found in [AA99], [AABO00]. A general recipe for
producing harmonic PHH maps is to solve suitable algebraic systems, see [AA99].

3. — The stability of PHH submersions.

In this section we study the stability of a harmonic submersive map
@:(M™ g) — (N?",J,h) from a compact Riemannian manifold to a Kihler
manifold. We know from Theorem 2.1 (a), Proposition 3.1 and Proposition 3.3 in
[AABOO] that if ¢ is PHH, then the fibres of ¢ are minimal submanifolds. Recall
that the stability of harmonic maps is controlled by a condition on the Hessian of
the energy-functional, [Urk93], p. 155:

H(E),(V,V) >0,

for any section V of the bundle ¢~ '7N.
Let R be the curvature tensor field on N, {¢i, ..., &, } be an orthogonal vector
frame on M, and V be a section in ¢~'7N. Denote by

m

Ry = > — RV, dple)dn(e)

2
i=1 lles |

the second-order elliptic differential operator called the rough Laplacian of ¢,
(cf. [Urk93], pp. 155), and by

Tp =4, —R,.
One of the useful properties of the rough Laplacian, which will be constantly
used in the sequel is the following, cf. [Urk93], pp. 156.

PROPOSITION 7. — The rough Laplacian 4, satisfies

[ 1@V wyon = [ w@V, IWyon = [ 0V, 3, W00,
M M M

wheve V and W are sections on ¢~ TN, and

. . m 1 . .
WVV,VW) =" ol WV, V, Vo W).
i=1 11€i

We can state and prove now the main result of this paper.
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THEOREM 8. — Let (M™, g) be a compact Riemann manifold, (N*",J, k) be a
Kdhler manifold, and ¢ : M — N be a harmonic PHH submersion. Then ¢ s
(weakly) stable.

PRrOOF. — Asin the proof of Theorem 4.1 of [AABO00], we choose a (local) frame
{e1,...,en,Jde1,...,Jex}
in p~!TN such that the system

{dg*(e1), ...,dp"(en), dp*(Jer), ..., dp"(Je,)}

is an orthogonal frame in the horizontal distribution. We also choose {u1, ..., %5}
an orthonormal basis for the vertical distribution. We denote E; = d¢*(e;), and
E; =dgp*(Jey), for all i =1,...,n.

With this notation, we apply the same strategy of proof as in [Urk93], pp. 172,
Theorem 3.2.

For V a section in ¢~ 'TN, we apply Proposition 1, and compute:

HEWV,V) = [ SV, ¥V — [ RV, Vioy.
M M

By definition

_ _ 1 _ _
5 h(inV, VE'L.V) + W}L(VE;V, VE;V)>

1

NV, VV) =Y
=1
—+

S
J=1

1
(5|
> VL,V VLY.

Analogous to the operator used in the proof of Theorem 3.2, Chapter 5,
[Urk93), we define, for any V € I'(¢p~1TN), the operator 9V € I'(¢p!TN @ H*),
where H is the horizontal distribution on M, by

V(X) :=Vy,xV —JVxV,

for any X a horizontal vector field on M.
We compute

WAV, V) =3 {ﬁ WAV (B, OV (E)
i=1 )

1

+ 2
I1E73]

OV (EY), 5V(Eg))} .
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Since Jyl; = E!, JyE, = —E;, and ||E;|| = ||£}||, we obtain

WAV, V) = 22 P (h(%i% Ve V) + VgV, Vg V)
i=1 1
21V V,IVEV))

Therefore

Il (h(jwV, V) - %h(a‘v, 5V)> =3 f > VgV, IVEV)

M =y 1B
— WEV, dpE))dpE;),V)
— MRV, dp(E)dp(E}), V) vy
Taking into account the identities dp(E’) = Jdp(E,), dp(E;) = — Jdp(E), and
the basic properties of the curvature tensor field R, we obtain
R(V,dp(E))dp(E;) + RV, dp(E})de(E}) = JR(dp(E}), dp(E})V,
and thus
f (h(J(,,V, V) — %h(éV, 5V)) ou

M

i=1

f T 2 (2T 5V, I8, V) — WIRED, dpEDV, V) oy
M

We compute
— WJR(do(E;), dp(E))V, V) = WR(do(E;), dp(E})V, JV)
= Vg, VgV - Vg VeV - Vg gV,JV)
= Eh(NgV,JV) = Ej(VgV,JV)
— V5,5V IV) + Vv, 5V, IV)
~ VgV, Vg V) + (Vg V,VgJV).
Similarly to [Urk93], pp. 180, we define a C* function ¢ on M by the formula:
¢:= z”: ”El” (Bih(N gV, JV) = Ei(V gV, JV)

i=1
~h(NVy, 2V, IV) + Vv, 5 V,IV).

Since
VgV, VgdV) = -V JV,Vg V),
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we have
1. -
f(h(Jq,V, V) —éh(aV, 8V)>vM =f¢va,
M M

The proof of the Theorem will be concluded if we prove

qu'UMZO-
M

For this, we use Green’s formula. We choose X a horizontal vector field on M
defined by the property:

90X, Y) = (Vv V,JV),

for any vector field Y on M, and we prove div (X) = ¢. Indeed, since the fibres of
@ are minimal, and X is horizontal, it follows:
. "1 ,
v =3 e (981, VX0 + 9}, Vi X) ).
i=1 1

Next,

. N
div (X) = B (Ei 9(B;, X) — g(Vg.E;, X) + Eg(E, X) — g(VE;E;,X))
=1 i

n
1 ~ ~
= 5 (B 1,V V) = WV s,055V, V) )
i=1 ”ElH
n 1 - .
+ HE’ ||2 <E;h(VJHE/lV, JV) — h(VJHvE,EILV,JV))
i=1 [ !

By the PHH condition, we have
IuVpE; = _(VE;.Ei)h7 and Jy Vg E; = (Vg ED",

where by ( — )h' we denoted the horizontal component of ( — ), so,
div (X) = ¢.
We showed

1 - _
f TV, Vyou = 5 hAV, Vo > 0,
M

which ends the proof. O
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REMARK 9. — Our result improves the main result of [M098], provided that the
source manifold is compact (condition which is not needed in [M098]).

REMARK 10. — As pointed out by the referee, it would be interesting to find
sufficient conditions for a stable harmonic submersion from a Riemannian
manifold to a Kédhler manifold to be pseudo-horizontally homothetic.

Acknowledgments. The author expresses her special thanks to the Fourier
Institute in Grenoble for hospitality, and to J. C. Wood and the referee for having
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