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On the Existence of Solutions for Abstract
Nonlinear Operator Equations.

MAREK GALEWSKI

Sunto. — Forniamo una teoria duale e risultati di esistenza per un’equazione operatore
VT (x) = VN(x),

dove T non e necessariamente un operatore monotono. Usiamo la versione astratta
del cosiddetto metodo variazionale duale. La soluzione é ottenuta come un limite di
una sequenza minimizzante la cui esistenza e convergenza ¢ provata.

Summary. -- We provide a duality theory and existence results for a operator equation
VT (x) = VN(x),

where T is not necessarily a monotone operator. We use the abstract version of the so
called dual variational method. The solution is obtained as a limit of a minimizng
sequence whose existence and convergence is proved.

1. — Problem formulation and assumptions.

We consider the problem of existence of solutions for the following operator
equation

(1.1) VT(x) = VN(x),

where T is not necessarily a monotone mapping. In such a case neither classical
variational methods nor topological ones work. Thus we have to come up with a
new duality and a new variational method in order to tackle Eq. (1.1) under the
following assumptions:

A1V is reflexive, separable Banach spaces compactly and densely embedded
into another Banach space Z. Operator VT : V — V* is radially continuous,
potential and coercive.

A2 There exists a is radially continuous potential mapping VS : V — V*, boun-
ded on bounded sets, having a convex lower semicontinuous potential and
such that 7+ S : V — R is convex and lower semicontinuous and V(T + S)
is radially continuous, strictly monotone and coercive.
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A3 VN :Z — Z* is radially continuous potential operator whose potential
N : Z — R is convex lower semicontinuous and bounded on bounded sets.

Let i: V — Z denotes the embedding of V in Z. We say following [1] that
x € V satisfies equation (1.1) if

(1.2) VT (z) = i* VN (i),

Observe that V(T'+ 8S) : V — V*, VN : Z — Z* are demicontinuous [4]. We
shall assume that operator 7 has the following property (analogous to the
Poincaré inequality):

A4 x| ;< |||y for all x € V

It now follows that ¢ and i* [6] are continuous. As an embedding operator %,
and in a consequence ¢, is invertible.

The study of problem (1.2) is motivated by its applications to a wide class of
nonlinear Dirichlet problems governed by partial differential equation in which
the differential operator may not be monotone. We provide a suitable example in
Section 6. Still the theory we develop applies for problems with various growth
conditions. Therefore different types of nonlinearities and nonlinear partial
differential operators may be taken into account provided one can prove that
certain set is invariant with respect to (V(7' + S)) " . In case of not necessarily
monotone neither the direct nor the dual variational methods can be applied.
Therefore the known approaches, e.g. described in [1], [7], [8] may not be ap-
plicable.

As far as abstract equations are concerned a similar problem as ours have
been considered in [1], where it was assumed that the operator T is monotone
and VT is a duality mapping. Now we use the method that has been derived in [5]
for abstract semilinear Dirichlet problems and which enables us to get rid of
monotonicity of 7. Instead a certain monotone operator S is assumed to exist. It
must be stressed that J is not convex-concave as it is common for a dual varia-
tional approach that was derived in [9], [10] and which we modify so that it can be
applied for abstract problems. Thus a new duality theory have been constructed
and a new dual functional depending on two variables must have been in-
troduced. In our considerations we use the idea of Leray-Schauder linearization
trick. The solution is obtained as a critical point of a certain type of the action
functional. What is important here, it is the fact that the solution is approximated
by a minimizing sequence. It may provide the basis for constructing a numerical
approximation in future.

The study of problem (6.1) which we show in Section 6 as an example of our
abstract results is interesting in itself. This problem corresponds to such a
partial differential equation in which there appear two operators of elliptic type.
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Such a problem may not be classical since it may not be tackled by some known
methods. Therefore our approach allows us to consider (6.1) and similar pro-
blems perhaps with varied growth conditions. Moreover our approach allows for
considering problems with non-monotone operator which become monotone if
one ads a certain term. Therefore we believe that our approach may contribute
somehow to the applications of partial differential equations.

2. — An Equivalent Problem.

We observe that (1.2) corresponds the Euler-Lagrange equation for the
functional J : V' — R given by the formula

(2.1) J(x) =T(x) — N(ix)

which due to the assumption A2 may equivalently be written in the following
form

J (@) = (T(x) +S(x)) — (S(x) + N (ix))
We shall seek the solution to (1.2) as a triple (x,p,q) € V x Z* x Z* such that
VT(x) + VS(x) =1i*p,
(2.2) VS(x) =i'q,
p—q = VN(ix).

The above system we will obtain by duality relations, i.e. relating critical values
and critical points to primal action functional J:V — R and a dual action
functional Jp : Z* x Z* — R given by

(23) Jp(p,q) =N"(p—q) +S"(i"q) — (T +S8)"(i"p).

Here N*, T* denote Fenchel-Young transformations of convex functional N and
T, while i* denotes the adjoint operator.

In order to describe duality theory we shall construct certain subsets of
spaces V and Z* x Z* on which we shall investigate the primal and the dual
functional. In some cases the geometry of this set will be known, i.e. it is the
convex set in our case, see the last section where we provide an example. But
with different growth conditions this set will be defined in some other way and
may not posses such nice properties. We observe that by A2 it follows that
VT + VS is invertible and its inverse denoted by (VI +VS)™: V* =V is
bounded on bounded sets, demicontinuous and strictly monotone. Hence for any
f € V* equation VT'(x) + VS = f has exactly one solution in V, [4]. Thus the
following assumption makes sense
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A5 There exists a nonempty, weakly compact subset X C V such that
X c (VT + VS8) H(VS(X) + i*VN(iX))
It is obvious that for all x € X the relation
(2.4) (VT +VS)(x) = VS(x) + VN (ix).

implies & € X. The existence of a nonempty set X must be checked in any case
the theory is applied and is crucial in what follows.

The dual functional Jp will be considered on a set X? which comprises all
(p,q) € Z* x Z* for which there exist x,x € X satisfying relation (2.4) and such
that

VT (x)+ VS(x) =1i*p
VS(x) = 1*q.

Since the set X is assumed to be nonempty it follows that X is also none-
mpty. It is easily seen that for any (p, q) € X¢ there exists exactly one x € X and
for any x € X there exists exactly one (p,q) € X?. This follows since for any
x € X there exists exactly one & € X such that x, % € X satisfy relation (2.4).

From now on the functional J will be considered on a set X and its dual Jp on a
set X?. It should be noticed that these sets are not subspaces of the respective
spaces V and Z* x Z* which makes some standard calculations rather compli-
cated.

3. — Duality results.

Now we construct the duality theory which allows us to obtain relations be-
tween critical points and critical values of both action functional. In order to avoid
calculation of a Fenchel-Young transform on a nonlinear subset X we will define
a kind of perturbation of a functional J. Let x € X. We define a perturbation
Jp: Z x V — R of functional J by the formula

Ju(v,w) = N(ix +v) +S(x+w) — (T +.9)(x)
Now J, is convex and defined on the whole space. Hence a kind of Fenchel-

Young transformation of J,, namely J7 : X¢ — R, can be defined with respect to
the duality pairing between Z x V and Z* x V*. We put for (p,q) € X¢

Tt (p.9) = sup {(p = q.0) ,/~Nliw +v) } + (T +8) @)

veZ

+ sup {(i*q, Wy y—S (@ + w)}.

weV

The above formula is actually a Fenchel-Young transform but with domain re-
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stricted to the set X?. Thus a different symbol is used. Hence we obtain [2]
TE(p.q) =N"(p—q)+ (T +8)(@) — (p— q.ix)z 4
+8°(*q) = (I"q, @)y v

or by a direct calculation

J7(p,q) =N"(p—q) +S"(i"q) — (p,iw) . 5 + (T +S)(x).

In the proof of the duality principle we will make use of the following lemmas.

LEMMA 3.1. — For any (p,q) € X¢

3 # _
inf J7(p.9) = Jn(p. ).

ProoF. — Fix (p, q) € X?. By Fenchel-Young inequality we obtain

(3.1) sup { (i'p, @)y y—(T + )@} < (T +8) (I'p).
xeX

By definition of X we conclude that for a given (p, q) € X there exists x,, T, € X,
related by (2.4 ) and satisfying relations(VT + VS)(x,) = i*p and VS(x,) = i*q.
The former relation by convexity of T + S means that [2]

(T +8) (@) + (T +8)(I'p) = (T'P, Tp)y. y-

Hence there is actually equality in (3.1) for x, and thus the assertion follows. [

LEMMA 3.2. — For any x € X

inf J# = J(x).
L 12,0 =J0

Proor. — Fix « € X. By Fenchel-Young inequality we obtain

(3:2) (ygﬂ@—%muﬂ—N%p—m+uwwww—ﬁvwﬁSN@m+&m
p,q)eX”
For an x considered there exists (p,,q.) € X¢ such that
17"q, = VS(x
33) q: ().
Pe — Gz = VN (ix).

Indeed, it suffices to put i*p, = VT'(x), i*q, = VS(x) where x,x € X satisfy (2.4)
and later use (2.4). By (3.3) and convexity we get
N(ix) + N*(px — q2) +S(x) + S (1°qe) = ("G, ®)y. y+(Pa — Qur, 1) 5 4.

Hence we have actually equality in (3.2) for (p,;, q). O
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We may now prove the duality principle

THEOREM 3.3. —

inf J(v) = inf J
Inf /(@) = Inf To(p.q)

ProOOF. — By lemmas 3.1 and 3.2 we obtain

inf —inf inf J¥ f infJ#
inf J(x) = inf o0t JI(p,q) = (plqn o T (P.q)

= inf Jp(p,q)= inf Jp(p,q).
Lot p(p,q) it p(P,q)

4. — Necessary conditions.

We shall use the duality results to derive necessary conditions for the ex-
istence of solutions to equation 1.2.

THEOREM 4.1. — Let there exists xe€X such that —oo <J(¥)=
in}f( J(x) < oc. Then there exists (p,q) € X? such that
€re.

inf Jy(p.q) = Jo(p,q) = J (@) = inf J (@)

(p.g)eXx?
Moreover
(4.1) U'p = (VT + VS)(),
(4.2) i'q = VS(x),
(4.3) P —q=VN(iZ).

ProoF. — Relations (4.2) and (4.3) are obtained in a similar manner as rela-
tions (3.3) in the proof of Lemma 3.2.
By a direct calculation we obtain

—J (@) =—-(T+S8)x) —S(x) + N(ix)
=P =,i%) g ,—N*(P — 9 + ("G, T)y. y—=5"(1"q) — (T + S)(¥)
= (P Ty y—(T +8)(@) - N*(p —q) - S*(i"q)
<S@S+T) ( P)—N*(p—-q)—S("q) = = Jp(D).
Hence J(x) > Jp(p). By Theorem 3.3 it follows that J(x) < Jp(p). In a con-

sequence

J () = Jp(P)-
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It now follows by (4.2), (4.3) that
(T+8)@) + (T +8)(I'p) = ("D, )y -
By the above relation and Gateaux differentiability of T relation (4.1) follows. O
The similar result may be derived for minimizing sequences. The below
theorem which may be viewed as an ¢—variational principle will be used in the

proof of the existence theorem. It differs from the above result in the second
Hamilton’s equation which is now presented in a e—subdifferential form.

THEOREM4.2. — Let {;}, x; € X,j € N be a minimizing sequence forJ. Then
{pj»q;} such that (pj,q;) € X* and

(4.4) g = VS(w))

(45) Pi—q;= VN(?,OC])

forj € N is a minimizing sequence for Jp and

(4.6) Lt Ip(p.q) = nf I (pj,q;) = inf J(x) = inf J (x).

Moreover for any ¢ > 0 there exists jy such that for j > jo
(4.7) 0 < (T+8) (%)) = (I'pjs ) 7. (T +8)" (I'py) <.

Proor. — Relations (4.4) and (4.5) are obtained in a similar manner as rela-
tions (3.3) in the proof of Lemma 3.2. We shall show that the sequence { (p;, ¢;) } is
minimizing for Jp. Reasoning as in the proof of Theorem 4.1 we obtain that for any
jeN
(4.8) I (@) = Ip(pj).

Let us take arbitrary ¢ > 0. Since
— oo < inf J (%)) = a < oo,

JEN
it follows that there exists jy such that for j > jo we have J(x;) < a + ¢ From
(4.8) it now follows that for j > jo we have Jp(p;, ¢j) < @ + & By the latter fact
and Theorem 3.3 it follows that infjc\ Jp(p;) = a. Hence {p;} is a minimizing
sequence for Jp and relation ( 4.6) follows.
We will show that (4.7) holds. For any ¢ > 0 there exists jy such that for j > j,
we have

a <Jp(p) <J(w) <a+e

From this we obtain
0<J(x) ~ Tolp) <
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By definitions of J and Jp it follows that for j sufficiently large relation (4.7)
holds. =

5. — Existence of solutions.

We shall show that there exists an element ® € V such that together with a
corresponding (p,q) € Z* x Z* a triple (¥,p,q) satisfies system (2.2). We will
make use of the e—variational principle for minimizing sequences and the con-
struction of sets X and X?. It is not the existence of the minimizing sequences
that is a really difficult task to be done in the below consideration but their
convergence to the pair satisfying system (2.2). Here the duality theory plays
again an important part. We assume that S and N have property (S), see [4].

THEOREM 5.1. — There exists a triple (€,p,q) € V x Z* x Z* satisfying the
system

(5.1) 'p=V(T+8)(),

(5.2) 1"q = VS(x),

(5.3) P —q=VN(i%)

(5.4) inf Jp(p,q) = Jp(p.q) = J(®) = inf J(x).

(p,q)eX? reX

Proor. — We shall show that J is bounded from below on X. Since T' + S is a
potential of a monotone and coercive operator and X is relatively weakly compact,
there exists a constant cg [4], independent of «, such that for any x € X

S(x) + T(x) > cs.

Since VS is bounded on bounded sets it follows by convexity that S(x) < ¢y
on X. By the same argument N(ix) <c¢; on X. So J(x)=(T+S)(x)—
S(x) — N(ix) > cg3 —c2 — ¢;. Hence we may choose in X a minimizing se-
quence {x]} It may be assumed that this sequence is weakly convergent
in V. By assumption Al the sequence {iac_,-} is strongly convergent in Z.
We denote its limit by Z We now choose the sequence {(p;,¢;)} in such a
way that (p;g;) € X? for j € N satisfies the relations

(5.5) S(x) +1i*q; = VS(x;),
(56) Pi—q = VN(ZQC])

By Theorem 4.2 it follows that {(p;,q;) } is a minimizing sequence for Jp. Since
VS is bounded on bounded sets it follows that g; is weakly convergent in V* (up to
a subsequence) and its weak limit we denote by q. By the above and continuity of
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1* and properties of VS we have using (5.5) that relation (5.2) holds. Similar
reasoning using (5.1), (56.2) and properties of VN leads to (5.3).

By Theorem 4.2 and by relation (5.5) it follows that there exists a numerical
sequence {&;}, & > 0, g — 0 such that: for every ¢, there exists jj such that for
all j > ji

(T'+S) (96]) — <]9j, ixj>Z*,Z+(T + S)* ('L*p]) < &.
Letting k¥ — oo we may choose a subsequence j; — oo. Since {zx,} is strongly

convergent in Z, {p; } is weakly convergentin Z*, T + S and (T + S)" are weakly
lower semicontinuous we have

0> lim inf ((7+8) () = (Pir @) ., +(T +8)" (I'Di))
> lim inf (T'+S) (2,) + lim nf (T'+8)’ (i"p;,) — I}Lrg@(pjk, ) 5. 5
> (T +8)(@) — (p, %) 5. z+(T +8)"(i*p) > 0.
The last relation follows by the Fenchel-Young inequality. Hence
(T+8)@) = (I'D, ) 7. z,+T7(I'P) = 0

and now relation (5.1) follows by convexity.
To demonstrate (5.4) we need to prove that J is weakly lower semicontinuous.

on X. Indeed,
Vour—(T+S)x) —R

is convex and lower semicontinuous. Hence it is weakly lower semicontinuous.

Functional N is continuous on Z because it is finite and lower semicontinuous [2].

Since {ix;} is strongly convergent in Z, it follows that lim N (ix,) = N(i%). We
n—oo

need to show that
lim sup S(x,) < S(x)

Indeed, by definition of sequence {q, } and by duality we have
S(xy) = —S*(2°qn) + (qn, 1n) 5.5

Now

lim inf S*(i*q,) > S*(4*Q)

nN—0o0

and

nlij&(qm 7:9071>Z*Z: @7 ZE>Z*Z'
In a consequence and by (5.2)

lim sup S(x,) < lim sup —S*("qy,) + im (qy, i%y) 4.,
Nn—00

Nn—00 N—00

<= 8°(1"q) + (q,1%) ., = S(¥)
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Thus
lim inf J(x,) > J(%).
N—00

Hence J (%) = inf,cx J(x) and relation (5.4) follows by Theorem 3.3. |

6. — Applications.

Now we shall give an example of the problem which may be considered by our
methods.

THEOREM 6.1. — Let us consider the following equation

—div(p(y, |Va))) | Va@y)|" *Va(y))

+div(p(y, |Va)) | Vay)" *Va(y)) = Fu(y, ()

2(Y)lpo=0

where n > m > 2 are fixved, ¢y, g5 : 2 X R — R are Caratheodory function, i.e.
continuous with respect to x for a.e. y and measurable in y for every x; there
exist constants My;, Mo; > 0 such that for a.e. y € Q and foralla e R, 1 =1,2

My; < o(y,a) < My;.

(6.1)

Q C R" is a region with a reqular boundary. Moreover there exists a constant
m; > 0 such that foralla > b, a,b e Rand a.e.y € Q, 1 =1,2

0;(y,a)a — p;(y,b)b > m;(a — b);

F:QxR—Rand F,:Q2xR— R are Caratheodory functions, there exist
constants q>q >2, q<mn, ki, l1 >0, where a constant ki satisfies
((vol(.Q))l/q/)/((vol(Q))l/")kl <m in case q=mn, functions ks, lp € L*(Q,R)
such that for all x € R and a.e. y € Q

(6.2) IFo(y, )] < Fnfe|” ko)
(6.3) F(y,x) > L™ +2(y).
Then problem (6.1) has a solution.

Here V = W(Q), Z = L"(Q). 1t suffice now to construct a suitable set X.
Basing on the lemma

LemMA 6.2 [3]. — If a Caratheodory function f : Q x R — R satisfies for a.e.
yeQandallx e R

()] < Falae|"™" + ko),
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where ¢ > 2,k1 > 0, ks € LY (Q, R), then the Niemytskij operator Ny defined by
f, namely

(N/@) (y) = f (g, a(y)) for a.e. y € 2
is continuous and bounded from L1(Q, R) to LY’ (Q, R). Moreover it holds

-1
[Npel| 0 < Fer el + 1 Ra | o

1 1
for all x € L1(Q, R), where §+ a =1

We get that there exists constants a, f > 0 such that for allx € V
(6.4) IVF@)lly. < alllf+5,

where a = k; and f = ||kz||;.. Here we denote by VF, the Niemytskij operator
defined by F;. Now let x € V be fixed. And denote by % the solution to the fol-
lowing Dirichlet problem

—div(p(y, |Vu(y) )| Vuy)" > Vu(y))
= —div(p(y, [Va@)))|Vay)|" *Vay)) + Fu(y, x(y))

u(Y)log =0

(6.5)

which exists by classical arguments, [4] since it is an equation with a fixed right
hand side. Using the properties of functions ¢;, i = 1,2 and integrating by parts
we get the following estimation by (6.4)

-1
Mt |Vl < Mazl| Ve o |Vt o+ (all Vil +8) [Vl
y -1
Mt |Vl < Maods ||V [Vl 2 (al| Va5 48) [Vl

where d; = ((vol(2))"™") /((vol(2))"'"), dz = ((wol(2))"") /((vol(2))"") are
certain constants. Thus

(6.6) M|Vt < Masdy || V||, +da (al| Val|F,” + )

and since n > ¢ we have limy_ (M11t"! — Masdit — dz (at?™ + f)) = +o0. In
case n = q the same result holds due to the assumptions on the constants. Hence
there exists k such that

(6.7) Muk"™" > Masdik + dz (ak?™" + )
Thus we may take

X={uecV:|Vul,<k}.
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Taking any x € X we observe that the solution « to the equation (6.5) satisfies
due to (6.6) and definition of X

M|Vl < Maadile + da (ak™ + ).

Now using (6.7) we get that ||Vul|,.< k. So the set X = X. Since all other as-
sumptions are satisfied, we have proved the theorem.
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