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Bollettino U. M. 1.
(8) 10-B (2007), 1125-1142

A Note on Calculation of Asymptotic Energy for a Functional of
Ginzburg-Landau Type with Externally Imposed Lower-Order
Oscillatory Term in One Dimension.

ANDRIJA RAGUZ

Sunto. — In questa nota consideriamo il funzionale di Ginzburg-Landau

1
I'(w) = f (821)//2(8) +W@'(s)) + a(eiﬁs)vz(s)> ds
0
ove >0 ¢ a ¢ 1-periodica. Mostreremo come la minima energia asintotica (vidi-

mensionata) associata a I dipenda dal parametro f > 0 per e — 0. In particolare, la
nostra analist mostra che © minimizzatori di I, sono quast & /3-periodici.

Summary. - In this note we consider the Ginzburg-Landaw functional

1
L) = f (szv”z(s) +W@'(s)) + a(e‘ﬂs)vz(s)> ds
0
where f > 0 and a is 1-periodic. We determine how (vescaled) minimal asymptotic

energy associated to I depends on parameter f >0 as ¢ — 0. In particular, our
analysis shows that minimizers of If, are nearly el /3-periodic.

1. — Introduction.

In this note we deal with the asymptotic behavior of a family of functionals of
Ginzburg-Landau type in one dimension. Our consideration relies on techniques and
results developed in paper [1]by G. Albertiand S. Miiller. In that paper the authors
introduced a concept of Young measure on micropatterns (or two-scale Young
measure) to describe properties of minimizers of variational problems which lead to
creation of multiple small scales depending on small parameter ¢. As an example of

the approach, they studied the functional 7, , : Hf,w(O, 1) — [0, + oo] defined by

1
(1) I.q() = f (62?/'2(8) +W@'(s) + a(s)vz(s)) ds ,

0
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wherev € HZZW(O, 1), W € C(R; [0, + o0)), W(p) = Oifand onlyifp € {—1,1}, W has
superlinear growth in infinity and a € L;m.<0, 1) satisfies a(s) > o >0 (ae.
s € (0,1)). Functional (1) can be regarded as a simplified version of functional of
Cahn-Hillard type (cf. [8], [3]) which appears in modeling of complex physical sys-
tems like block copolymer melts. It is a well-known fact that minimizers of such
functionals develop fine structure as a result of an attempt to minimize different
terms. In particular, micro-phase separation occurs. Due to the competition between
formation of microstructure and highest gradient regularization (cf. [1], p. 762.),
minimizers of (1) exhibit oscillation on two fast scales (namely on the scale of order
¢'/3 and on the scale of order ¢). A thorough description of such behavior, as well as
calculation of associated (rescaled) asymptotic energy, is obtained in [1] in the fol-
lowing way: basic idea is to rewrite I, 4(v) in terms of carefully chosen rescalings
s— Rv,

2) Riv(z) = e+, teR,

as an integral functional in s, where for every s € (0, 1) integrated function is a
functional itself and it is evaluated in R%v. Then such a functional can be extended
to the space of Young measures and we can pass to the limit as ¢ — 0 by means of
the Modica-Mortola theorem (cf. [6]), which results in a non-trivial I'-limit.
Finally, the Young measure which minimizes the I'-limit is identified.

Our goal is to apply similar reasoning to slightly general situation. More
precisely, we study a variant of energy in [1], which is perturbed by the highly
oscillatory term a(s”s), where > 0. The original functional (1) is now re-
placed by

1

3) @) = f (821/'2(3) T W) + a(g*ﬁs)vz(s)> ds .
0

Since the period of map s+ a(¢”s) vanishes as ¢ — 0, Alberti and Miiller ex-
pected that an additional structure of the minimizers emerges (cf. [1], section
6). Indeed, apart from the creation of fast scale of order &/3, minimizers of (3)
now comply with the constraint coming from fast scale of order ¢*. To under-
stand what exactly happens when ¢ — 0 we formulate two objectives. First, we
want to determine the rescaled asymptotic energy associated to (3) as ¢ — 0.

To this end, we consider the following quantities: &, ,,.(f) :== min e 2B (v),
’ veH?,,(0,1)

E(P) == min 872/312(1)), Eaper(P) == lim & () and E,(B) := lim & (f). As
’ veH?(0,1) e—0 @P P

now a hierarchy of small scales appears, we distinguish cases § € (0,1/3) (the
subcritical case), f = 1/3 (the critical case) and § > 1/3 (the supercritical case).
The main result of this note, obtained by a mild modification of techniques
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in [1], states that there holds
) EalB) = Eaper(B) = Eoal By 5 (B) + Fo@ipr iz B) + Eo@ 111 3.1 00y (B -

N 1 1
where Fy(a) ~ Egal/3 when &~ 0, Fy(a) ~ Eya'’® when Zz 0, (=2 VW,

Co := (3/47/3, By := Cop&??. Formula (4) was conjectured in [1], p. 814. and it is
to be understood in the following way: if § € (0,1/3), then the internally created
fast scale ¢!/3 is shorter than the externally imposed fast scale &”, so that oscil-
lation on the scale &” is not relevant to computation of asymptotic energy. In the
case f§ > 1/3, however, the scale ¢’ is shorter, and thus oscillation in a(z’s)
becomes relevant. On the other hand, in the critical case f = 1/3 “locking” of the
internally created and the externally imposed scale induces an additional conflict
to the minimizers, which can be best explained as an impossibility of function to
be both &!/3-periodic and O(¢'/3)-periodic at the same time. To provide at least a
partial insight into this situation, we formulate and solve asymptotic problem for
Fy(a) in terms of W. In all cases, asymptotic energy is independent of boundary
conditions. Second, we want to describe geometric properties of the minimizers
of I, as ¢ — 0. In the case f = 0 an interpretation of geometry of minimizers is
deduced from the convergence of e-blowups (2) of minimizers in the space of
Young measures on micropatterns. By contrast, when f > 0, we offer a weaker
result, which, in our opinion, still gives good enough information in this respect
ase—0.

Other variants of the functional (1) were considered in [3] and [9] (see also
references therein).

This note is organized as follows. In Section 2 we fix the notation, and we
recall some well-known results which we will use. In Section 3 we derive the main
results (cf. Theorem 3.2, Theorem 3.4). Finally, in Section 4 we interpret our
results in terms of geometric properties of the minimizers.

2. — Some preliminaries

Throughout the note we work on the unit interval (0, 1) C R, but all the proofs
can be carried out if we consider any bounded open interval w C R endowed with
Lebesgue measure (denoted by 4). We consider the set K of all Borel measurable
mappings «: R — [—o00,+00] (modulo equivalence Ai-almost everywhere),
which can be made compact and metrizable topological space by defining a pull-
back topology on K with respect to weak-star topology on L>(R;[-1,1]) via

2
mapping & +— %arctan () (cf. [1], p. 778, 806 for details). By C(K) we denote the

Banach space of all continuous real functions on K. A K-valued Young measure
on (0,1) (or Young measure on micropatterns) is a map v € L, ((0,1); M(K))
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(where by L. ((0,1); M(K)) we denote the dual of L1(<O, 1); C(K)), cf. [2] for
details), v : s+ vg, such that v is a probability measure for almost every € (0,1).
The set of all K-valued Young measures is denoted by YM({0,1); K) and it is
always endowed with the weak-star topology of L, ({0, 1); M(K)). Z(K) denotes
the class of all probability measures on K which are invariant with respect to
action of the group of functional translations on K (cf. [1], p. 778, p. 795). As
usual, sz{,w(O, 1) denotes the set of all H: (R) functions, extended by periodicity
out of (0, 1). By Sx we denote a set of all discontinuities for some x € K, while |Sx|
denotes cardinality of the set Sx. If @ is periodic function, @ denotes average of a
over its period. By [g] (|o], resp.) we denote the smallest integer greater or
equal to o € R (the largest integer below ¢ € R, resp.). We say that a € K is
N
simple function if a(s) = ) oy, (s), where wy, are pairwise disjoint measurable

k=1
sets. If M >0 and ¢>0 are given, we set &, := [¢ M 1]V, ¢, 4 =

LgiﬁMilJ 71//;’ pz:,**,M = gf*‘MM7187ﬁ7 p;:,*,M = ngMileiﬂ- Then p;;,*,M / 1’
Povemt N1 as e—0. If M =1, we define ¢, := .1, &0 = 01, Do = Prxxl>
pg;* := p,.1- In the following we use the term “sequence” also to denote families
labeled by the continuous parameter ¢, which tends to 0.

DEFINITION 2.1 [I'-convergence]. — Let X be a metric space. A sequence of

Sfunctions F* : X — [0, + oo] I'-converges to F' on X, and we write F* i F, ifthe
following s fulfilled:

(1) Lower-bound inequality: for every x € X and a sequence (x°) in X such
that x¢ — x it holds lim inf, Fé(x®) > F'(x), and

(i) Upper-bound inequality: For any y in X there exists a sequence (y¥°) in
X such that y* — y and lim sup, Fé(y*) < F(y).

The proof of the following Proposition can be found in chapters 6 and 7 in [4]:

PROPOSITION 2.1. — Ifthe points x* minimize F* for every ¢ and F* L Fas
e—0, then every cluster point = of the sequence (x°) minimizes F. In
particular, there holds lim0 Fé(x®) = F(x).

&E—

We introduce the following classes of functions:

DEFINITION 2.2. — Let w C R be a fixed interval. A function x : o — R s said
to be of the class S(w) if x is piecewise affine continuous function on w such that
x/(v) € {—1,1} for almost every t € w. A function x : R — R belongs to the class
Sper(@) if @ can be extended from w to R by periodicity in such a way that there
holds x € S(J) for any interval J C R.
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For a given bounded open interval @ C R we define f>“, f©: LY(w) —
[0, + oc] by

5 o | FEEO W@ 0w o)dr. it e B,

+ 00, otherwise ,
6 o ri) 1S, ()| + Jf a(@2(Ddr, if © € S(w),
+ o0, Y otherwise ,

where, for w = ()1, 75) we define S, (') := Sa’ N [y, y5). In particular, for a given
> 0 we set fo .= £l fhigy .= £ When no confusion is possible we write
f& (fa, resp.) instead of £ (£, resp.). Note that functionals f** and f* also de-
pend on ¢ > 0. When such a dependance is not essential to our consideration, we
avoid labeling which includes & However, if ¢ = 1 we write ¢! in stead of £ (cf.
Theorem 3.4). Also, in this note we frequently use a version of the Modica-
Mortola theorem in one dimension (cf. [6], [1], Proposition 3.3):

PROPOSITION 2.2. — Suppose a € L, (R). Set a’(7) := a(s + &> P1), 1€ R,

loc

where f € (0,1/3). Then for every bounded open interval o C R there holds:

(7) fro Lofa on Liw) (ae.seR),

(8) fa¥ Lfcf’ on LYw) as ¢e—0.

Ifa, — ain Ll (R) as n— + o, then f© —— 2 on L} (w).

3. — Main results.

In this section we lay out our main results. To begin with, we note that an
attempt of rewriting (3) in terms of &-blowups (2) eventually results in re-
presentation

1
& 2B W) = f foBv)ds
0

where ve Hf,w(O, 1) and @) :=aePs+e/3Pr), s;teR. Clearly, if
p € (0,1/3], the sequence (a%) does not converge weakly in LllOC(R) as e—0
(hence the sequence ) does not I'-converge for a.e. s € R). Thus e-blowup (2) is

not always suitable. Herein we propose technical improvement of calculations
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from [1] in order to capture asymptotic behavior of (3). In particular, if
p € (0,1/3), then a different e-blowup is used. The case f > 1/3 is much simpler.
For M > 0 and ¢ € (0,1) we set

el
Ly = f (2w™)+ W ©) + a6 suAe)ds , we B0, MeP)
0
EPB) = min 2PN ), 5, (B = min e B w).
ot (P) weH? (0, M) st Euptperh weH?,, (0.Meh) oM

First we obtain the following simple estimate:

ProOPOSITION 3.1. — Let § > 0. Then there holds

M
9 liminf £ () > sup ——= liminf £7%,(8) .
( ) e—0 /)) ]\,j>1:()) [M1 e—0 M ﬂ
ProOF. — Put N := 8:*/):[M1' Consider v € H2(0, 1). For j=1,...,N we set
vi(s) == v(s + (G — D[MeP), s € (0, [M]e#). Since [M] € N, 1-periodicity of @ and
p;’*l*ﬁw] € (0,1) imply
N n
e PP W) > Pote ] Z 'Sf*,mﬂ eI o @)
=

>pl min & 23 (w)
= pe,**.[M} weHz(O,(M]a/’> a,[M]

lef[M ) M R,
> ————— == i I () .
e P M wertionnn (W)

Thus, by passing to the limit as ¢ — 0, we infer (9). O

To proceed, we sketch the proof the lower bound when f € (0,1/3).

THEOREM 3.1 [the subcritical case: the lower bound]. — Let § € (0,1/3). Then
lim i%f EB) > Eyal /3.

PROOF. — Let @ cC (0,1) be an open interval and let v € H?(0, ¢#). Consider
v,(s) := e Pu(els), s € (0,6f), and eblowup Ri*v(z) := e 3 Py(s + /3 Fr),
€ (—r,7). For s € wwe set x5(1) := R%*v.(7), T € (— 7, 7). Then we have v/ (s) =
V'(ePs), 2l (t) = V(s + &3 Pr), a(z) = e3P (s + V3P, v/ (s) = ePv"(ePs). Let

(10) T (v) = ]f (#0() + W @) + at sp(s) ) ds

w
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Then, similarly as in [1], p. 781, by Fubini’s Theorem it follows
(11) ¢ 23 ]f AT Jf © (RE0,)ds |
-r w

where fg. : H?(—r,7) — [0, 4 o) is defined as in section 2. In particular, for every
v € H2, (0, %) there holds

per
(12) 2B W) = [ i Riv)ds
0
Let
(13) [ @) = Jf Tty 01 s @)
J

Suppose F. F, : YM((0,1); K) — [0, + oo] are defined as follows:

1

Fow) = f(vs,fflgds, if vg = Op:+,, for some v, € HZ,,.(0,1))
0

+ 00, otherwise ,

(14)

1

. f (s, fuw)ds, i vy € T(K) for ace. s € (0,1)
a\V) ‘=

0

+ o0, otherwise .

Then (7) and Theorem 3.4 in [1] give F¥, N F,. It can be verified (see comments
in [1], section 6.1, p. 813) that the convergence is preserved if v, in (14) satisfies
v, € H3(Q) for some open interval Q such that (0,1) CC Q. In particular, by
Proposition 2.1, (11), (12), 13) and by Theorem 3.12 in [1], there holds
hm Ssj(ﬂ) Fhm 5‘;*1 perB) = Eal/3. To sum up, we note that for » > 0 there

holds lim min 23" (v) = hm &;1(), and we apply Proposition 3.1. O

£—09eH?(0,¢5)

Next, we establish the upper bound in the case f € (0,1/3).

THEOREM 3.2 [the suberitical case: the upper bound]. — Let € (0,1/3). Then
hm 7 SUp EaperP) < Eoal 3.

ProOF. — Consider ~ arbitrary 4¢€(0,1), € (0,4, M>0, FM.=
{0 €(0,1) : al0) > M} and open intervals J°:=(5,1-6), J;_1:=(j—1.j),
o

Jf,l =J0 451, E’j = j,l\inl,j eN,E = U Ef By Theorem 3.4 in [1] for
=1
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every 5 > 0 there exists M, > 0 and a sequence of functions (v°) (which depends
on 7 and M) such that 7 € H2,,(0,1) and with properties |[7: ||, < M,e"/3~7,
1

(15) limsup [ f(R: 9)ds < Boal + + O(M,) f als)ds .
FIVI

e—0

0

Set vi(s) :== p,. %(p,.s), s € R. We consider the sequence w*: (0,1) — R de-
fined by w’(s) := v%(s), if s € JO (wi(s) := ¥’(s), if s € (0,1)\J?, resp.), where
?° 1 (0,1)\J° — R is chosen in such a way that w* € Hfmﬂ(O, 1) and on each of
the connected components in the domain #¢ has the following properties: de-
rivative of v takes alternately the values 1 and —1 on consecutive intervals of
order &!/3~F (except the first and the last one, which have length of order
M,&'/3F), apart from transition layers of order ¢!~ at the end of each such
interval, where the second derivative is of order e, The value of ?* is of
order /3~ (except in the first and the last interval, where it is of order
M,"/3F (cf. Figure 1). In particular, there holds || ||~ g < M,e"/37F. Let X,
(Y., resp.) denotes the set of all points in (0, 1) with property that «* is of order
M,&t/3F (£1/3-F, resp.). By construction there holds A(X,) = OM,)e'/3~F, A(Y,) <
0@1)o. Set we(s) := sfwi(s[ﬁs), a,(s) := alp,,s), s € R. Then w’ € H? (0, gf> and

per
therefore w* € Hfm,<0, 1). Note that there exists g(J) > 0 such that for every

&7

& € (0,&(0)] there holds (0,1) = U SfJ_;'—h J;-ll C p,1J;_1. Since ¥ and a are
i=1 ' o

xr L 1/3
~M,g"?
xr 13-

€ ]

1/3|
e B,

R 1-8 \AJ V/\ 1

1/3+
-M,e P =

~— 13-p
~M,e

Fig. 1. — Extension of v% to (1 —4,1).
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1-periodic, it results

1
-1 T f.—2/3 2 —2B, &2 ! 2
L) < p; ! f Fo(RET s + efe? f (p P +W(wi)+agsfﬁwi) .
0 B

Let Q¢ (L#, resp.) denotes the set of all points in the domain where w* is quadratic
(linear, resp.). Foreveryj =1,...,¢& # there holds

g2/ f (aze:zﬁwiﬂz + W) + a2 wiz)
Bhe
1/3-p . M+ 0a .
S 0(1)8 +2||a’é‘||L1(Ejf>meme) n + ( )”CLFHLI(E;)QQ*QY“) .
On the other hand, estimate on the set L¢ reads
g 23 f (828;2ﬁwi”2 + W) + agsfﬁuff)
o

=2
< 2Has||L1<E;?nLeme>Mn + O(l)HaSHLl(E}’ﬂL*WY‘) :

Since a is 1-periodie, there exists & (d) > 0, &(d) > &(9), such that for every
¢ € (0,&(0)) and every j € N there holds [ a <2MA+ 2 [ a. Hence, for arbi-

trary M > 0 and 6 € (0, 4) we recover " M

lim sup &%/ f (2w + W) + a,e%w?) < O(M:) (M A+ f a) .

e—0

B FM
In effect, we get
(16) limsup e 23 (w’) < Eoal/3 + 5+ O(Mj) (MA + f a) :
e—0
M

At last, we pass to the limit in (16) (first as 6 — 0 and 4— 0, then as
M — + oo and finally as # — 0), getting the upper bound. O

Now we consider the case = 1/3. As a preparation, we minimize /¥ for
arbitrary o > 0 in the case when M > 0 is large enough.

PropoSITION 3.2. — For every a > 0 there exists My(a) > 0 such that for every
M > My(o) there exists (uniqueup to a translation) M-periodic sawtooth function
Zaty € Sper(0, M) which minimizes fM on Sy (0, M). Furthermore, there holds

17 1 3 M — 1 3 M — E 1/3 .
( ) M LII}FOO J:ESIZB.I(I(’)I,AI) fa (@) M i>n’}FOO :EEI«SI:E)I}LI) fa () 0%
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XM,(X

Fig. 2. — The symmetric sawtooth function %y, € Sper (0, M).

PrOOF. — Consider n € N and « € S, (0, M) such that [Sx' N [0,M)| = 2n,
where Sy’ = {to,t1, o ,tzn_l,tgy,,} and 0 <ty <t; <...top_1 <to, =M.Seth, =
b
tr — ti_1, pr = F ®(0)dr, k=1,...,2n. We introduce a function g, : (0, + o) x
o1
R — (0, + o) defined by g,(k, p) := c R h2 + ap®. Then there holds fM(x) =
2n 2n

> Mk 9y (e, D), where > hy, = M. Moreover, we obtain
k=1 k=1

2n
fM<x>>nga<hk,0> Zn%ﬂm :

where equality is achieved by M-periodic sawtooth function shown in Figure 2. It

is easy to see that the solution of the minimization problem for the function
2n

(1, ..., hoy) — kzlh3 with the constraint Z hi, =M is given by h; = Zn,
j=1,...,2n. Thus, the minimum of /¥ is achleved by (unique up to a translation)

M
sawtooth function ¥y, € Sper(0, M) such that t), = k— o P =0,k=1,...,2n. In

particular, there holds f; M Ty = Zé i +—= 18 <M> Note that we can set 1 :=

and minimize A+ 24 + @} ~2 over all 4 > 0 to conclude that the optimal / is

1/3
Ao = (é) . If M > 0 is fixed, then it can easily be checked that the optimal

n, € Nis n, := [LM] (or n, := [AM ). By My(o) we denote the smallest M > 0
such that [4oM] > 1. Then for every M > My(x) there exists ¥y, € Sper(0, M)
which minimizes £ on Sp,-(0, M). A short computation gives

. _ . o M?
errimfaM(xM,a):Mllm <2£ +48 ) 26}04——8/10 = Eoyo/?

Consider now uy; € S(0, M) such that there holds g(i)nm M) = fM(up) and
2€5(0,

vy € Sper(0, M) shown in Figure 3. Then [Sv), N[0,M)| < |Suj, N[0,M)| + 3,
oy (0)| < |uy(2)], T € (0, M), so that

(18) %Sm% M) < My < fM(uM)Jr% , fM(uM)<xE$mi<n >f;”(x).
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Fig. 3. — Construction of vy € Spe,(0, M).

To furnish the proof, we pass to the limit as M — + oo in (18). O

At this point we turn our attention to recovering the lower and the upper
bound in the critical case f =1/3.

THEOREM 3.3 [the critical case]. — There holds

M
g >
(19) 11m1nf &1/3) > stuj()) i xe{&g}w f () .

(20) hm sup£ 1/3) < 1nf min M) .

aper M>0 2€8,,,(0,M)

ProoF. — First, we obtain the lower bound (19). Let M > 0. Since for
v € H2(0, Me'/3) there holds & 2/3> o) = foM(v,), where v,(s) == e 130(e!/3s),
by Proposition 2.1 and (8) there exists a sequence (u.,) which satisfy
Uy € H2<0,M>,

. &k 1 &, M _ : M
@) i, €25u(1/3) = Jim, fi100) = i, 1)

Then we infer (19) by an application of Proposition 3.1.
We prove the upper bound (20) in two steps.
Step 1. By Proposition 3.6 in [1] there exists a sequence of 1-Lipschitz

functions (w,,) such that w, , € Hf)w(O,M ), hm SZ*M per1/3) = lim0 fiMaw,,) =

min M (x). Consider w,(s) := el/gwg_*(s 1/33), s € (0,Me'/3). Then there
€S per (0M) '
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173

1/3
&

1/3
-M¢g

- Mgl 3
Fig. 4. — Construction of v, on (¢,1), ¢ € (1 — 2M'/3,1).

holds w, € H2, (0, Me!/3) and

per
(22) e PPL(w,) < py ) yre PRI () = p Ly feM () -

Step 2. Since [|w;. ||y ~g) < M, we get [|[w,]|;~g, < Me'/3. To achieve 1-peri-
odicity of the minimizer we adjust behavior of w, near the right edge of the interval
(0,1),soastogetv, € H2,,.(0,1) (cf. Figure4). Then there holds ||v, |y <) < Me'/3,
vl Ly < O1). Let Q° (L, resp.) denotes the set of all points in [, 1] where v, is
quadratic (linear, resp.). Then A(Q°) < O(1)e, A(L*) < 2Me'/3. Similarly as in the

proof of Theorem 3.2 for sufficiently large ball B C R there holds
23 f (#2(s) + W) + atePsp(s)) ds
Q.‘:

<Oe? + |[W||p,x 5 O)e"/? + M2 f a(s)ds
8—1/3sz

&8 [ (B2 + o) + alePsni(s)ds
L{T

< M2\ f a(s)ds .
e 13 Le
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Consequently, we estimate
(23) e PRI () < & PP w,) + OE? + O all g, -

By passing to the limit as ¢ — 0 in (23) and (22) we get (20). O

We can now derive the formula for asymptotic energy in the critical case
f =1/3 in terms of asymptotic behavior when ¢ — 0 and & — + occ.

THEOREM 3.4. — There holds

(24) éhi{lo 5_2/35a(1/3) = 61210 é_Z/SSa,per(l/S) = COW s
(25) gﬂn}m 52/3&(1/3) — ggnioo 52/350‘1)67(1/3) — 0061/3

Proor. — First, we consider the proof of (24). Let u < S(0,M)

(z € Sper(0,M), resp.) minimizes fé” on S(0,M) (Sper(0, M), resp.). Thus (19)

for M € N gives £,(1/3) > fM(u). Set ¢, := [5*1/31 R TRC 5:1/32,(8 + 51/37),

bi(r) := a(s + E31), 1€ R, s R. Then there holds &2 eN, &3 > ¢&/3

Ys € Spe,~(07Mé:1/3>, b§ — a(s) in LLIOC(R) as ¢ —0 (a.e. s € R). By construc-
tion in Figure 3 we estimate

M 1/3

—2/3 .M 13182’ N[0, M) . o 2 3
M) 2P gf A (s — >
3 M

_ 1/3
>Zfl/31( (|Sy§ [ M]-)M]M +fbf )ds_gfw

" 51/3
> i Tpds — 22—
> yer&g}w ) Py (y)ds i

In the limit as £ — 0 and as M — + oo, we have

lim inf hmmff 23 min fM(ﬂc) > 11m1nf f min (ﬂa(é)ds
— 400 ¢(—0 xeS(0.M M — +o00 J ye§(0.M)

and Fatou’s Lemma (combined with Proposition 3.2) yields the lower bound
associated to (24). On the other hand, for a given M € N we consider functionals
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oM oM YM((0,M); K) — [0, 4 oo] defined by

M (y) (vs, pMds, if vy =10 &t for some X € Sper(0, M& 1/3y
- = :

+ 00, otherwise ,

M
My e ]f (vy, oM Vs, if v € T(K) for ae. s € (0,M)

+ o0, otherwise ,

where Rfac is &-blowup of « at point s defined by (2). Similarly as in Theorem 3.1,
we can wrlte & 2/3fMCI/3( ) = <156M(5R :.), Where & € Spe,(0, M51/3> Then there

holds @M 25 @M on YM((0, M); K) as & — 0. Therefore by (20) and Theorem
3.4 in [1] it results lim sup &~ 2/35,1,,(,87”(1/3) < min cbéw(v) = Cpall3.
E—0 v

To prove the lower bound in (25) (the upper bound in (25), resp.), we note that
by (19) ((20), resp.) there holds

EBe,)3) > A

_ /3
é 2/8 o ME (Z)
51/3“ 2€S(0. M) f“

(5*2/35aw(1/3)§ min &AM ) resp.).
) zESper<01M€Vl/3>

For a given z € S(0, M&Y/3) we define z € S,,MO,M&I/S) according to Figure 3,
and we set y5(7) = & 1/Sé(s + 61/31) 5,7 € R (Forx € Sp.,-(0, M) which minimizes
fM we define z € Spe, (0, Mfl/3> by z(s) := 51/390(5 1/33) and We set yfs(r) =
EVB%(s + E37), 5,7 € R, resp.). Set ¢i(7) := c(s + E/37). Then ¢ — @in L, (R)
as {— + oo (ae. s €R), ys € S(0,M) ;5 € Sper(0, M), Y i — T uniformly in
s € (0,M) and 7 € (0, M) as ¢ — + oo, resp.), and there holds

5 1/3 Mg M
13182 N[0, M) a5 N TP
¢ MET +< ][ a($)Z(s)ds = Of v (@s)ds

0
M

; —2/3 e MEV? . M 3
min ¢ () > J( min oM (y)ds — —
2€5(0. M%) fa ) yesoM) e M

M
(g-?/‘o’fjﬁ”g(z) = 1 @ds. resp-)-
0

In the limit as & — + o0, we get Clififof;f_mg“(l/g)Zyg&glmw]ﬁw(y)_%
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(lim sup 5*2/38a7pey(1/3) < ¥ (@), resp.), which, as we consider the limit as
&— +o0

M — + oo, gives the lower bound in (25) (the upper bound in (25), resp.). O

In the next corollary we present some further properties of the rescaled
asymptotic energy in the critical case.

COROLLARY 8.1. — Set F(a,¢&) = &2/3 N lim Smi<101 > M@, a;(s) = a(is),
— +00 XESper (0,

s € R, /. > 0. Then theve holds F(a,&) = & 23€,(1/3) = E23E, per(1/3),
@ lim Fa,¢) = Coal’3, lim F(a,&) = Coa/?
c— ¢ — +oo
@) if &,,¢0 >0, &, — &, and a, — a L}OC(R) as n— + oo, then
,m T (@, ) = F(@, Eo).
Furthermore, if & = E(2), then there holds:
(i) lim 230 =0 ( lim 230 = + o0, Tesp.) implies
A— +oo A — +00
lim  Fla,60) = Cal ( lim Flay, &X) = Coa'/? resp.).
L — +00 L — +00
(iv) lim AEBOy =0 ( lim IER0) = + o0, Vesp.) implies

Jim F(a;, E) = Coal3 | (Alimo}"(ai,é(i)) = Cya'”? | resp.).

Proor. — Consider M € N. By construction deseribed in Figure 3, we have

@) g, S0 S D = Eu U/ < i 1)

As we pass to the limit in (26) as M — + oo, it results F(a, &) = é’z/gga(l/?)) =
6_2/ 38, per(1/3). Thus (?) holds. Next, we note that there holds: if £, — &, and

ay — ain L} (R) as n — + oo, then £/ L M asm— + oo on L0, M)

for every M € N. Suppose that z, (y,, resp.) minimizes faf:flg on Spe-(0, M)
(5(0, M), resp.), while T, (7., resp.) minimizes £~ on Sper(0, M) (S(0,M),
resp.). Set M, := 2%, k € N. Then for every k € N (M € N, resp.) there holds

f(an7 én) = Iin]f\; éq 2/3 f]}{k f"(x ) < f 2/3f1}14k-ﬁn(%n)
€.

<f(a/77/7 én) Z Sup énz/ faly éﬂ (yn) Z 552/3 a],}llé”(yn) b resp') :
MeN
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We pass to the limit as w — + oo, and then as k — + oo (M — + oo, resp.),
getting (ii). Verification of (iii) and (iv) is similar to the proof of Theorem 3.4 and
it is left to the interested reader. O

In the end, we briefly explain how to approach the case f > 1/3.

THEOREM 3.5 [the supercritical case]. — Let > 1/3. Then hm g =
lim & ,,.() = Eoa'/?,

ProoF. — As pointed out in [1], p. 814, the claim easily follows by direct ap-
plication of results in [1], where the case /)’ 0 was studied. We consider e-

blowup (2). Then we can write ¢ 2/3I%(v) = f [o(Biv)ds,v € H?

per

(0,1), where the

only distinction in comparison to the case ﬂ Oisthat a’ : R — R is now defined
by @(z) := a(ePs + /3~P7). By a version of the MeShane lemma there holds
a; — @in Llloc(R) (a.e.s € (0,1)) as e — 0. Thus we arrive at the conclusion that

there holds f7. i f7 (a.e. s € (0,1)) as ¢ — 0, which, as shown in [1], Theorem
3.4, 1s sufficient to deduce the claim of the theorem. O

4. — Ending Remarks

REMARK 4.1. — The present analysis, in our view, shows that minimizers

RS H?!W(O, 1) of I develop a sawtooth-like behavior. Consider a subsequence

1/p
£ = (%) and @ € L%, (0,1) (@ # const.). Set Lo := (48)"/%. Let § € (0,1/3).

By Theorem 1.1 in [7] and an approximation of a by simple functions we can
establish the error estimate é’zkpw(ﬁ) Eoal/3 + 0(32/ 3. We define

gk’f(s) =v*(s +(j — l)sf) s € (0, ak> j € Z. Since we can write g, “2/3[%(v%) =
Zeﬁs “23[sx(ed), for every j =1,. s,;ﬁ we get g 235 (vd) = Eoal/3 +

O(ai/ 3-26 ), so that for every je€Z (by periodicity of v*) there holds
klim Sf;’j”*(ﬂ):klim g, 235> (v*) = Eoal/3. In particular, by (12) and
¢ — 400 — +00

Corollary 3.13 in [1] for every j € Z there holds 5ngjvgk‘j N & (a.e.s € (0,1)) as

k — + oo, where & is the unique probability measure, invariant with respect to
translations, supported on the orbit of Lo(a(s))_l/ 3—periodic sawtooth function x°
with zero average and two corners per period (see [1], p. 778, p. 790). We believe
that the later convergence provides a fairly good interpretation of geometric
properties of the minimizing sequence (v*). In the language adopted from [1],
p. 763, we conclude that every minimizer v* for ¢ ~ 0 in the neighborhood of
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almost every point s € (0, 1) resembles a periodic sawtooth function with minimal
period Lo(a(glzﬂ s) Y 38]1C/ 3.1t B = 1/3, similar, but more careful, analysis reveals
that minimizers v satisfy v%’ — %, in L'(0,1), where j € Z and %, € 5(0,1)
minimizes f! (note that minimizers of f! by no means necessarily belong to the
class Sper(0,1)). In the case f > 1/3 the interpretation can be directly deduced
from the convergence Jg:, = e, (a.e. s € (0,1)) as e — 0, where ¥ is Lo(ﬁ)’l/ 3.
periodic sawtooth function with zero average and two corners per period.

REMARK 4.2. — As a further example of variational problem which involves
multiple small scales, we can consider the functional defined by

1

@7 Tip @ = [ (0% + W)+ al s e 7s0is)) ds

0
where v € HZZW<0,1>, a € L;,W((O,D x (0,1)) is Carathéodory function, and
B,7 > 0. Then we can adapt calculations in Section 3 so as to compute rescaled
asymptotic energy &,(f,7) associated to (27) as e— 0. It can be shown that

11
Ea(B,7)is equal to Eg [ [ a'/3(ty1, t2)dr1dts, when 8,y € (0,1/3), while it is equal
00

to Eoa'/?, when 8,7 > 1/3. On the other hand, if # € (0,1/3) and y > 1/3, £,(8,7)
1 1 1/3
takes value E, [ { f a(rl,rg)drg] dr;.
0 Lo
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