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Bollettino U. M. 1.
(8) 10-B (2007), 1149-1182

Threefolds with Kodaira Dimension 0 or 3.

EZ10 STAGNARO

Sunto. — Usando la teoria delle aggiunte e aggiunte pluricanoniche si costruiscono tre
varieta tridimensionali, come desingolarizzazioni di ipersuperficie di ordine 6 in P*,
aventi le trregolarita q, = q2 = 0 e, vispettivamente, le sequenti sequenze periodiche
di plurigenert

(pg7P27P37"‘ 7P7IL7' ) = (070717070717-' ')1(0707071707070717~-')7
(0,0,0,0,1,0,0,0,0,1,...).

Nell’Appendice, a partire dal secondo esempio di sopra, si costruisce una varieta di
tipo generale con q1 =q2 =0, py =1, P, =2 la cui trasformazione m-canonica e
birazionale se e solo se m > 11.

Summary. — Using the theory of adjoints and pluricanonical adjoints, we construct three
nonsingular threefolds, as desingularizations of degree six hypersurfaces in P,
having the irregularities q1 = q2 =0 and the following periodical sequences of
plurigenera respectively

(pg,P2,Ps,...,Py,...)=(0,0,1,0,0,1,...),(0,0,0,1,0,0,0,1,...),
(0,0,0,0,1,0,0,0,0,1,...).
In the Appendix, starting from the second above-mentioned example, we construct a

threefold of general type with q1 = q2 =0, py = 1, P> = 2 whose m-canonical trans-
Sformation is birational if and only if m > 11.

Introduction.

L. Godeaux constructed nonsingular, algebraic threefolds Y3, Y3, Y5 such that
2Ky, = 0 and Ky, # 0, 3Ky, = 0 and Ky, # 0, 5Ky, = 0 and Ky, # 0, where Ky, is
a canonical divisor on Y;, ¢ = 2,3, 5, and “=" denotes linear equivalence (cf. [G1,
Gs, Gs)).

By the Riemann-Roch theorem, it is not difficult to see that the first irre-
gularity is ¢;(Y;) = dim, H'(Y;, Oy,) > 0 for the three examples, ¢ = 2,3,5. The
Kodaira dimension of these threefolds is zero. As for the m-genus P,,(Y;) =
dim, H(Y;, Oy,(mKy,)), © = 2,3, 5, of the above threefolds, we find that
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d P27(Y2) = 1, V], and PW(YQ) =0formn 7é 2];
o P3(Y3) =1,V j, and P, (Y3) = 0 for n # 3j;
o P:(Y5) =1,V j, and P,(Y5) = 0 for n # 5.

This prompts the question of whether nonsingular threefolds Zs,Z3,Z5
having the first irregularity ¢1(Z;) =0, 1 =2,3,5 and the above respective
plurigenera actually exist, i.e.

o Pyi(Z3) =1,V j, and P,(Zs) = 0 for n # 2j;
o P3i(Z3) =1,V j, and P,(Z3) = 0 for n # 3j;
o P5i(Z5) =1,V j, and P,(Zs5) = 0 for n # 5.

It should be noted that they again have Kodaira dimension zero.

Among many other constructions, in [U] K. Ueno presented a threefold Z.
with the above properties, as well as g2(Z3) = dimkHz(Zz,OZZ) =0, thus an-
swering in this way to the above question relating to the existence of the first
threefold. Other threefolds Z, with the same properties as Ueno’s example,
were subsequently constructed by S. Chiaruttini and M. C. Ronconi (cf. [CR]),
and by M. C. Ronconi (cf. ICM-1998, Short Comm.).

In the present paper, we affirmatively answer the question of whether
threefolds Z3 and Z5 with the above properties and also having ¢2(Z;) = 0,7 = 3,5
exist. In addition, we fill the gap between Zs and Z5 by constructing a non-
singular threefold Z, having q1(Zy) = q2(Z4) = 0, P4j(Z4) =1,V j,and P,(Z4) = 0
for n # 45, which is missing in the parallel constructions by Godeaux. Moreover,
to our knowledge, there are no examples in the literature of nonsingular
threefolds Yy with 4Ky, = 0 and 2Ky, # 0.

Concerning the above examples Z3, Z4 and Z5, there remains the problem of
how to establish explicitly their structure in terms of the existence of Iitaka fi-
brations on them.

The only explicit result, with regard to Iitaka fibrations, is the existence of a
net of elliptic curves on Z3 (see section 7).

On the matter of the existence of Iitaka fibrations, M. C. Ronconi is studying
which properties of Enriques surfaces have analogues among the threefolds with
q1=q2 = pg = 0,Py =1 and Py; ;1 = 0 (cf. ICM-1998, Short Comm.).

In the construction of our threefolds Z3,Z4 and Zs, we use the theory of
adjoints and pluricanonical adjoints developed in [S1]. Said theory enables us to
construct the three nonsingular threefolds as desingularizations of degree six
hypersurfaces in P* endowed with suitable singularities. We can apply said
theory because the singularities on the three hypersurfaces satisfy the hy-
potheses of [S;], i.e. it must be possible to resolve the singularities on the
threefolds with local blow-ups along linear affine subspaces; moreover, the de-
gree six hypersurfaces in P! must have singularities of codimension > 2 (that is
the hypersurfaces must be normal). In the construction, we have to solve two
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problems: the first is to find suitable singularities such that we have p, = P2 =0
and P3:1, ]Og:PZ :P3=0 and P4:1, Dy :Pz =P3 :P4:0 and P5:1
respectively; the second is to prove that the above sequences of plurigenera are
periodical (see sections 5, 12 and 18).

The ground field k is an algebraically closed field of characteristic zero, which
we may assume to be the field of complex numbers.

The example Z5 partially answers the following question on nonsingular
threefolds: which is the minimum integer my such that ¢ =¢q =p, =
Py =P3=...=P,, =0= P, =0,Ym? That is to say, the example tells us that
my > 6. The solution to the above problem is still unknown; for instance, we do
not know whether a threefold with ¢ = g2 =p, =0 and Pg; =1, P, =0 if
n # 61,1 > 1 exists. All the examples we have constructed in this direction (either
published or not) satisfy the implication ¢y =g =py=FPo=---=P; =0=
P, =0, Ym.

In the Appendix, with a construction similar to that of Z4, but imposing only
four of the five singularities imposed on the hypersurface in I*, we construct a
nonsingular threefold X of general type having ¢;(X) = ¢2(X) =0, p,(X) =1,
Py(X) = 2, whose m-canonical transformation is birational if and only if m > 11.
From a result provided by M. Chen [C], we know that a threefold, with the bi-
genus Py > 2, has the m-canonical transformation which is birational for m > 16.
As a consequence, the sharpest limitation, for the birationality of the m-canonical
transformation for threefolds with Py = 2, is now between 11 and 16.

We note that the threefolds constructed here have no analogues among
surfaces, in the sense that there are no regular nonsingular surfaces having one
of the above sequences of plurigenera; in fact, according to Castelnuovo’s eri-
terion of rationality, a regular nonsingular surface with the bigenus Py = 0 is
rational. Moreover, to the best of the author’s knowledge, no examples of
threefolds with the same above birational invariants of Z3, Z4, Z5 are available in
the literature.

This paper is organized as follows: we construct Z3 in sections 1-7, Z4 in
sections 8-13 and Z5 in sections 14-19.

CONSTRUCTION OF THE FIRST THREEFOLD Z3.

1. - Imposing singularities on a degree six hypersurface V in P*.

Let (xg, 21, 22, 23, 24) be homogeneous coordinates in P* and let us indicate as
J6(Xo, X1, X2, X3, X4) aform (homogeneous polynomial) of degree 6, in the variables
Xo, X1, X2, X3, X4, defining a hypersurface V c IP* of degree six. We impose a triple
point on V at each of the three vertices A9 = (1,0,0,0,0), A; = (0,1,0,0,0) and
A3 =1(0,0,0,1,0), and an ordinary 4-ple (quadruple) point at each of the remaining



1152 EZIO STAGNARO

two vertices As = (0,0,1,0,0,), A4 = (0,0,0,0, 1) of the fundamental tetrahedron
XoX1 X X3X, = 0.
The equation for V, with the imposed singularities, is of the following type

Vv :.]%(XO7X1aX2aX37X4)
= X5(a33000X; + ...) + X3 (a23100X3 X2 + ...) + X2(...) + X3(...) + X5(...)
+ 22200 X5 X7 X5 + (92110 X5 X5 X0 X5 + ... + o022 XEX2X2 = 0,

where a;j; € k denotes the coefficient of the monomial XiX] X5X! X!,

We impose an infinitely near triple line 7; at the point 4;,7 = 0, 1, 3, in the first
neighbourhood. We follow the same method as in [S;], section 5, and impose the
same triple line 7y infinitely near Ay. To be more precise, let us consider the
affine open set Uy>Ay in P! given by Xy #0 of affine coordinates

(ﬂ 790_2 3 ,@>. The affine equations of V N U, is given by fe(1,2,y,2,t) =0,

X Xo X3, X
%' TXT TR X
The affine coordinates of Ay are (0,0,0,0). So, the blow-up of P* at the point
Ay is locally given by the formulas:

13

x=x €T = X2Y2 X = X373 X = X4ty

) y=xy, Y=y ) Y =1ysrs . L)Y =yats

By, : 2 =212 By, : 2 =122 B, : =23 By, : 2= 2ls
t= 961t1 t= y2t2 t= 23t3 t= t4

and we consider B;,. The strict (or proper) transform V' of V with respect to the
local blow-up B;, has an affine equation given by

1
2 So(1, ats, Yata, 2ats, ts) = Q31200045 + ... + Goozzeyieats = 0.
4

X4 = 0
On this threefold V' we impose the triple line given affinely by { Yy =0 (e.
ts=0

we make this line a locus of triple points on V’). Therefore, the conditions on the
coefficients a1, for V to have the triple line 7 infinitely near are the same as in
[S1], p. 176, given by

32010 = 0 as0201 = 0 30003 = 0 (20013 = 0
az2001 = 0 aso20 = 0 a21030 = 0 10023 = 0
asito =0 asor11 =0 az0130 = 0 as1021 =0
az101 =0 aso102 = 0 (20031 = 0 az1012 = 0
as1020 = 0 as0030 = 0 10032 = 0 (20121 = 0
asiorn =0 asoo21 = 0 az1003 = 0 asoriz =0
a31002 = 0 asoo12 = 0 20103 = 0 (20022 = 0

30210 = 0
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To tell the truth, some of these coefficients are already zero, having imposed
two 4-ple points on V; they are the coefficients of the type a;su or as.
Neverthless, we have written said coefficients here to ensure that we have
correct results in the following rotations of indices and variables.

Again according to [S1], we impose an infinitely near triple line #; at A;, for
i=1,3, with suitable rotations of the indices ijkhl of the coefficient a;j; and of
the corresponding variables @, X X XEXEX].

The rotations of the indices and variables passing from A to A; and from A,
to Ag, are as follows.

Rotations of indices (and variables)
Agr— A1 — Ag
ikl — Lijkh — khlij
We give the final equation for our hypersurface V, after imposing all the
above-mentioned singularities.
Vo fe(Xo, X1, X2, X3, Xy) =
az1200Xg X1 X5+
03210 X5 X5 X35+
10230 X0 X5 X5+
A22200 X5 X2X2 + 20110 X2 X2 X0 X3 + U2020 X X2 X2 + 21210X3X1 X2 X5+
21201 XEX1 X5X 4 + 021120 X5 X1 X0 X5 + 21111 X2 X1 Xo X5 Xy + 02110 X5 X1 X0 X3+
20020 X2 X5XE + 0211 XEX5 X3 X1 + 20202 XX X5 + 12210 X0 X2 X5 X3+
12201 X0 X7 X5 X + a12120X0 X5 X0 X5 + 12111 X0 X5 Xo X3 Xy + 11220 X0 X1 XEX2+
a2 XoX1 X2X3Xs + an1200 X0 X1 X5XZ + 011121 X0 X1 Xo X2 X4 + 11112 X0 X1 X X5 X5+
10221 X0 X5X5X 4 + 010212 X0 X2 X3X5 + 010122 X0 X1 XEXZ + om0 X7 X5 X5+
02211 XoX5X3Xy + 02202 X2 X5X5 + 02112 X2 X0 X3X3 + 01221 X1 Xo X2 X+
01212 X1 X5 X3 X% + Q0222 X5 X5X5 = 0.

Several coefficients can be chosen as equal to zero because they are in-
essential for the computation of the birational invariants of a desingularization
Z3 of V. The shortest equation with the essential coefficients is
V' f6(Xo, X1, Xo, X3, X4) =
az1200Xg X1 X5+
03210 X X5 X35+
10230 X0 X5 X5+
22200 X5 X2X2 + 22020 X2 X2 X2 + U110 X5 X1 X2 X2 + 0220 X3 X5 X5+
20202 X2 X5X2 + 010122 X0 X1 X2 X5 + (02220 X2 X2X2 + 2002 X2 X5 X2+
02112 X2 X2 X3 X2 + 00222 X5 X5X2 = 0.
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From here on, V denotes this last hypersurface defined by the above last
form f5(Xo, X1, Xz, X3, Xy) for a generic choice of the parameters a;ji;.

2. — Imposed and unimposed singularities of V: the actual singularities.

We consider the hypersurface V at the end of section 1.

New singularities appear on the generic V close to the singularities imposed
on V; they are actual or infinitely near singularities. We call a singularity on V
actual to distinguish it from those infinitely near.

There are seven actual double (straight) lines on V' given by A¢A;, A¢As,
ApAy, A1As, A1Ay, A2A4 and AgAy, according to the following picture, where the
double lines are drawn in bold type.

As
Ay

Ay Ay
Ao

The generic V has no other actual singularities. It follows that the generic V
is reduced, irreducible and normal.

3. — The infinitely near singularities of V.

In section 2, we described the actual singularities on V; in the present section,
we describe the infinitely near singularities (whether they are imposed or not).
To do so, we need the

RESOLUTION OF SINGULARITIES OF V/

The desingularization of V is very long, but also very easy. In section 1, we
imposed a triple line infinitely near the triple point Ay. Said computation can be
interpreted as the beginning of a desingularization of Ay and of the singularities
infinitely near Aj.

As an example, we solve only the singularities of V belonging to the affine
open set Us = {Xz # 0}.
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BLOW-UP OF P* AT 4,

Here, we can assume that the blow-up of A is the first that we perform. So,

let 7 : P; — P* be the blow-up of P* at A, and let Us > A, be the affine open set
in IP* given by X # 0 of affine coordinates <@ ,ﬂ ,% ,@).
Xo X2 X2 X2

We use Vy, to indicate the affine threefold V' N Us of the affine equation
X X%, %, X
VTR TR TR
The point Ay has affine coordinates (0,0, 0, 0).
The blow-up 7 at the point Ay is locally given by the same formulas as in

section 1: By, , By,, B.,, By,.

fo(x,y,1,2,t) = 0, where x =

o The strict (or proper) transform of Vy,, with respect to By, is given by

1
Vi ¢ por So(wr, x1y1,1, 2121, %181)
1
= ag1200¥1 + (logzloyéle + (1102302? + 022200?/% +o+ 002020215% +---=0.

We are interested in the singularities infinitely near Ay, i.e. we focus on the
singularities on V,, belonging to the exceptional divisor £; of the blow-up 7.
Locally, an equation of £ is given by x; = 0.

The (incomplete) linear system defining V,, has the base points on x; =0
given by the unique point O = (0,0, 0,0). According to Bertini, the singularities
on x; = 0 of the (generic) V., are only on the base points of the linear system, i.e.
only O can be a singular point. But we have

v,
( 8?;11

),, = tsiz0 #0.

So, there are no singularities on V,, infinitely near As.
The base points outside the exceptional divisor x; = 0 are given by the line
y1=0
#1 = 0. According to Bertini, the possible singularities on V,, belong to this
thh=0

line. But we have

(%

= 0.
oy >Z/1:z1:t1:0 31200 7

In conclusion, V,, is nonsingular.
Likewise, we see that

o the strict transform of Vi, with respect to By, is again nonsingular;
o the strict transform of Vi, with respect to B,, is also nonsingular.

Next, we find that
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o the strict transform of Vi, with respect to By, is given by

1
Vi e a 6(als, Yats, 1, 2484, 14)
4

= aslzooxiyz; + a03210yiz4 + a1023096422 + azzzooxi?/i +-+ 020202%3 + aozzozyi

+ -+ agozeezi = 0

X4 = 0
and it has the double singular line ¢ : < %4 = 0 as unique singularity. This line ¢
24 = 0

is the strict transform of the actual line A244 N Uz on Vy,.

It is easy to check that, thanks to the presence in the equation of the addenda
20202063, Qoz202Y3, Wooze2?3, the line £ is resolved with only one blow-up.

By patching V,,,V,,,V.,, Vs, together, from general blow-up theory, we ob-
tain a threefold V' N U’ defined on U’ = 7~ 1(Us), where V" is the strict transform
of V with respect to the blow-up 7 : P; — P of P* at As. We can cover V' N U’
with V., V,,, V.., Vi,. Thus, locally, we can blow up £ on V;,.

CoNcLUSION. We have resolved the singularities of Vi, =V N Us.

The tree of the blow-ups is as follows

Vi,
Vi Vi £

23

Vi,
ns ns ns / \
V, V, V.

41 Ya2 Z43

ns ns ns

where “ns” means “nonsingular”.

By doing long and tedious calculations similar to those above and in [S;], we
obtain a desingularization of V ¢ IP*. In this desingularization, we can see that
new unimposed infinitely near singularities also appear on V among the imposed
infinitely near singularities. They are only double singular curves and isolated
double points. So, none of the unimposed singularities affect the birational in-
variants of a desingularization Z3 of V, such as the irregularities and the plur-



THREEFOLDS WITH KODAIRA DIMENSION 0 OR 3 1157

igenera of Z3. This means that, in calculating these invariants, we can assume
that there are only the imposed singularities on V.
Having said as much, we consider the desingularization of V as achieved.

4. — The m-canonical adjoints to V c P*

Let

P, 2 By By B Py =Pt
be a sequence of blow-ups solving the singularities of V.
If we call V; C IP; the strict transform of V,;_; with respect to n;, then we
obtain from the above sequence

7

T, 3 & &
Zg=V, — - = Vo = Vi = V=V,
where 7, =7y, : Vi— Vg and g, : Z3—V, 6 =m 0---omy, is a desingu-
larization of V c IP*. ’

Let us assume that z; is a blow-up along a subvariety Y; ; of I°;_1, of di-
mension j;_1, which can be either a singular or a nonsingular subvariety of
Vi1 € IP;_1 (i.e. Y;_1 is a locus of singular or simple points of V;_;). Let m;_; be
the multiplicity of the variety Y;_; on V,_;.

Letus set n;_y = —3+j;_1 + m;_1, fori =1,...,7 and deg(V) = d.

A hypersurface @,,;_s of degree m(d — 5) in P* is an m-canonical adjoint to
V (with respect to the sequence of blow-ups 71, ..., 7,) if the restriction to Z3 of
the divisor

Dm = ;i{n:_l[...n’{(ém(d,m) — mnOEl...] — mmﬂ,zET,l} — mm,lET

is effective, i.e. Dm‘zs > 0, where E; = n71(Y;_;) is the exceptional divisor of 7;
and 7} : Div(P;_;) — Div(P;) is the homomorphism of the Cartier (or locally
principal) divisor groups (cf. [S;], sections 1,2).

An m-canonical adjoint @,,_5) is a global m-canonical adjoint to V' (with
respect to 7y, ..., w,) if the divisor D,, is effective on P,, i.e. D,, > 0 (loc. cit.).

Note that, if @,,4_5) is an m-canonical adjoint to V, then Dm\zg = mK, where
‘=" denotes linear equivalence and K denotes a canonical divisor on Z3.

In our above example, an order can be established in the sequence of blow-
ups, e.g. let us assume that the blow-up 7; is the blow-up at the 4-ple point Ag, 7o
is the blow-up at the 4-ple point A4, 73 is the blow-up at the triple point Ay, 74 is
the blow-up along the triple curve infinitely near Ay, 75 is the blow-up at the
triple point A1, 7s is the blow-up along the triple curve infinitely near A, 77 is the
blow-up at the triple point As, and ng is the blow-up along the triple curve in-
finitely near As.

The example V has degree d = 6 and D,, is given by:

(*) Dy, = 7. {77} (D) — ME] — mEs} — mEy — mEs — mEg + ) mE,
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where E; is the exceptional divisor of the blow-up 7; and, to be more specific, £ is
the exceptional divisor of the blow-up 7; at the 4-fold point As , ... and Eg is the
exceptional divisor of the blow-up 7g along the triple curve infinitely near As.

No other exceptional divisors are subtracted in D,, because, as we said, the
unimposed singularities are either actual or infinitely near double singular
curves or isolated double points on our (generic) V. Put more precisely, the
exceptional divisors of the blow-ups along the curves appear with coefficient
nj, = 0 in the above expression of D,,, whereas the exceptional divisors of the
blow-ups at double points appear with coefficient n;, = — 1: we have indicated
these divisors as ) mE. In addition, note that the exceptional divisor of a blow-
up at a triple point also appears with coefficient n;, = 0 in D,,. From here on, we
omit writing > mFE, because they are not essential to the computation of the
birational invariants that we shall consider.

5. — The plurigenera of a desingularization Z3 of V.

Let Iy, Z3 —V be a desingularization of our hypersurface V c P, where
o =m0 ---0m (section 4).

PROPOSITION 1. — The plurigenera of Zs are given by Py, =1, Vi > 1, and
P, = 0if m # 3i.

PRrOOF. — Let us consider the equation of V: f5(Xy, X1, Xo, X3,X,4) = 0 at the
end of section 1, and we arrange the form f; according to the powers of Xs.

fo = 04(Xo, X1, X3, X)X5 + 05(Xo, X1, X3, X)Xz + 05(Xo, X1, X3, X4) = 0,

where ¢;(Xo, X1, X3,X4) is a form of degree ¢ in X, X;1, X5, X4.

Next, let us consider the hypersurface &,,, appearing in (*) section 4 and
assume that its equation is F',,,(Xo, X1, Xz, X3,Xy) = 0, of degree m. Arranging
the form F',, according to the powers of X5, we can write

FM(XO?XlaXZaX?)aXAl)
=y, (X0, X1, X3, X)X + yy 1 (Xo, X1, X3, X)X5 571 -
+llUm(X07X17X37X4)7

where y;(Xo, X1, X3, Xy) is a form of degree j in Xy, X1, X3, Xy and s is an integer
satisfying 0 < s < m. So, ®,, has at A an s-ple point, with 0 < s < m.
We need the preliminary result, concerning @,,, given by the following

LemMmA 1. - If &, is an m-canonical adjoint (either global or not), then,
modulo V : fs =0, we can assume s >m —1; i.e if &, is an m-canonical
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adjoint, then we can assume that its equation, modulo fo = 0, is defined by the
form
Fm - l//1n_1(X07X1’X3’X4)X2 + l//m(XO7X17X37X4)

The idea for the proof is due to M. C. Ronconi [CR], [Ro].

Proor or LEMMA 1. For m = 1, the lemma is trivial, so we assume m > 2. For
the same reason, considering @y, : y X5 5 +w, 1 X351 + - +y,,, we assume
s<m-—2.

Let us consider the affine open set Uy given by X, # 0 of affine coordinates
<96‘0 X1 X3 X4

— = ,— ,). Let us write the affine equation of V' N Us = Vy, as follows:
Vo, @ fole,y,1,2,8) = g4, y,2,1) + ¢5(x, 4,2, 1) + 02, y,2,8) = 0
and the local equation of @,,:
Dy, ey, 1,2,0) =y (e, y,2,) + -+, (@, y,2,1) =0
X X X, X
X, Y Xz XX,
Let us consider the first blow-up 7; at A,. One of the local espressions of 7 is
€T = X323

where x =

given by B, : Zz/: 33323 . The strict transform V, of Vi, = V N U; with respect

t= 23t3
to B,, is given by

1
Ve z—4fs(%3z3, Y323, 1,23, 23t3) = fu,2, (X3, U3, 23, t3)
3

= (04(9637 Y3, 17 t3) + @5(.')03, Y3, 1) t3)23 + ¢)6(w37 Y3, 17 t3)z§ =0

Now, let us consider the total transform of @,,;;, with respect to B,,. We note
that B,, locally coincides, up to isomorphisms, with its total transform with re-
spect to the desingularization Iy, (because V., is nonsingular, see the tree of
blow-ups in section 3). This total fransform of Dy, 18

¢’;an : zg[l//b(%‘& Y3, 17 t3) +---+ l//m(x& Y3, la t3)zm 1=0.

2

Next, if &,, is an m-canonical adjoint to V, then, from (*) and the definition of m-
canonical adjoint to V (section 4), we can deduce in particular

(@, — mll, )

mUs

>0,
g

where £ is the exceptional divisor of 7;. This inequality, translated in terms of
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polynomials, gives us
z3lw (s, ys, 1,t3) + - - + w,, (23, y3, 1, t3)25' ~°]
+ B(xs, y3, 23, t3) 043, 3, 1, t3) + 05(x3, y3, 1, t3)23 + 003, y3, 1,13)25] = 25°(- - ),

where B(x3,ys, 23, t3) is a suitable polynomial. In this equality of polynomials, we
have B(xs, y3,23,t3) = 25B'(x3, ¥3, 23, 13), 50, we can simplify z5 and we put z3 = 0
in the remaining equahty, obtaining the equality of polynomials

") (a3, Y3, 1,t3) = B'(x3,93,23,0)p,(x3, 3, 1,3).
Multiplying both sides of (**) by 23, from the equalities in B,,, we obtain
v, y,2,t) = B"(x,y, 2,004, y,2,1);
and by homegenizing, we return to the forms
(%) w(Xo, X1, X3, Xy) = B"(Xo, X1, X3, X0)94(Xo, X1, X3, X4),

where B"(Xy, X1, X3,X,) is a form of degree s — 4 in X, X1, X3, X4.
At this point, we consider [S;], Corollary 8, section 3: if V' is normal, there is
an isomorphism of projective spaces for any m > 1

( linear system of )

m-canonical adjoints to V — [mKz,|

¢m|v i’ Dm\zg .

Bearing in mind that our purpose is to compute the m-canonical genus P,,
dim |mKgz|+1 = dim (lmeow system of m-canonical ad]omts)‘ + 1, we can
substitute @y, w1th o if D, mly = Pl This is equivalent to saying ‘that the form
F, defining @, must be of the type F,, 'm + Afs, where A is a form of degree
m—6, Fy, is the form defining @, and f6 is the form defining V. To be more
precise, we can take F/, given by

(*7}) F/ = Fm - B//(XO;XI;XS;XZL)X;”iSizfﬁa

m

where B"(Xy,X1,X3,X,) is the form in (**%). Of course, we need m —s —2 >0
for this substitution. Note that we can assume m —s — 2 > 0; otherwise, if
m — s — 2 < 0, then the Lemma is true. From (***) we obtain

F oy (Xo, X1, X3, X)X5 71 4 - 4y, (Xo, X1, X3, Xo)
—B//(Xg,Xl,Xg,X4)((p5X§n_s_1 + (ﬂﬁXén_S_z) =0

F!, =0 has an (s + 1)-ple point at A,. So we can iterate the process and
substitute @/, with a new m-canonical adjoint &/, having an (s + 2)-ple point at
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Ay, and so on. Since the inequality m — s — 2 > 0 in (*”) must hold, the iteration
stops when s > m — 2.
This proves Lemma 1.

Proor oF PROPOSITION 1 (continuation) (see also [CR]). In Lemma 1, we es-
tablished that we can assume @y, : v,,_1Xs + v, = 0. Starting from this &,,, and
using the same arguments as in the proof of Lemma 1, we obtain a formula si-
milar to (**%), i.e.

(U) l//’m/—l(XU7X1;X3;X4) == BIN(XO7Xl7X37X4)(/04(X07X17X37X4)?

where B"'(Xy, X1, X3, Xy) is a form of degree m — 5. In particular, the equality (V)
tells us that v, (X, X7, X3, X4) can be divided by ¢,(...).
Next, we order the forms f; and &, according to the powers of Xy,

.]% = (DZ(X07X17X27X3)X2 + ¢E(X07X17X27X3)X4 + (pZ(XO;XlaX27X3)7
where ¢;(Xo, X1, X3, Xy) is a form of degree ¢ in Xy, X1, Xz, Xs.
D,y KXo, X1, Xo, X3) X7+ Ko, X1, Xo, X)X 4 4y, (X0, X1, X, X3),

where y/;f(Xo,Xl,Xz,Xg) is a form of degree j in Xy, X1, X2, X3.

Then we apply Lemma 1 to the m-canonical adjoint &,, and we consider its
behaviour under the blow-up 7y at the point A4. In this case, if we change X, with
Xy, the result of Lemma 1 or, to be more precise, the analogous equality of (*),
tells us that the form Wf(Xo,Xl,Xg,Xg) must be divisible by gDZ(X(),Xl,Xg,Xg).
But ¢;(Xo, X7, X5, X3) contains X22, whereas @, : v,,_1X2 + v,, = 0 contains X5 to
the power of 1. Iterating the process, this implies that ¢ = m. Comparing

Dy, : B" (X0, X1, X3, Xo)py(Xo, X1, X3, X)X + v,,Xo, X1, X3,X4) = 0
and @, : v, (Xo, X1, Xz, X3) = 0 [since ¢,(Xo, X1, X3, X4) contains X4], we obtain
Dy, l//;;/b(X()aXlaXS) +Afe =0,

where v, (Xy, X1, X3)s is a form of degree m in the variables Xy, X, Xs.
We continue the proof considering the blow-up at Ay performed at the be-
ginning of section 1 and let Uy > Ay be the affine open set in P* given by X, # 0.

X = ¥3%3
We consider the local blow-up of P* at the point A, given by B., ?z/ - 3323 .
=23
t= 23t3

For the sake of brevity, we consider this blow-up as the first in solving the
singularities of V; we can do so because the blow-ups 7; and 7; are inter-
changeable. The total transform of @&, with respect to B is given by
B;(qim) syl (1,2323,23) = 0. Now we consider the affine triple line infinitely
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X3 = 0
near Ay, given by < y3 =0 and we consider the local blow-up given by
X3 = 231 23=0
B, : Y3 = WYL e total transform of B (®,) with respect to B, is
%3 = 131231 3
i3 =1

*

given by B, (B} (Pn)) : ), (1, 25,231, €31231) = 0.

Next, we write the form v/, (Xo, X1, X3) as follows

W;;7/(X07X17X3) = Z CZ_]}LX[%X{X:)};L

i+j+h=m
where c;j, € k. We thus obtain the total transform

B, (BL@n) s > ey =0.
i+j+h=m
If we want &,, to be an m-canonical adjoint, from the expression of D,, in (*),
section 4, we must put x3] in evidence, modulo V : fg = 0, in the latter total
transform. But, considering Vy, given by

‘fGUo(m’ Yz, t) = 003120090?/2 + ¢Z(x7 Y,z, t) + ¢/5/(x7 Yz, t) + ¢/6/(x7 Yz, t) = 07

where ¢/ (x,y,2,1) is a form of degree ¢ in wx,¥,2,{, we obtain that the strict
trasform of fsy, with respect to B, and B, is

az12005, + @4 s + b ad + g ad;

Given the presence of (131200?/%1, we deduce that putting x3] in evidence, modulo
V:fe=0,in B, (B, (Pn): Zh: el 2l — 0, is equivalent to put x in
1+)+h=m
evidence without “modulo V' ZJ]% = 0”. Here, as in the proof of Lemma 1, we use
the fact that B, o B,, coincides with the desingularization | 4, 01 the affine open
set Vi, .
So, it remains for us to establish when we can put x%} in evidence in

a2jth g+
Z Cijn¥sy Zél =0,

i+j+h=m
without “modulo V : fg = 0” and this can be done immediately.

Concluston. In the above polynomial, we can put x5} in evidence if and only if
2+ h > m.

Finally, if we consider the triple points A; and As as both having an infinitely
near triple line, then for the singularities given by A; and As, we also get much
the same results as in the above Conclusion, that we obtained for the singularity
given by Ay. That is to say, we obtain 2k + 7 > m in the case of A;,and 2i +j > m
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in the case of A3. Adding the three inequalities, we obtain 3(i +j + k) > 3m.
Since 7 + j + h = m, we deduce that all the inequalities are equalities. Therefore
1=j=h,ie.

Wi Xo, X1,X3) = ) i XpXi X4 = ¢ X\ X{ X},

3i=m
This shows that the m-canonical adjoints to V are of the type
@y, : (X X1 X3)' = 0,

for ¢ > 0, 3t = m and Proposition 1 is proved. O

6. — Computing the irregularities of Zs.

There remains for us to prove that g; = dim,H'(Z3, Ogz,) =0, fori=1,2. We
know that ¢; = dim;H"(Z3, Oz,) = ¢(S,) = dim;H'(S,, Os,), where S, C Z3 is the
strict transform of a generic hyperplane section S of V (cf. [S1], section 4, for
instance). S has several isolated (actual or infinitely near) double points and no
other singularities. This follows from the fact that the hypersurface V, outside
the points Ay, A1, Az, A3 and Ay, only has actual or infinitely near double curves.
So, q; = 0.

To prove that g2 = 0, we use the formula (36), section 4 in [S;], which states
that:

g2 = pg(X) + py(S,) — dimy, (W),

where W is the vector space of the degree 2 forms defining global adjoints @, to
V, i.e. defining hyperquadries @ such that

71': . ﬂ;[ﬂ’{(@z)] —El —Ez —E4 —EG —Eg Z 0,

(cf. the expression of D,, in (*), section 4). So the above hyperquadrics @, are
those passing through the points A, A;,A2,A3 and A4. Thus, we have:
dim;(Wp) =156 -5=10. It follows from pu(S,) =10 and pyX)=0 (cf.
Proposition 1 in section 5), that g2 = 0.

7. — A net of elliptic curves on Zs.

Let us consider the two 4-ple points A2 and A4 and the double line A2A44 on
V c P*. Clearly, there is a net of planes passing through the two points (and the
double line). The generic plane of the net cuts out a degree six plane curve on V,
which is split into the line A2A4 counted twice, and into an irreducible quartic Cy
having exactly two nodes (ordinary double points) (according to Bertini). If
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64 — (}y_is a desingularization of Cj, then a is an elliptic curve and we can
assume Cy C Z3. This shows that on Z3 there is a net of elliptic curves.

THIS COMPLETES THE CONSTRUCTION AND THE DESCRIPTION OF THE FIRST THREE-
FOLD Zj3.

CONSTRUCTION OF THE THREEFOLD Z,.

8. — Imposing four triple points with an infinitely near double surface and a
4-ple point on a degree six hypersurface V' in [P*.

Let (o, 21, o, &3, 24) be homogeneous coordinates in P! and let us indicate as
fiXo, X1, Xz, X3, Xy) a form (homogeneous polynomial) of degree 6, in the vari-
ables Xy, X1, Xz, X3, X4, defining a hypersurface of degree six V' ¢ IP*. We im-
pose a triple point with an infinitely near double (singular) surface on V’ at each
of the four vertices Ay =(1,0,0,0,0), A; =(0,1,0,0,0), A3 =(0,0,0,1,0) and
A4 =1(0,0,0,0,1), with an ordinary 4-ple (quadruple) point at the remaining
vertex As = (0,0,1,0,0,) of the fundamental tetrahedron X X;XoX3Xy = 0. We
have already considered the singularity given by a triple point with an infinitely
near double surface in [Sz].

The equation of V' with the above imposed singularities contains 27 coeffi-
cients, but the essential coefficients for our purposes are fewer (as in the case of
V, section 1); in fact, we only need 12 coefficients. We write the equation of V’
directly, with the imposed singularities with the 12 essential coefficients.

V' filXo, X1, Xo, X3, Xy) =

3100 X5 X1 X2+

13020 X0 X3 X2+

az001 XEXE X+

Q2013 X2 X3 X3+

21201 XEX1 XX 4 + 20211 X5 XEX 35Xy + 019210X0 X2 X5 X5 + 11920 X0 X1 X5 X2+
11202 X0 X1 X5X5 + 010021 X0X5X5Xs + oo Xo X5 X3X4 + 01212 X1 X5X3X5 = 0.

From here on, V' denotes this last hypersurface defined by the above last
form fi(Xo, X1, X2, X3, Xy) for a generic choice of the parameters a;j,;.

9. — The unimposed actual singularities on V’.

We consider the hypersurface V' at the end of section 8.

Close to the singularities imposed on V’, new singularities appear on the
generic V’; they are actual or infinitely near singularities. The actual unimposed
singularities are given by six actual double (straight) lines on V' given by A¢A;,
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ApAg, A1Az, AsAs, A2A4 and AgAy, according to the following picture, where the
double lines are drawn in bold type.

As
Ay

Ag Ay
Ao

The generic V' has no other actual singularities, so the generic V' is reduced,
irreducible and normal.

10. — The infinitely near singularities of V'.

RESOLUTION OF SINGULARITIES OF V'

Here again, the desingularization of V' is very long but very easy. New un-
imposed infinitely near singularities appear on the generic V', close to the im-
posed infinitely near singularities. They are double singular curves. Here, there
are none of the infinitely near isolated double points seen in the case of V.

So, none of the unimposed singularities affect the birational invariants of a
desingularization Z; of V', such as the irregularities and the plurigenera of Zy,
i.e. in calculating these invariants, we can assume that there are only the imposed
singularities on V’.

The desingularization of V' is, more or less, a repetition of the one in [S], [Sz]
and in section 3, so only the tree of the first blow-ups of V;; =V’ N Uy, where
Uy = {Xo # 0}, is reproduced here.

/!
Vi,

AN

9611 t12 y21 t22 231 t32
ns ns ns



1166 EZIO STAGNARO

11. — The m-canonical adjoints to V' c P*.

Following the notations in section 4, an order can be established in the se-
quence of blow-ups in the example V': let us assume that 7; is the blow-up at the
triple point A and 7p is the blow-up along the double surface infinitely near A,
73 is the blow-up at the triple point A; and 74 is the blow-up along the double
surface infinitely near A;, 75 is the blow-up at the 4-ple point Ay, 7 is the blow-up
at the triple point As, 77 is the blow-up along the double surface infinitely near
As, 7y is the blow-up at the triple point A4, and g is the blow-up along the double
surface infinitely near A4. Let 0 = 7, o - - - o 11 be a sequence of blow-ups solving
the singularities of V.

The equivalent formula of (*), section 4, is given here by:

C) D, = . {5z ®,)]-mE}—mEy —mEs — mE; — mEy,

where E; is the exceptional divisor of the blow-up 7;, i.e. K2 is the exceptional
divisor of the blow-up 7z along the double surface infinitely near Ay, ..., E'5 is the
exceptional divisor of the blow-up at the 4-ple point As , ... and Ey is the excep-
tional divisor of the blow-up my along the double surface infinitely near Ay.

No other exceptional divisors appear in D/, because the unimposed singula-
rities are either actual or infinitely near double singular curves on our (generic) V.

12. — The plurigenera of a desingularization Z, of V'.

Let o P Z4 — V' be a desingularization of the hypersurface V' c I*, where
o =m,0---o7m (section 11).

PROPOSITION 2. — The plurigenera of Z, are given by Py =1, Vi > 1, and
P, =01 m # 4.

ProoF. - Let us consider the equation of V': f{(Xo, X1, Xz, X3, X4) = 0, and we
arrange the form f{ to the powers of X.

fg = ¢4(X07X17X37X4)X22 + ¢5(X07X17X37X4)X2 + (pﬁ(X07X17X37X4) = 0)

where ¢;(Xo, X1, X3, Xy) is a form of degree ¢ in X, X1, X3, X4.

Next, let us consider the hypersurface &,, appearing in (°) section 11, as-
suming that its equation is F,,,(Xy, X1, Xz, X3, Xy) = 0, of degree m. Arranging
the form F, to the powers of Xz, we can write

Fm(X07X17X2;X3;X4)
= l//s(X07X17X37X4) ’2m—8 + Ws+1(X07X17X35X4)X£n_S_1 +...+ l//m(X07X17X37X4)7
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where 1//]-(X0,X1,X3,X4) is a form of degree j in Xy, X7, X3, Xy and s is an integer
satisfying 0 < s < m. So, ®,, has an s-ple point at Ay, with 0 < s < m.

Let us assume that @&,, is an m-canonical adjoint to V7, i.e. D’m‘z > 0. From
Lemma 1, section 5, we have the following result: modulo fi = 0, we can assume

s >m — 1; i.e that @,,, modulo f{ = 0, is defined by the form
F’/)l = V/’m—l(XOaXlaX37X4)X2 + !//nz(XO;Xl)X?))XAl)'
From the (*) in the proof of Proposition 1, section 5, we have the following
equality:
l/lﬂnyfl(X()lengvXél) = B///(X07X17X37X4)(04(X0;XlaX3aX4)v
where B" (X, X1,X3,Xy) is a form of degree m — 5 in X, X1, X3, X4 or zero-
form.

LEMMA 2. — The m-canonical adjoint to V' given by
Dy = Yy (Xo, X1, X3, X)X + y,, (X0, X1, X3, Xy) = 0,
where vy, 1(Xo,X1,X3,Xy) = B"(Xo, X1, X3, X0)p,(Xo, X1,X3,X4), has the fol-
lowing property
D

m\Z4

>0«<=D,, +E;>0,

where D, = .. {my[7n;(Pp)] — mEs} — mEy — mEs — mEy —mkEy, is defined
n (°), section 11.

Proor or LEMMA 2. Let us consider the affine open set Uy = {X, # 0} as in
section 1. Locally, the blow-up 7 of P! at Ay is given by By, By, , By, By, (cfr.
section 1).

The total transform of @,, N Uy with respect to B,, is given by

By (@, N Uo) = 1 (1, 201, 2121, ert)21y1 + v, (1, 21, 2121, 01t1) = 0.
The double surface Sy infinitely near Ay in affine coordinates (x1,y1,21,%1) is

given by { ;cl :(? and the blow-up 7z along S is locally given by the formulas:
1 =

X1 = X1 X1 = X121z
B.. Y1 =Y ) Y1 =Y12
211 _ ) ti2 - _
21 =21 21 =212
tl = .%‘utu tl = tlZ

The total transform of B;l(tﬁm N Uyp) with respect to By, is given by
B*

1,8y, (@ N Up) W1 (1, B12t1a, X12212t12, T12tes)T12Y12tso

+ ¥, (1, B12t1a, X12212t12, T12tss) = 0.
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Since @,, is an m-canonical adjoint to V’, the latter equation, modulo
1

tTfé(lv Xiotiz, Tr2y12ti2, T12212t12, T12thy) = 0,
12

must be of the type ]3(...) = 0.

The latter statement follows, as in the proof of Lemma 1, from the fact that
By, o B,, coincides with the desingularization a|,, on the affine open set V;, (see
the tree of blow-ups).

In other words, the following equality of polynomials must hold
) W11, ®iatiz, R12212t2, X1E3)T12Y 1212 + W, (1, T1otiz, T12212t12, T12tTs)

+ A(12, Y12, 212, T12)] -+ - + A21201X12Y 55 + Q20211012Y 50712 + - |

= t15B(x12, Y12, 212, t12),
where A and B are suitable polynomials in the variables x12, y12,212,%12 and
[+ 2120121205 + Q20211120 59212t12 + - ] = %fé
Note that the variable y2 in the equality (°°) appears in
W1 (1, T1atia, L12212t12, X1to)012Y12t12 + W, (1, X122, X12212t12, Tiotss)

with power one andin [ --- + azlgmaclgy%z + Clzoznxlgy%zzlz + - - - ] with power two.
It follows that the equality (°°) holds if and only if

) W11, tratis, Er12219t12, B1l5)X12Y12ti2 + ¥y, (1, Xr2tia, Xr12212t12, B12lhy) = E15(...)

and moreover A(x12, Y12, 212, ti2) = t5(...) or A(X12, Y12, 212, t12) is zero.

We obtain the result given by the equality (°°°), obtained in the affine open set
Uy, in the affine open sets U;, Us and Uy (U; = {X; # 0}) too. So the equality
(°°°), and the analogous equalities in Uy, Uz and Uy, tell us that

qj?’ﬂ, : V/m/fl(X(h Xl7 X37 X4)X2 + l//nl(X07Xl7X37X4) = 07

where l//7n71(X0, Xl, Xg, X4) = B”/(XmX17X37X4)¢4(X0,X1,X3,X4) satisfies
Dlmlz >0<=D.,, +mhks > 0.
4
Finally, if we consider Uz = {X» # 0}, then we obtain

D/

m|Z4

>0<=D, +E5>0.
This proves Lemma 2.

PrOOF 0F PROPOSITION 2 (continuation). From the result of Lemma 2, to
compute the plurigenera of Z,, we consider

F,, = B"(Xo, X1, X3, X0)9,(Xo, X1, X3, X0) X5 + v,,(Xo, X1, X3, Xy).
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where
04X0, X1, X3, X1) = a2101 X5 X1 Xy + 20011 X2 X3 X4 + 12210X0 X2 X5

+ a11220X0X1 X5 + 011202 X0 X1 X2 + 010221 X0X5Xs + 02211 X2 XX + 1212 X1 X3 X5

Let us write

B"(Xo, X1, X3, X)X —< > bijthngXi)Xz,

i+j+h+l=m—5
" U } ! l/
W (Xo, X1, X3, Xy) = Z i X X1 X5 Xy,
V4 +h +U=m

where bijhb Cijnl € k.
With these notations, and considering ®,, N Uy, the equality in (°°°) becomes

j+h+l b j+h+21 2
( E bty 2iath )(04(1,90127512,90122121512,90121512)(90122/121512)
i+j+h+l=m—5

+ D ey Tt = 1),

i+l A+ =m
jHh+20+4>m
J+Rr+20 >m
Similarly, if we consider @,, N Uy, the analogous equality of (°°°) provides the

1+2h+14+4>m
V204U >m

The latter equality is equivalent to the inequalities {

inequalities {
Again, &, N Us and &,, N Uy provide the inequalities

20+j+1l+4>m d i+2+h+4>m
20 +7 +1'>m U+ W =m
I>i+1>h+2>j+3>1+4
l/Zi/Zh/zj,Zl/ '
The first line tells us that B"”'(Xy, X1, X3, X}) is the zero-form and the second
line shows that 7/ =5 =k’ =, i.e. the form defining &, is

Crm X X1 X5 Xy, Vr > 1.

Combining all the inequalities gives us {

This proves Proposition 2. O

13. — The irregularities of Z;.

With the same proof as in the case of Zs, cf. section 6, the irregularities of Z4
are qg; = g2 = 0.
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THIS COMPLETES THE CONSTRUCTION OF THE SECOND THREEFOLD Z,.

CONSTRUCTION OF THE THREEFOLD Z5.

14. — Imposing five triple points with an infinitely near double surface on a
degree six hypersurface V” in %,

The simplest equation of a degree six hypersurface V" having five triple
points with an infinitely near double surface is given by

V" fl (X, X1, X2, X3, Xy) =

30201 Xg X5 Xa+

13020 X0 X3 X5+

a0130e X1 X3 X5+

20130 X5 X2 X3+

Q02013 X2 X3 X3 = 0.

The rotations of indices and variables passing from A; to A;,1 and returning

to A are as follows.
Rotations of indices (and variables)
Ay—A1—As—A3—Ag— Ay
ykhl— lijkh — hlijk — khlij — jkhli — ikl

Here, the equation f¢'(Xo, X1, X2, X3, X4) = Oisinvariant with respect to the five
rotations. So, a statement on the equation that is true for the point A;, for the affine
open set Uj, ... holds true for any other point A;, for any other affine open set Uj, ....

From now on, V" denotes the degree six hypersurface defined by the
o (X0, X1, X2, X3, Xy) for a generic choice of parameters a;jp,.

15. — The unimposed actual singularities on V”.

There are five unimposed actual double (straight) lines on V": AgA;, AgAy,
AAs, AgAs, A3Ay; see below, where the double lines are drawn in bold type.

As
Ay

Ay Ay
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The (generic) V" has no other actual singularities, so V" is reduced, irre-
ducible and normal.

16. — The infinitely near singularities of V”.

Here, since the equation of V" is invariant with respect to the rotations of
indices and variables, all we have to do is resolve the singularities in just one of
the affine open sets U; = {X; # 0}.

New unimposed 1nf1n1tely near singularities appear on the generic V" close to
the imposed infinitely near singularities; they are only double singular curves.
So, here again, none of the unimposed singularities affect the birational in-
variants of a desingularization Z; of V".

The desingularization of V" is, more or less, the same as in [S1], [S2] and

section 3, so only a part of the tree of the blow-ups of =V"NU, is given
here.
"
/ VUO \
I " 1 1
‘/;1 ‘/.1/2 V ‘/;4
/ \ o / \ / \
" 1 1 14 1
un Vljlz ‘/;/31 stz ‘/:1/41 t42
ns ns ns ns
nysmny;sn lAvaiaval
ViV, 'V, ViV,
ns ns ns

The affine threefolds Vi, V} and V{ are singular along (locally) double
straight lines. Here again, they have local double lines infinitely near and, after
some blow-ups, we can resolve all the singularities.

17. — The m-canonical adjoints to V" c P*.

As in the previous constructions, an order can be established in the sequence
of blow-ups, e.g. let us assume that 7 is the blow-up at the triple point Ay, 7 is
the blow-up along the double surface infinitely near Ay, n3 is the blow-up at A1, 7y
is the blow-up along the double surface infinitely near A;, ..., and 7y is the blow-
up along the double surface infinitely near Ay.
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The equivalent formula of (*), section 4, is given by:
(O) D;;,L = n:f...{n;[ﬂ;(@m)] — mEg} — mE’4 — mE6 — mEg — me s

where E; is the exceptional divisor of the blow-up 7;, i.e. Es is the exceptional
divisor of the blow-up 7z along the double surface infinitely near A, and so on.

No other exceptional divisors appear in D/, because the unimposed singula-
rities are either actual or infinitely near double singular curves on our (generic) V”.

18. — The plurigenera of a desingularization Z; of V”.

Let 6, :Z5— V" be a desingularization of the hypersurface V" C I%,
where ¢ = 7, o - - - o my (section 17).

PROPOSITION 3. — The plurigenera of Zs are given by Ps; = 1, Vi > 1, and
P, = 0if m # 5i.

The statement of Proposition 3 is much the same as those of Propositions 1
(section 5) and 2 (section 12), but the proof is completely different, essentially
because the hypersurface V" has no 4-ple points in this case.

To prove Proposition 3, we need some preliminary results on global and non-
global m-canonical adjoints to V" (cf. section 4, or [S1] for the definitions).

LEMMA 3. — The global m-canonical adjoints to V' are given by

@, e XPXIXIXIXE =0, Vi >0,
where ¢; € k.

In particular, the global m-canonical adjoints exist if and only if m = 51, Vi
and there is only one of them for m = 51.

ProOF oF LEMMA 3. Let us consider a global m-canonical adjoint to V"

Gy Y b X XIXEXIX) =0,
i+j+h+h+l=m
Locally, the blow-up 7; of P* at A, is given by By, , By,, Bz, B, (section 1).
The total transform @* of @,, N U, with respect to B;, is given by

?* =B (P, N Vo) : Z by (szs) (yz23) 2h(zsts) = 0,
I+j+k+h+-l=m

The double surface Sy infinitely near A, in affine coordinates (x3,ys, 23, t3) is
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given by { 23 B 8 and the blow-up 7z along Sy is given locally by the formulas:
3 =

L3 = ¥31 L3 = X32
Y3 = Y31 Y3 = Y32%32
B?/Bl : ; %32 : .
= Y31%31 %3 = %32
t3 =t t3 = 30

The total transform @ of & = B, (&, N Uy) with respect to B, is given by

(11002 Yoo !
=B, @) : > biyw(rsezse) (ys2h,) 2 (aatsn) = 0,
i+j+k+h+l=m

Since @,, is a global m-canonical adjoint to V”, by definition in (©), section 17,
we have D) > 0. This implies that

L 1
(zg%) (z ) < Z bijkhl“"gg?/gzzHZkHHZt?)z = 0> >0.

i+j+k+h+l=m

Here, as well as in the proof of Lemma 1, we use the fact that B,,, o B,, co-
incides with the desingularization ), on the affine open set V.., in fact V7 is
nonsingular (see the tree of blow- ups section 16).

Clearly, the latter inequality is equivalent to

Jj+2k+h+1l-m>0,ie 1<k

Note that we obtained the latter result in the affine open set Uj. Next,
without any further computations, simply using the rotations of indices and
variables (section 14), we obtain similar results in the other affine open sets
U1, Uz, Ug and U4:

in Uy, we obtain j < h;

in Uy, we obtain k < ;

in Us, we obtain i < i;

in Uy, we obtain [ < j.

Composing all the inequalities, we deduce that ¢ <k <[ <j < h <1, that is
i=j=k=h=1
This proves Lemma 3.

LEMMA 4. — Let us consider an m-canonical adjoint to V" (not necessarily
global)

By FuXo, X1, X0, X5, X) = Y by Xo X[ XEXEX] =0,
i+j+k-+ht+l=m
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where by € k. @y, can be replaced with

. " . 10 yJ0 yko yho ylo _
Y+ oy — Bofg = Z Cigjokohole X X1 X2 ' X3° X, =0,

io+jo+ko+ho+lo=m

such that ig < ko, i.e. jo + 2ko + ho + ly > m, for all monomials.

Before proving Lemma 4, we must point out that the inequality iy < ko is
equivalent to

1

(k) (g

o jo k0 wJo+2ko+ho+lo gy
< Cigokoholo T2 35755 tgp=0) = 0.
lo+jo+ko+ho+lo=m

Here, we used the same notations as in the proof of Lemma 3, where ¢; ki1, €,
By is a suitable form and f{’ = 0 is the equation of V”.

PrOOF OF LEMMA 4. Since &,, : F,, = 0 is an m-canonical adjoint to V", by
definition (in (®), section 17) we have Dy, >0.

Let us consider the first two blow-ups P; 2, P . P* for the resolution of
the singularities of V”. If V}' is the strict transform of V" with respect to 71, and
V4 is the strict transform of V' with respect to 72, then we obtain the sequence

VH T[_/2> VH T[_/l> VH
2 1
of morphisms, where 7 is the restriction of 7; to V', =1, 2.
Now, let us consider the affine open set Uy and V” N Uy. With the notations

in the proof of Lemma 3 and the affine open set of affine coordinates
(032, Y32, 232, t32), We have that V3 has the equation given by the polynomial

11 2 2 3
Rl (1, w30232, Ys2250, ¥32, #32832) = 30201Y 30832 + A13020%50
32

3 4 42 2 3
+ 0013029032Y 3023030 + (120130932 + (0201839232855 -
/N

|z,
in the affine open set of coordinates (132, Y32, 232, t32), We obtain

@**
<(2’3’5)> 20.

7
Iy

Next, in the inequality D > 0, we consider only the first two blow-ups. So,

Here again, we use the fact that B,,, o B,, coincides with the desingularization
a|, onthe affine open set V| , in fact V/ is nonsingular (see the tree of blow-ups,
section 16).

In the language of polynomials, the latter inequality is equivalent to writing
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the equality of polynomials

k+h+l 40
%) Z biihotf oo bs 2 ey + Bliese, e, 232, t32) (30201 Y2t
+j+k+h+-l=m

3 3 4 42 2 3 m
+ 013020059 + A01302%32Y 30730850 + A20130Y32 + A02013%59732850) = Za5(...),

where B(x3z, %32, 232, t32) is a suitable polynomial.

In the particular case, we have j+ 2k + h + 1 > m for all monomials, the
Lemma 4 is true with By = B = 0. So, we assume j + 2k + h + [ < m for some
monomials (now B # 0) and we distinguish the cases » <j+2k+h +1<m,

with r > 0. We can conveniently rewrite 3 bukhlocgzy?,zz‘HZkMHﬂ dis-
tinguishing these cases it ththtl=m
JH2k+hAlyl 3 ook oor o4l
Z bljkhlxsz?/sz%z tgp = Z bijini 35y 32259t 30
i+j+k+h+l=m JA2k+-h+1=r

r+140 1
+ Z bykhlxsz?lszz?,z tgo+ -+ Z bﬂchlxsz?lszzsz tho
J+2k+h+l=r+1 J+2k+h+1l=m—1

. J ok Lmyl m+141
+ Z bijni3eY 39239t 30 + Z DijenieiyYsaZs th
J+2k+h-+l=m J+2k+h+l=m+1

Substituting in (¢¢), we obtain B(xsz, ys2, 232, t32) = 24,C (32, Y32, 232, t32). Again,
substituting the latter equality in (¢?), then simplifying %4, and putting zz» = 0,
we obtain the equality of polynomials

(©99) Y byathyiats
J+2k+h+1=r
= Cls, Y32, 0, t32)(@30201 Yotz + Q1302003 + T20130Y32)-

Multiplying the left- and right-hand sides of (°“¢) by 2%, and taking B,
andB,,, into account, we obtain
~ x
> by =2C < ; ?/2 0.~ >(a30201y2t + 130200°2" + A2013092°).
JH2k+h+1=r

D
We write C(x, 270’2) :w. Thus,

z

ok gl _ r =5 2 3,2 3
D by = 20D, y, 2, D(@sen vt + a13000°2 + az013092%).
J+2k+h+l=r

Replacing D(x,y,2,t), if necessary, we can assume r —5—p > 0. In fact, if
r—5— p < 0, then we deduce z~"37( 3" ...) = D(x,y,2,t)(...). Since polynomial
rings are factorial, we obtain D(x,y,z,t) =z "P37E(x,y,2,t) and Y ..=
E(x,y,z,t)(...), as desired.
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Now, we suitably homogenize the latter equality to obtain an addendum of the
form F',,, so we can write

Y b XX XEXLX]
JA2k+h-+l=r
= G(Xo, X1, Xz, X3, X0)(a30201 X5 X2 X4 + 013020 X; X2 + 20130 X0 X2X3),

where i +j+k+h+1=m.

From the hypothesis » < m — 1, we deduce k < i — 1 and particularly 7 > 1.
The latter inequality means that X, can be put in evidence in
> by XX, XEXEX!. So, from (©?), we obtain the equality of polynomials
J+2k+h-+l=r
G(Xo, X1,X2, X3,Xs) = XoH(Xo, X1, X2, X3,X4), and we can thus rewrite (°?) as

follows.

> by XoX I XEXLX]
J+2k+h-+l=r
= H(Xy, X1, X2, X3, X4)(a30201 X3 X5 X4 + 013020 X0 X3 X2 + 20130 X5 X2 X3).

But now a30201X§X§X4 + algozoXoX%Xg + azmgngXng’ is an addendum of
the form f{'(Xo, X1, X2, X3,Xs) defining V”. This enables us to replace the
m-canonical adjoint &, : F',,(Xo,X1,X2,X3,X4) = 0 with the new one &),
given by

F(Xo, X1, Xz, X3,X4) — HX, X1, X2, X3, X0)fe Xo, X1, X5, X3,X4) =0,
where the form F,, — Hf' is now given by

> comXXAXEXEXL + -
J+2k+h+i=r+1
i.e. the form F,, — Hf{ starts with j+2k+h+1=1r+1 instead of j+ 2k +
h+l=mr.
By iterating this process, we can replace the m-canonical adjoint @, : F,, =0
with ¥y, : I, — Bo f¢/, so that

Fy = Bofg = Z Citn Xe X, XEXIX, 4

J+2k-+h+l=m

This proves Lemma 4.

The rotations of the indices and variables concerning the affine open set U
can be repeated for each of the other affine open sets Uy, Ug, U3 and Uy (in the
same way as in Lemma 4), i.e. if we choose one affine open set Us, then a result
like the one in Lemma 4 holds in U; too. That is to say, we have
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COROLLARY. — If we consider an m-canonical adjoint to V"

&b, F,, = Z bijin X X XEXEX] = 0,
i+j+k+h+l=m

then we can replace ®@,, with

(s) . 1 .. is s Yks yh ls __
&Y F, — By fl = > Ciul X0 X2 Xy X5 Xy = 0,
ts+js+hs+hs+Hls=m

such that either for s =0, the inequality 1y < ko holds for all monomials (cf.
Lemma 4), or

for s =1, the inequality j1 < hy holds for all monomsials, or
for s =2, the inequality ke < ly holds for all monomials, or
for s = 3, the inequality hs < 11 holds for all monomials, or
for s =4, the inequality Iy < j4 holds for all monomaials.

LEMMA 5. — If we consider a non-global m-canonical adjoint to V"

Dy, F (X0, X1, X0, X3, Xy) = Z bijkthéX{XngXi =0,
+j+k+h+l=m

then a form B = B(Xy,X1,X2,X3,X,) exists such that @, : F,, — Bfy =0 1is a
global m-canonical adjoint to V". In other words, the following equality holds

®,

R S
Ny — ¢’m|w .

Before considering the proof, note that Lemma 5 holds essentially because of
the particular rotations of indices and variables. In other words, if we consider
other permutations of indices and variables, and we leave the same five imposed
singularities, then Lemma 5 may be false (cf. [S2]).

Proor oF LEMMA 5. If a form of the type (---)XoX;XZ appears in F,, as an
addendum, then we can replace XoX;X2 with

1/
b+ XoX3X5 =
13020

30201

a a a
3v2 01302 3v2 20130 -2 3 02013 -2 3
X0X2X4 — X1 X5 X5 — XOX2X3 — XXX .
13020 13020 @13020 13020

This is the same as replacing the form F',,, with F,, — (...) f{’ and this can be done
for the reasons given in the proof of Lemma 1 (section 5). Clearly, we can repeat
this replacement several times, obtaining a new form F’, = F,, — (...)f{, which
contains no addendum of the type (- - - )X0X13X32. So, from now on, we can consider
@, : F!, =0,instead of @, : F,,, = 0, because if we prove the lemma for &/, , then
it is also proved for @,,. If F), = 0, then F',, = (...)f{’ and @,, is a global adjoint
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(cutting the zero divisor on Z5), and in this case Lemma 5 holds true. So we can
assume that F, # 0 and F), contains no addendum of the type (...) X X3 X3.
Let us write F, = > Vi X0 X7 X5 X3 Xy . We claim that 7' <k'.
1)+ I U =m
To prove this claim, we assume by contradiction that ¢ > k. From Lemma 4, &,

can be replaced with

L " - 10 yJo yko yho yrlo
Vo : F , BOJ% = Z clu]okoholoXO Xl X2 X3 X4 =0,

m
i0+jo+ko+ho+lo=m

so that iy < ky. From the proof of Lemma 4, this can be done if and only if we
subtract Bo(agozongXzz)Q + (llgozngX%X% + agolgngXng), By 74 0, from F;n.
But this means that the form F/, has the addendum Byais020XoX; X%, and this
contradiction proves our claim.

Next, we claim that j/ < &/ also holds. Otherwise, we would have to subtract
the form Bl(a13020X0X§X§ + a01302X1X§X42 + (102013X12X3X§)), B; # 0, from Foln (cf.
Corollary). But this is impossible because F, does not contain the addendum
()Xo X3X2.

Similarly, ' < 4 also holds. Otherwise, we would have to subtract the form
BS(“ISOZOXOX?X;? + (nglgngXng + (logmgX%XgXi)), Bs 7& 0, from F;n’ which is
again impossible.

Inshort, in ¥, we have 7 < k', <h,h <7 .Ifwealsohave k' <l andl <j
in F;,, then Lemma 5 is demonstrated, because the five inequalities for the same
F', tell us that @, : F, = 0 is a global m-canonical adjoint to V"

So, let us assume that the two inequalities k' < I’ and I’ < 7' do not hold, for
some monomials. In this case, we show that there is a contradiction, or we
construct F;, such that F, = F, — Bof! and F, defines a global m-canonical
adjoint, proving Lemma 5.

First we consider I’ > j'. In this case, as in the proof of Lemma 4 (using the
rotations of indices and variables), we see that F, has an addendum of the type

1/
(..)X3X3X,. We replace X3X5X, with the form 00;)2601 + X3X2X, in F', (several
times), which is equivalent to replacing the form F, with F, = F, — (.)fg. As
before, we can see that in the form

1

"o " W j/’ B l//
F - Z ”k”h”l”XO Xl X2 X3 X4

m i
VK" R =m

the inequality I” < j” holds (for all monomials). In addition, the inequality k" < l”
also holds.

Likewise (or as in the proof of Lemma 4), I” < j” can be obtained if and only if
we subtract the addendum Bg(a30201X§X22X4 + aOlgogXng’Xf + a20130XgX2X§’)

from F'),. This has two consequences:
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1) in F;n there is the addendum Bg(agongngX‘; + OL01302X1X§X2

+ a20130X 5 X2 X3);
2) in FZL there is the addendum —B2(51(I/13020X0X13X§ + 52(102013X12X3Xi’),
Vi = 1.2, and ~Ba(drarson0 XoX{XE + rageons XX X}) # 0.

We note that, for example, if d, = 0, then the addendum Baaqzo13X2X3X3
appears in F7,.

Now, let us consider the case where d, = 1.

Since 7' is the power of the variable X, and k' is the power of X5 in F , we
deduce from ¢ < k' and from 1) that B, = > X{X;*(...), where r > 0 and s > 1.
Similarly, k" is the power of X and " is the power of X4 in F,, so from k" <1”
and from 2), we deduce that B, = >~ X{ X3 X, "**(...), where v > 0.

In addition, the inequality j* < &’ holds in F7,. Again from 1), we obtain By =
S XpXIX XX (L), where ¢ > 0 and w > 1. From I” <j” in F,, we ob-
tain that in By the inequality  + s + v < ¢ must hold.

Finally, from 2’ < ¢ in F'],, in By the inequality ¢ +» <  must hold too.

From r+s+v<tandt+u <r we deduce that t —s —v > » >t +u, but
this is a contradiction. The contradiction proves that the case of d; = 1 cannot
occur.

Next, let us consider the case where ds = 0.

In this case, all the above inequalities hold except  + s + v < , which must be
replaced by » + s + v < t + 3. Here, we also consider the inequality I’ > j' in F",

m?

which was assumed at the beginning. Said inequality implies that

where J; =

r+s4+v>t+1, sor+s+v= ii; From the inequalities ¢+ » < r and
r+s+v<t+3, we deduce that t+u+s<r+s+v= {zig The case of

t+u+s < t+ 2does not occur because u > 1 and s > 1. There remains the case
oft +u + s < t 4 3. This inequality implies that s = 1,u = 1, v =0andr =t + 2.
Thus, the form B is of the type By = > X;P2XIX PBXI X! and

{413 i+3 v i4+8 yi+3 yi+3
—Boa13020X0 X3 X2 = —a13020( Y. X5 PP XIBXIBXIBXI),

where t > 0. But this is a global 5(f 4+ 3)-canonical adjoint to V" and the state-
ment in Lemma 5 is true because F!, = —Ba13020X0X; X5 + Gy, and F, =
Bo(a30201 Xg X5 X1 + 001302 X1 X5 X5 + 020130 X5 X2 X5 + o2013X5X3X3) + Gyo, Where
G, defines global m-canonical adjoints; in fact, the monomials of G,,, as addenda
of I} satisfy ¢ <Fk',j <R,k <7 and, as addenda of I, satisfy I" <j", k" <,
Withj/ :j//’ K=kK,1=1.

So, in the case of the inequality I’ > 5/, Lemma 5 is proved.

We have examined the inequality I’ > 5’ and it remains for us to consider the
inequality k¥’ > I'. Here, applying the same proof as for I’ > j', we prove our
thesis. So Lemma 5 is completely proved.
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PRrOOF OF PROPOSITION 3. The proof is immediate because, from Lemma 5, to
compute the plurigenera of Z5, we can assume that the m-canonical adjoints to
V" are global; the statement in Proposition 3 therefore follows from Lemma 1.

d

19. — The irregularities of Zs.

With the same proof as in the case of Z3, cf. section 6, the irregularities of Z5
are q; = g2 = 0.

THIS COMPLETES THE CONSTRUCTION OF THE THIRD THREEFOLD Zj.

Appendix

With a construction similar to that of Z,, but imposing only three of the
four singularities imposed on V' c P* at the four vertices Ao, A, Az, As, We
obtain a new hypersurface V"* such that a desingularization X of V’* is a
threefold of general type. This threefold X has the birational invariants
g1 =¢q2 =0, p; =1, Po =2 and its m-canonical transformation is birational if
and only if m > 11.

For instance, let us choose the vertex A4 and put no singularities at A4, while
imposing on V’* the same singularities as on V' in section 8 at the other vertices.
Lemma 1 (section 5) and Lemma 2 (section 12) clearly hold, but the proof of
Proposition 2 (also in section 12) has to be modified, removing the conditions
given by the singularity at A4. So, the remaining conditions are the inequalities

J+h+20+4>m [i4+2h+1+4>m [2i45+1+4>m
J+N+2 >m U420+ >m 20+ +1U >m

regarding the following equation of the m-canonical adjoints to V'* (loc. cit.)

@y, : B" (X0, X1, X3, X4)p,(Xo, X1, X3, X)X + ,,(X0, X1, X3,X4) = 0.

The union of these inequalities now gives
i+j+h+l=m—-5andd +j7+W+1=m.

In this case, B"(Xy, X1, X3,Xy) can differ from zero: the first value of m for
which B” (X, X1, X3, X,) # 0is 11, according to the values: I = 3,7 =2, = 1 and
j = 0. Moreover, the irregularities of X are q; = g2 = 0 and the first plurigenera
of X are given by

{lzi+1zh+22j+3

l/ 2 ,L’/ Z h/ Zj/ ) Where

pg =1, because @1 : L1Xy =0(l'=1,7" =1 =7 =0),
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V=24 =K =5=0
l/:?:/:l’h/:j/:o7

P3 =3, because @5 : X4(}1X§ + 22 X0 X4 + 13X X3) = 0,

Py =2, because @y : Xy(411 Xy + 12X) =0 {

P4 = 5,because @y : X4(/11X§ + izXon + /13X§X4 + 24X X3 X4 + 15X X1 X3) =0,

where 4; € k.

Ps=6,Ps =9 P; =11,Ps = 14, Py = 17.

Now, considering the linear system of 4-canonical adjoints to V**, it is not dif-
ficult to see that the 4-canonical transformation DKy where Ky is a canonical
divisor on X, is generically a rational transformation 2 : 1. Roughly speaking, in an
open set of X, ¢4x,| can be identified with ¢| , , where ¢ is the rational tranfor-
mation defined by the linear system of 4-canonical adjoints (cf. for instance [S;],
section 16); the equation for V'* is of the type (...)X§ + (...) = 0; the equations for
the 4-canonical adjoints do not contain the variable Xs; so two distinct points, that
are mapped to one point, are of the type (a, b, x2, ¢, d), (@, b, —x2, ¢, d). Since p, > 0,
it follows that ¢}, is either generically 2 : 1 or birational for m > 4. Note that
Pimky| 18 not generically n : 1 for m < 4.

Next, the first value of m for which B"(Xy, X1, X3, Xy) is # 0is 11 (see above);
the m-canonical adjoint &, : B” (X, X1, X3, X4)X> = 0 “separates” the two points
(a,b,x2,c,d),(a,b, —xe, c,d) in the rational transformation P1Ky | thanks to the
presence of the variable X, to the power 1. We thus deduce that ¢4, is a
birational tranformation. Again from p, > 0, it follows that ¢, x| is a birational
transformation for m > 11.

Therefore, we have proved that

the m-canonical transformation (improperly called a ‘map’) of the threefold X is
generically 2 : 1 if and only if 10 > m > 4 and it is birational if and only if
m > 11.

We note that X is birationally distinct from the threefolds appearing in the
lists of [Re], pp. 3568-359 and [F'], pp. 151-154, because X has different plurigenera
from those of the threefolds in said lists.

Based on a result given by M. Chen [C], we know that a threefold, with the
bigenus Py > 2, has the m-canonical transformation that is birational for m > 16.
As a consequence of this and of the above result, the optimal limitation for the
birationality of the m-canonical transformation for threefolds with Py = 2 is now
between 11 and 16.

We also constructed a nonsingular threefold Y of general type in [Sa]
where ¢, g, | birational if and only if m > 11, but in that case Y has p, = 0 and
Py =1.
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Added in proofs. Meng Chen and Kang Zuo have proved that a nonsingular
algebraic threefold of general type with p, = 1 and P» = 2 has the m-canonical
map (transformation) Pmk| which is birational for m > 11 (ef. Theorem 4.4 in
M. Chen - K. Zuo, Complex projective threefolds with non-negative canonical
Euler-Poincaré characteristic, preprint, arXiv:math/0609545v2 [math.AG] 23
Oct. 2007). Our Example in the Appendix proves that such a limitation is optimal.
Another example, having p; = 1 and Py = 2 with ¢, birational and @395 non-
birational, like our example, was also presented by Iano-Fletcher (loc. cit.
Example 4.8).
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