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The Probabilistic Zeta Function
of the Alternating Group Alt (p + 1).

MARILENA MASSA

Sunto. - Si studia Uirriducibilita del polinomio di Dirichlet Pg(s) nel caso in cui G sia il
gruppo alterno di grado p + 1, con p primo, e si prova che Pg(s) é irriducibile per
mfinite scelte di p.

Summary. — We study the irreducibility of the Dirichlet polynomial Ps(s) when G is the
alternating group on p + 1 elements with p prime and we prove that Pg(s) is irre-
ducible for immfinitely many choiches of p.

1. — Introduction.

Let G be a finite group; if ¢ € N, then &¢(f) is the number of ordered ¢t-uples of
elements of G that generate G. @ is called the Eulerian function of the finite
group G and it satisfies the following equality proved by Hall (see [6]):

(1) Do) = Y ucH)H|"

1<H<G

Uq is called the Mobius function of the subgroup lattice of G and it is defined
inductively in this way: u;(G) =1 and Z Ua(K)=0it H < G.

H<K<G
Note that the probability that a random ¢-uple generates G is given by
Dg(t)
2 Probg(t) = —-.
( ) G |G|t
By (1), we may write
teH)
(3) Probg(t) =
1<H§;G G:H |t

This means that it is possible to define a complex function Pg(s), with the
property that Pg(t) = Probg(?) for any ¢ € IN, by associating a Dirichlet poly-
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nomial with G as follows:

4) Pe =YD it 0@ = Y o)
n=1 |G:H|=n
Note that a,(G) # 0 implies that » divides |G]|.

The inverse complex function of Pg(s) is usually called the probabilistic zeta
function of G (see Mann [8], Boston [2] and Shareshian [10]).

The ring of Dirichlet polynomials with integer coefficients R is a factorial
domain and so we ask whether it is possible to obtain information on the
structure of the group G from the factorization of Pg(s) in E. An important role
in the factorization of P;(s) is played by the normal subgroups of G. In fact, for
any N JG, the polynomial P /n(s) divides Pg(s) (see [3], Section 2.2) and this
allows to write Pg(s) as a product of Dirichlet polynomials corresponding to the
factors in a chief series of G. A relevant question is whether it is possibile to
reconstruct these polynomials from the factorization into irreducible elements
of Pn(s) and, hopefully, to recognize with this method the isomorphism type of
the chief factors. In this context, it is important to understand whether there
exist factorizations of Pg(s) which do not come from normal subgroups and how
they eventually look like. In particular, this lead Boston [2] to ask whether it is
true that P;(s) is an irreducible Dirichlet polynomial when G is a simple group.
This is not true in general: if p = 2¢ — 1is a Mersenne prime with ¢ = 3 (mod 4),
then Ppgre p)(s) is reducible [4]. No other counterexample is known and the
feeling is that Pg(s) is irreducible for many classes of simple groups. For ex-
ample in [4] it is proved that Paj;(,)(s) is irreducible if p > 5 is a prime number.
It is interesting to discuss the irreducibility of Pay,(s), for other choices of .
The key remark in discussing the case n = p is that the irreducible factors of
Ps(s) must divide also PE’;)(S) =, a,(G)/p™. This remains true for arbitrary
values of n, by taking p to be the largest prime with p < n; the problem is that
if the gap n — p is a large number, then Pg’)(s) is too complicated to be really of
help (for example it is not in general irreducible as in the case p = ). So in this
paper we study as a test example the case n» — p = 1: in this case P((’;)(S) turns
out to be the product of two irreducible polynomials and this makes the pro-
blem more difficult to be discussed and give more hints on which difficulties
one meets when dealing with the general case. The indication that comes from
this analysis is that the classification of maximal subgroups of the alternating
group allows in general to compute Pg’)(s) quite easily, but even when the gap
n — p is small, it is difficult to control the divisibility of Pg(s) by the irreducible
factors of Pg’)(s); several number theoretical results related to the prime fac-
torization of the binomial coefficients (%) for p <4 < n are needed. Using in-
formation of this kind we prove that P 41)(s) is irreducible for infinitely
many choices of the prime p.
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2. — Preliminaries.

DEFINITION 1. — A Dirichlet polynomial with integer coefficients is a series of
the form

>=.a
f(s) = n—z, seC

n=1

with these properties: a, € 7.¥n > 1 and |{n : a, # 0} < cc.

Let R be the ring of Dirichlet polynomials with integer coefficients. Let I7 be
the set of all prime numbers; we associate an indeterminate x, with any p € I1.
Let X7 be the set of all these indeterminates. The map which sends 1/p* to x,
gives rise to a ring isomorphism between R and Z[X;]. In particular, this implies
that R is a unique factorial domain and it is possible to translate well-known facts
about polynomial rings as results on Dirichlet polynomials.

LEMMA 1 (see [4] Lemma 3). — Let n € N with n > 1. Then (1 - ﬁg) 18 re-
ducible in R if and only if n is a power in 7. "

Let n be the set of all prime numbers. Note that we may define a ring en-
domorphism of R as follows:

@, R — R

(o) o0
a by

—_ f(")(s) — hald

S

fGs) =

S
n=1 n=1

where

0 if 3 p € n prime s.t. p divides n
b, = .
a, otherwise

3. — The alternating groups Alt (p + 1) with p prime.

Let A be the set of n € N such that n — 1 = p is a prime number, % is not a
power and n ¢ {6,12,24}. The exceptional cases n = 6, n = 12 and n = 24 will be
discussed at the end of the paper.

LEMMA 2. - If n € A and G = Alt (n) then

26— (1- 2D (12 0=2))
o= (1) (1 —a)
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PRrOOF. — The series Pg’) (s) depends only on the subgroups H of G such that
Ug(H) # 0 and (|G : H|,p) = 1. As was noticed by Hall in [6], if u;(H) # 0, then H
is an intersection of maximal subgroups. So we need to study the maximal sub-
groups of G containing a Sylow p-subgroup of G.

Obviously, the intransitive maximal subgroups of G with index coprime with p
are point-stabilizers. On the other hand, if M is a transitive maximal subgroup of
G containing a p-cycle then M is a 2-transitive group. By the classification of 2-
transitive groups and the hypothesis on n we deduce that M = PSL(2, p). Let us
consider the subgroups of G that are intersections of the maximal subgroups of G
with index coprime with p and let us see which among these have the same
property. First of all observe that the subgroups obtained as intersection of two
stabilizers in G of two distinct points of @ = {1,...,%} cannot contain a cycle of
length p, therefore a cyclic subgroup of order p. On the other hand, if we in-
tersect two subgroups of G isomorphic to PSL(2, p), the resulting subgroup will
not contain a cyclic subgroup of order p: all the maximal subgroups of G iso-
morphic to PSL(2,p) are conjugated, hence, given P € Syl(G), there exists a
unique subgroup H =~ PSL(2, p) with P < H. Moreover, given P € Syl(G), there
exists a unique w € Q such that P < G,; furthermore H NG, = H, = Ng(P).

If H is a subgroup of G with yo(H) # 0 and (|G : H|,p) = 1, then one of the
following holds:

e H =Gy, we Q,is a point-stabilizer, y;(H) = —1 and |G : H| = p + 1. Note
that there are p + 1 subgroups of this type.

e H = PSL(2,p). PSL(2,p) is maximal in G and all the subgroups of G iso-
morphic to PSL(2,p) are conjugated, hence there exist (p — 2)! subgroups
H =~ PSL(2,p) and such that |G : H| = (p — 2)!. Moreover these subgroups
have Mdbius equal to —1.

e H = Hy, obtained as intersection of a point-stabilizer and a subgroup H
isomorphic to PSL(2, p). We observe that there exists a bijection among the
subgroups H and the Sylow p-subgroups of G and so G has (p + 1)(p — 2)!
subgroups Hg. Moreover, |G : Hyp| = (p + )@ — 2)! and ug(Hep) = 1.

We deduce that:
p+D (-2 (p +D(p —2)!

PP(s)=1- —~ : :
¢ =1 T =2 (prDp -2

(1 _@+D ~ (p-2)

“O @+m>o @—mQ -
(p—2)!
(p—2)s

LEMMA 3. - Let n € A and G = Alt (n). Pg(s) is irreducible if 1 —

p+1)

and 1= 1y

do not divide Pg(s).
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PROOF. — Let R® = {3 b./7* | b, = 0 if p divides 7}. Since p? does not di-
vide |G|, there exists Q(s) € R® such that

Pa(s) = PP(s) + %Q(s).

Assume that Pg(s) = A(s)B(s) is a non trivial factorization: we may assume
A(s) € R?); in particular A(s) must be a common divisor of P(gf)(s) and Q(s). By
the previous lemma

@)y _(p+1))(_(p—2)!)
PG(S)‘<1 v+ )\ oo
P+ 4 -2

pr1y T o2

and (p — 2)! are not powers (to see that (p — 2)! is not a power in 7 it is sufficient
to note that, by [7] Theorem 418, there exists a prime ¢ such that

and, by Lemma 1,1 —

are irreducible because (p + 1)

g <q<(p—2). Hence A(s) coincides either with 1— ((p : 22))'L or with
[+ P o
(p+1)y°
irst of all we will prove that 1 — @ —2F does not divide Pg(s).

LEMMA 4. — If ned and G = Alt(n) then, when m = (Z), we have
an (@) = —m.

Before the proof of the lemma, it is useful to recall this theorem.

THEOREM 1 (see [5] Theorem 5.2). — Let G = Alt (Q) with Q = {1,...,n} and
let K be a subgroup of G.

Letn > 10 and r < g Suppose that 1 < |G : K| < (7).
Then one of the following conditions holds:

(a) there exists A C Qwith |4] < r such that G C K C Gy, where
Gigy = (Sym(4) x Sym(Q — M) NAlt(Q) = {g € G|# = 4}
Gy = (Sym(@Q — A))NAIL(Q) = Alt(Q —A) = {g e G|&" =5 Vo € 4);

1/m
(b) n = 2m and |G : K| = 5 (m)
Now the proof of the lemma.

PROOF. — Let  m — (Z) and K = (Sym(4) x Sym(n — 4))NG. Then
|G : K| = m. Now, we prove that all the subgroups of G that have index equal to
(Z) are of type (Sym(4) x Sym(n —4)) N G.
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Let K be a subgroup of G of index m = (Z) . We apply the Theorem 1 with » = 5.
Furthermore, because of our choices of n, the condition (b) of the theorem is never

satisfied. Hence:
1. if [4] = 4 then G5 = (Sym(4) x Sym(n — 4)) NG and Gy € K C Gyyy. We
deduce that K = G, = (Sym(4) x Sym(n —4)) N G. !
2. if 4 = |4| < 3 it is not difficult to see that ( 4) divides 7',|, which is im-
possible. (n -
Therefore, we can conclude that the only subgroups of G of index equal to (Z)
are the subgroups of type K = (Sym(4) x Sym(n — 4)) N G. These subgroups are
maximal and so they have M&bius equal to —1. The distinet subgroups of G of

type K = (Sym(4) x Sym(n —4))NG are m = (Z), the number of distinct

subsets with 4 elements in a set with » elements. By definition of a,,(G), we
deduce that a,,(G) = —m. O

THEOREM 2. — Let G = Alt(n) with n € A, then Pg(s) is not divisible by
_(p-2)
(p—-2)

a, n
_ ) = =) £ — i,
PrOOF. — Let (p — 2)! = m, Pg(s) ; pee and r ( 4). Assume by contra
diction that Pg(s) is divisible by (1 - mﬂ) Then Pg(s) = (1 . mﬂ) Q(s) where
by . b, bm . .
Q(s) = Zﬁ’ from which Pg(s) = Z; — ZW It is not difficult to see that
reN reN reN
the quantity m = (p — 2)! = (n — 3)! does not divide (Z) = r*. Hence a,« = b,-.
By Lemmad4, a,» # 0andso b,- # 0. Furthermore, there exists ¢ maximal with the
property b; #0 and 7* divides t{. By definition of ¢, b,; =0 and so
Wt bt bim bm

T o 2 ;. By by # 0, it follows that a,, # 0. Th ¢ di-
(mt)’  (mt)®  (mt)’ (mt)* y by # 0, it follows that a,,; # en mt di
!

!
vides |G| = % In particular, mr* divides % Therefore, (p — 2) divides 12, but this

is impossible, hence the thesis. a
Now, we shall show that (1 — E) does not divide Pg(s) for infinitely many

. ns
choices of n € 4.

Let 7 be the set of prime numbers smaller than p and that do not divide » and
let g be the largest prime smaller than p. In addition, let be A(s) = (1 — %) and
C(s) = P3(s).
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We want to prove that A(s) does not divide Pg(s) for infinitely many choices of
n € A. In order to do this, it is sufficient to show that A(s) does not divide C(s) for
infinitely many choices of n € A.

First of all, note that § <q<n—1=p (see [7] Theorem 418). By [5]
Theorem 3.3E, G does not have transitive maximal subgroups with index co-
prime with g; hence, the maximal subgroups H of G that have index coprime with
q are of the type (Sym(r) x Sym(s)) NG where r + s =n and r > q.

Therefore, being q € n, the maximal subgroups of G that give a non-zero
contribution to C(s) must have index of the type (/) with 0 < ¢ < /2. In order to
handle these subgroups, we need the following two results.

LEMMA 5. - Let a and b be two positive integers and let k be a prime

L if (3) = k'r with (k,r) = 1 then k' < a.

2. ifa=>7 gcikl and b =377 dik with 0 < ¢;,d; < (k — 1), then k does not
dwide (§) if and only if 0 < d; < ¢; < (k — 1) for each 1.

The lemma is a consequence of a well known theorem of Kummer (see [9] as
reference).

THEOREM 3 (see [1] Section 4). — For any positive integer m, let Q2(m) be the
number of the primes that occur in the factorization of m. There exist infinite
primes p such that Q(p? —1) <21. More precisely, for any m € R, let
A, = {p e N:pprime, p <m and Qp* —1) < 21}. If m is large enough, then

A,| >>
| "’l__log3m

REMARK 1. — Let A7, = {p € A, :p+1isnotapower}. It can be easily
proved that any prime p € A,, — A}, is a Mersenne prime, i.e p =2% — 1 with
@ € No; with a quick computation we get that |4, — A% | <logs(m + 1).
Therefore, |A},| satisfies asymptotically the same lower bound as |4,,|.

THEOREM 4. — There exist infinitely many choices of n € A that satisfy the
following property: if (%) is a #'-number and 0 < i < n/2, theni=1o0ri=2.

PROOF. — Let 4y ={n=p+1€ 4| Q(p?—1) <21}. There exists v in N
such that if n € 4; then the following property holds: if (%), for 0 < i < n/2, is
a /-number then ¢ < v. In fact, since (’Z) is a 7’-number, whenever 0 < 1 < n/2,
it follows that

() =rp v pge
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By definition of 7z, the condition p;¢= implies that p; = p or p; divides (p +1)
and, so, (p?> — 1), from which it must be ¢ < 22. By the Lemma 5, pg" < n for
any ¢. Therefore,
n 22
<
(1) ="

and this implies ¢ < v for a suitable v, independently of the choice of n.

Now, let 43 be the set of n € A; such that (p — 1) is divisible by an odd prime
power larger than v. Assume 7 € 42 and denote with 7 the largest odd prime
power that divides (p — 1); let 0 < i < n/2 with (?) a #’-number. In particular,
since r € n we get that » does not divide (7;), then, from the Lemma 5, it follows
that we can write n = 2 + #'(ap + a1 + ...) and i = & + r'y with ¢ € {0,1,2} and
y>0.Ify =0theni=1ori=2and if y > 0 then ¢ >+ and, so, i > v, but this
second possibility is in contradiction with the hypothesis () 7’-number.
Therefore, we have proved that the elements of Ay satisfy the condition required
by the theorem.

In order to prove the theorem, it is sufficient to verify that A, is infinite, i.e.
the number a,, of the primes p such that p < m, with m real number, and
p+1=mn € A goes to infinite when m goes to infinite. First of all, note that if p
is a prime such that p <m, then p +1=n € 4 if and only if p € A}, and the
largest odd prime power that divides (p — 1) is greater than ». Now, we give a
bound of the number f,, of the primes p € A}, and such that the largest odd
prime power that divides (p — 1) is smaller than v. In this case, (p — 1) = ab
where a is an odd divisor of v! and b is a 2-power smaller than m. The possibilities
for a are finitely many and the possible choices for b are at most logyme. It follows
that 3, < clogm with ¢ a constant and, so, for m sufficiently large,

m
Oy, > |A;Fn| _ﬂm 22 I3 CIOgm'
log”m
Therefore, a,, goes to infinite while m increases. O

THEOREM 5. — For infinitely many choices of n € A, we get that (1 — ﬁ) does
. . ns
not divide the series C(s).

ProoF. — From the previous theorem we deduce that there exist infinitely
many choices of % € A such that (%) is a 7#/-number and 0 < ¢ < n/2 if and only if
1 =101 = 2. Write down the series C(s) for these . The maximal subgroups of G
that give a contribution to this series are those that have index (}) and (}). There
are exactly (}) subgroups of index (%) and () subgroups of index (}). Moreover,
these subgroups have Mébius equal to —1. In order to complete the computation
of the series C(s), we need the intersections of these maximal subgroups.

The subgroups that can be obtained as intersection of maximal intransitive
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subgroups are of the kind (Sym(n;) x - -- x Sym(n,)) N G and have index of the

type (n1 .
have index a #’-number can give contribution to the series C(s). Hence, all the
maximal subgroups that contain them must have index a 7’-number. It follows
that the subgroups H of G that satisfy these conditions are of the type
(Sym(n — 2) x Sym(1) x Sym(1)) N G. They satisfy the following properties:
tgH) =2, |G : H| = n(n — 1) and they are exactly n(n —1)/2.

From what written above, we may write down explicitly the series C(s).

w_ (), ww-D
ns (727)3 (n(n —1))*

" W) with %1 + ... + n, = n. Furthermore, among these, only that ones

C(s) =PP(s) =1~

Now, we study the divisibility of this series by (1 — %) If this series is divisible
n (5)  nmn—1) (3) 2\ . L
1——)thenalso — 24 4+ —— =2/ (1 __ 11 1
by ( n*) then also (Z)g + WD) (g)g o ) Wi be divisible by
(1 — %), which is impossible. O

So we have proved the following

THEOREM 6. — For infinitely many choices of n € A, if G = Alt (n) then Pg(s)
1s irreducible.

Now let us analyze the cases excluded before, i.e. the cases for which
n € {6,12,24}.
o G = Alt(6)

In this case

Py 1 12 10 30 60 36 45 240 90 240 900 720
GY T T8 100 15° 305 365 45° | 60° ' 90° 120° 180° ' 360°

If P;(s) is reducible then Pg(s) will be divisible by P(G5)(s) =1- é—? + % So
Pg(s) = PP()Q(s)

and, in particular,

Pe(—1)=P2(-1Q(-1)
but this is impossible because Pg)( —1)=1225 does not divide
Ps(—1) = 360 - 265.

e G =Alt(12)
The difference with respect to the general case is that the transitive sub-
groups isomorphic to PSL(2,11) are not maximal; they are contained in maximal
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subgroups isomorphic to Mis. As a consequence, the series Pgl)(s) is more
complicated; namely:

12 5040 n 60480 n 362880 4354560

125 25205 302405 362880 4354560°

PiP(s) =1-

from which

12 5040 362880
(11) _ _ -~ _ QDacoy
Pe () = <1 128) (1 2520° 3628803>

The two series in the factorization of Pgl)(s) are both irreducible and, therefore,
to prove that P;(s) is irreducible it is sufficient to show that the two series do not
divide it. In order to see that B(s) = 1 — 290 + 3280 qoes not divide Pg(s), we
can use a technique similar to that used in the proof of the Theorem 2: if we put
= ( ) then a,. = —* # 0 and, if B(s) divides Pg(s), then |G| will be divisible
by m»* where m = 362880, which is impossible. In order to see that A(s) =1 — 12&
does not divide Pq(s), it is sufficient to prove that it does not divide P(”) (s) where
n={5,T}, ie. PQs) =1~ — g + 5 — i

o G =Alt(24)

The subgroups isomorphic to PSL(2,23) are contained in maximal transitive
subgroups isomorphic to M4 and we can not argue as in the general case. First of
all, note that if n; = {13,23} then Pgl)(s) =1- % In addition, P(”l)(s) cannot
divide Pg(s) (@t is sufficient to see that 1-— % does not d1V1de
P(”2>(s) =1- % (11222233)3 + (22332258 where m = {11,19}). Now, let @ = and
Y= 13; The series Pg(s) is of the type ap + a1 + agy + asxy where ap =1 — 2 49
and a4, ag, ag are Dirichlet series that do not involve terms divisible by 13 or 23.
Note that ay is irreducible and since it does not divide Pg(s) it is possible to
factorize Pg(s) only in this two ways: (ag + bx)(1 + cy) or (1 + bx)(ay + cy). But
these two ways cannot occur. In fact, consider, for example the first way of
factorization: let bx = Zn% and cy = >, 2. Consider m; = 24, it is easy to see
that Alt (13) is a subgroup of Alt (24) such that sy o4)Alt (13) # 0 and that all the
subgroups H of Alt(24) with this index and such that pay o4 (H) # 0 are con-
jugated to Alt (13); this implies a,,, (G) # 0 and so, since m; is divisible by 23 but
not by 13, it must be f,, # 0; analogously, if ms = |G : My, then y,,, # 0. Then
there exists n > myme with a,(G) # 0, and this implies 2m;me < 24!, false.
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