BOLLETTINO UNIONE MATEMATICA ITALIANA

Antonio J. Calderón Martín, Candido Martín González

The Banach-Lie Group of Lie Automorphisms of an H^* -Algebra

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 10-B (2007), n.3, p. 623-631.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2007_8_10B_3_623_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

The Banach-Lie Group of Lie Automorphisms of an H^* -Algebra.

A. J. CALDERÓN MARTÍN - C. MARTÍN GONZÁLEZ (*)

Sunto. – Studiamo il gruppo di Banach-Lie Aut (A^-) degli automorfismi di Lie di una H^* -algebra associativa complessa. Vengono anche ottenute alcune conseguenze riguardanti la sua algebra di Lie, cioè l'algebra delle derivazioni di Lie di A. Per una A topologicamente semplice, nel caso di dimensione infinita si ha Aut (A^-) $_0$ = Aut (A), il che implica che Der (A) = Der (A^-). Nel caso di dimensione finita, Aut (A^-) $_0$ è il prodotto diretto di Aut (A) e di un certo sottogruppo di derivazioni di Lie δ da A al suo centro, che annullano i commutatori.

Summary. – We study the Banach-Lie group $\operatorname{Aut}(A^-)$ of Lie automorphisms of a complex associative H^* -algebra A. Also some consequences about its Lie algebra, the algebra of Lie derivations of A, are obtained. For a topologically simple A, in the infinite-dimensional case we have $\operatorname{Aut}(A^-)_0 = \operatorname{Aut}(A)$ implying $\operatorname{Der}(A) = \operatorname{Der}(A^-)$. In the finite dimensional case $\operatorname{Aut}(A^-)_0$ is a direct product of $\operatorname{Aut}(A)$ and a certain subgroup of Lie derivations δ from A to its center, annihilating commutators.

1. - Preliminary results and definitions.

We recall that an H^* -algebra A over $\mathbb C$ is a, non-necessarily associative, $\mathbb C$ -algebra whose underlying vector space is a complex Hilbert space, endowed with a conjugate-linear map $*:A\to A$ ($x\mapsto x^*$), such that $(x^*)^*=x$, $(xy)^*=y^*x^*$ for any $x,y\in A$ and the following hold

$$(xy|z) = (x|zy^*) = (y|x^*z)$$

for all $x, y, z \in A$. The map * will be called the *involution* of the H^* -algebra. The continuity of the product of A is proved in [7]. We call the H^* -algebra A, topologically simple if $A^2 \neq 0$ and A has no nontrivial proper closed ideals. H^* -al-

(*) The authors are supported in part by the PCI of the UCA "Teoria de Lie y teoria de espacios de Banach" by the PAI with project numbers FQM-298 and FQM-900, by the project of the Spanish Ministerio de Educación y Ciencia MTM2004-06580-C02-02 and with fondos FEDER.

gebras were introduced and studied by W. Ambrose [1] in the associative case, and have been also considered in the case of the most familiar classes of non-associative contexts [3, 6, 7, 12] and even in the general nonassociative contexts [7]. Given an associative H^* -algebra A, for any $x, y \in A$, we shall denote by [x, y] the usual bracket [x, y] := xy - yx. In this context, a *Lie derivation* of A is a linear map $D: A \to A$ such that

$$D([x, y]) = [D(x), y] + [x, D(y)]$$

for all $x, y \in A$. If A and A' are associative H^* -algebras, a Lie isomorphism $f: A \to A'$ is a linear isomorphism, such that

$$f([x,y]) = [f(x),f(y)]$$

for all $x,y \in A$. In [7] it is proved that any H^* -algebra A with continuous involution splits into the orthogonal direct sum $A = Ann(A) \perp \overline{\mathcal{L}(A^2)}$, where $Ann(A) := \{x \in A : xA = Ax = 0\}$ is the Annihilator of A, and $\overline{\mathcal{L}(A^2)}$ is the closure of the vector span of A^2 , which turns out to be an H^* -algebra with zero annihilator. Moreover, each H^* -algebra A with zero annihilator satisfies $A = \overline{\perp} I_a$ where $\{I_a\}_a$ denotes the family of minimal closed ideals of A, each of them being a topologically simple H^* -algebra. This focuses the interest on H^* -algebras to the topologically simple case. If A is an associative complex topologically simple H^* -algebra, H^* -algebra, H^* -algebra, H^* -algebra, H^* -algebra of Hilbert-Schmidt operators H^* -algebra, H^* -isomorphic to the algebra of Hilbert-Schmidt operators H^* -involution of H^* -algebra with the map H^* -involution of H^* -algebra with the map H^* -involution of H^* -algebra with the usual inner product in H^* -specifically in H^* -algebra with zero annihilator H^* -algebra $H^$

$$\langle T,S
angle := \sum_a \left(T(e_a) | S(e_a)
ight)$$

where $\{e_a\}$ is a Hilbert basis of H.

We recall that any derivation on arbitrary H^* -algebras with zero annihilator is continuous [15]. Also, isomorphisms of H^* -algebras with zero annihilator are continuous [5, Corolario 1-2-37, p. 21].

The aim of the present paper is to study the Banach-Lie group of an (associative) H^* -algebra with zero annihilator. As a consequence, we will describe its Lie algebra, the algebra of Lie derivations of A. We finally note that the description of the Lie derivations of A maybe could be done from the structure theory of H^* -algebras and some classical results on the subject in [2, 9, 10]. However, in order to make the exposition as self-contained as possible and to show an application of the nice relation between a Banach-Lie group and its associate Lie algebra, we opt for developing the study of the Lie derivation as it is given in Section 3.

2. – Automorphisms and derivations of associative H^* -algebras.

Let $A = \mathcal{HS}(H)$ be the complex H^* -algebra of all Hilbert-Schmidt operators in the Hilbert space H with inner product $(\cdot | \cdot)$. We consider now H as a left complex vector space, and also as a right vector space H', with the action $x\lambda := \overline{\lambda}x$ for all $x \in H$ and $\lambda \in \mathbb{C}$. Then the couple (H, H') is a pair of dual vector spaces in the sense of [9, Definition 1, p. 69], relative to $(\cdot | \cdot)$. The H'-topology of H is defined in [9, Definition 2, p. 70]. A linear map $f: H \to H$ turns out to be continuous for the H'-topology of H, if and only if it has an adjoint (see [9, Theorem 1, p. 72]). The complex algebra of continuous linear maps $H \to H$ (relative to the H'-topology of H), will be denoted by $\mathfrak{L}_{H'}(H)$ (see [9, p. 73]). This algebra agrees with that of continuous linear maps relative to the norm topology of H. We shall denote by $\mathfrak{F}_{H'}(H)$ the ideal of finite rank elements in $\mathfrak{L}_{H'}(H)$. Of course we have $\mathfrak{F}_{H'}(H) \subset \mathcal{HS}(H) \triangleleft \mathfrak{L}_{H'}(H)$ and $\mathfrak{F}_{H'}(H)$ is also an ideal in $\mathfrak{L}_{H'}(H)$ hence in $\mathcal{HS}(H)$. So the algebra $\mathcal{HS}(H)$ is an example of a prime algebra with nonzero socle. In the context of nonzero socle, primeness is equivalent to primitiveness so we can also say that $\mathcal{HS}(H)$ is a primitive algebra.

Consider now any $f \in \text{Aut}(A)$. Applying the Isomorphism Theorem in [9, p. 79], we have the existence of a C-linear homeomorphism $S: H \to H$ such that $f(T) = STS^{-1}$ for any $T \in \mathcal{HS}(H)$. On the other hand, if $D \in \text{Der}(A)$, by applying [9, Theorem 3, p. 87], there is a continuous linear map $G: H \to H$ such that D(T) = [G, T] for each $T \in \mathcal{HS}(H)$. The group Aut (A) is algebraic of degree ≤ 2 (see [14, Definition 7.13, p. 117 and example 7.15, p. 119]), hence it is a Banach Lie group in the operator norm topology. Its Lie algebra is then Der(A) (see for instance [14, Theorem 7.14, p. 118]).

In case H is finite-dimensional, the polar decomposition provides a retraction from $\operatorname{GL}(n,\mathbb{C})$ onto $\operatorname{U}(n,\mathbb{C})$ (the unitary group) which becomes a strong deformation retract via the map $(X,s)\mapsto X(\overline{X}^tX)^{-s/2}$. As $\operatorname{U}(n,\mathbb{C})$ is connected, we conclude that $\operatorname{GL}(n,\mathbb{C})$ is also connected and therefore $\operatorname{Aut}(A)$ is it. Suppose now that H is infinite-dimensional. Since any operator in $\operatorname{L}(H)$, the Banach algebra of bounded linear operators on the Hilbert space H, allows polar decomposition, the same retraction and homotopy as before, prove that the general linear group $\operatorname{GL}(H)$ of invertible operators in $\operatorname{L}(H)$ is connected (see [13]). Thus $\operatorname{Aut}(A)$ is a connected Banach Lie group in any case.

3. - Lie Automorphisms and derivations.

For any associative H^* -algebra A, we denote by A^- the antisymmetrized H^* -algebra of A. Both algebras have the same underlying Hilbert space, involution and inner product. The only difference is the product

$$[\cdot,\cdot]:A^-\times A^-\to A^-$$

of A^- which can be written in terms of the product of A by the formula [x,y]:=xy-yx for all $x,y\in A$. Using this notion, the group of Lie automorphism of A is just $\operatorname{Aut}(A^-)$ while the algebra of Lie derivations of A is just the Lie algebra $\operatorname{Der}(A^-)$. We have proved in [4], the following fact: $\operatorname{let} f:A\to A'$ be a Lie isomorphism of associative H^* -algebras with zero annihilator, and $A=\overline{\bot_{a\in\mathcal{A}}I_a}$ the decomposition of A as the closure of the orthogonal direct sum of its minimal closed ideals I_a , then $A=P\perp Q$ for some closed ideals $P,Q\lhd A$ with $P=\overline{\bot_{a\in\mathcal{A}_1}I_a}, Q=\overline{\bot_{a\in\mathcal{A}_2}I_a}, A=\mathcal{A}_1\cup\mathcal{A}_2$, and there exists a \mathbb{C} -linear bijective map $f':A\to A$ such that (1) the restriction $f'|_P$ is an isomorphism, (2) the restriction $f'|_Q$ is the negative of an anti-isomorphism, (3) $f'|_{I_a}=f|_{I_a}$ for each infinite-dimensional I_a , and (4) $\delta_a:=f'|_{I_a}-f|_{I_a}$ is a linear map from I_a to the center of A', mapping commutator to zero, for each finite-dimensional I_a . In particular, if A and A' are topologically simple, we conclude some of the following excluding possibilities:

- 1. If A is infinite-dimensional then $f:A\to A'$ is an isomorphism or the negative of an anti-isomorphism.
- 2. If A is finite-dimensional, there is an map $f':A\to A'$ which is an isomorphism or the negative of an anti-isomorphism such that $f=f'+\delta$ where $\delta:A\to Z(A')$ (the center of A') and δ maps commutator to zero.

Let now $A = \mathcal{HS}(H)$ be an associative topologically simple H^* -algebra. As in the previous section, we have again the structure of a Banach-Lie group on $\operatorname{Aut}(A^-)$. Trivially $\operatorname{Aut}(A) \subset \operatorname{Aut}(A^-)$ and indeed $\operatorname{Aut}(A)$ is a Banach-Lie subgroup of $\operatorname{Aut}(A^-)$. In the same way $\operatorname{Der}(A)$ is a subalgebra of $\operatorname{Der}(A^-)$. According to our previous results, if A is infinite-dimensional, then for any $f \in \operatorname{Aut}(A^-)$, we have $f \in \operatorname{Aut}(A)$ or f = -g for some antiautomorphism $g: A \to A$. Denoting by Antiaut(A) the set of antiautomorphisms of A, and writing $-\operatorname{Antiaut}(A) = \{-f: f \in \operatorname{Antiaut}(A)\}$ we have $\operatorname{Aut}(A^-) = \operatorname{Aut}(A) \cup (-\operatorname{Antiaut}(A))$. Moreover, it is not difficult to see that $\operatorname{Aut}(A) \cap (-\operatorname{Antiaut}(A)) = \emptyset$. We also know that $\operatorname{Aut}(A)$ is a connected Banach-Lie group, and taking into account the adjoint map $\sharp: A \to A$ (an involutive antiautomorphism of A), the map $\operatorname{Aut}(A) \to -\operatorname{Antiaut}(A)$ such that $f \mapsto -\sharp \circ f$, is an homeomorphism. This proves that $\operatorname{Aut}(A)$ and $-\operatorname{Antiaut}(A)$ are the connected components of $\operatorname{Aut}(A^-)$, and the identity component of $\operatorname{Aut}(A^-)$ is $\operatorname{Aut}(A^-)_0 = \operatorname{Aut}(A)$.

If A is finite-dimensional, and $f \in \operatorname{Aut}(A^-)$ then, there exists $g \in \operatorname{Aut}(A) \cup (-\operatorname{Antiaut}(A))$ such that $f - g = \delta : A \to \operatorname{Z}(A)$ where δ is a linear map annihilating commutators: $\delta([A,A]) = 0$. We can consider the following sets: S_1 is the one formed by all the linear maps $f + \delta : A \to A$ such that $f \in \operatorname{Aut}(A)$, and $\delta : A \to Z(A)$ is linear, $\delta([A,A]) = 0$ and $\delta(1) \neq -1$; on the other hand S_2 is defined as the set of all $f + \delta$ such that $f \in -\operatorname{Antiaut}(A)$, and $\delta : A \to Z(A)$ is linear,

 $\delta([A,A])=0,\ \delta(1)\neq 1.$ It is straightforward that $S_i\subset \operatorname{Aut}(A^-)$ for i=1,2. Also $\operatorname{Aut}(A^-)=S_1\cup S_2$ and it is not difficult to prove that $S_1\cap S_2=\emptyset.$ Moreover S_1 is connected: consider an element $f+\delta\in S_1$, with $f\in \operatorname{Aut}(A)$; we have $f(T)=PTP^{-1}$ for any $T\in A$ and $P\in A$ being an invertible element. Thus $P\in \operatorname{GL}(n,\mathbb{C})$ (we can identify A with $\mathcal{M}_n(\mathbb{C})$ and A^\times with $\operatorname{GL}(n,\mathbb{C})$). Next, since $\operatorname{GL}(n,\mathbb{C})$ is connected, consider a continuous path $Q:[0,1]\to\operatorname{GL}(n,\mathbb{C})$ such that Q(0)=id and Q(1)=P. Now define $f:[0,1]\to S_1$ by $f(t)(M)=Q(t)MQ(t)^{-1}+\delta(M),\ M\in A.$ This is a continuous path in S_1 , joining $id+\delta$ with $f+\delta$. So S_1 is connected and in a similar way S_2 is it. Of course these are the connected components of the Banach-Lie group $\operatorname{Aut}(A^-)$. Summarizing the previous paragraphs we can claim:

Proposition 3.1. – Let A be a topologically simple complex H^* -algebra. Then the group $\operatorname{Aut}(A^-)$ of Lie automorphisms of A is a Banach-Lie group with two connected components $\operatorname{Aut}(A^-) = \operatorname{Aut}(A^-)_0 \cup \operatorname{Aut}(A^-)_{\sharp}$. The connected component $\operatorname{Aut}(A^-)_0$ agrees with the set of Lie automorphisms of the form $f+\delta$ where $f\in\operatorname{Aut}(A)$ and $\delta\in\operatorname{hom}(A,\operatorname{Z}(A))$, with $\delta(\overline{[A,A]})=0$, $\delta(1)\neq -1$. The other component is formed by the Lie automorphisms of the form $f+\delta$ where $f\in\operatorname{Antiaut}(A)$ and $\delta\in\operatorname{hom}(A,\operatorname{Z}(A))$, with $\delta(\overline{[A,A]})=0$, $\delta(1)\neq 1$. If A is infinite-dimensional $\overline{[A,A]}=A$ and therefore $\delta=0$, hence $\operatorname{Aut}(A^-)_0=\operatorname{Aut}(A)$ while $\operatorname{Aut}(A^-)_{\sharp}=-\operatorname{Antiaut}(A)$.

Since the Lie algebra of the Banach-Lie group $\operatorname{Aut}(A^-)$ is $\operatorname{Der}(A^-)$, and the Lie algebra of $\operatorname{Aut}(A)$ is just $\operatorname{Der}(A)$, taking into account that in the infinite dimensional case, both groups have the same identity component $\operatorname{Aut}(A^-)_0 = \operatorname{Aut}(A) = \operatorname{Aut}(A)_0$, we conclude

(1)
$$\operatorname{Der}(A^{-}) = \operatorname{Der}(A).$$

In order to refine our knowledge of $\operatorname{Aut}(A^{-})_{0}$ we can prove the following:

PROPOSITION 3.2. – Any element $g \in \operatorname{Aut}(A^-)_0$ can be written as $g = f + \delta$ for a unique $f \in \operatorname{Aut}(A)$ and a unique $\delta : A \to \operatorname{Z}(A)$, such that $\delta(\overline{[A,A]}) = 0$ and $\delta(1) \neq -1$.

PROOF. – The uniqueness property is the only thing we have to prove. Suppose $f+\delta=f'+\delta'$ with $f,f'\in \operatorname{Aut}(A),\ \delta,\delta':A\to\operatorname{Z}(A),\ \delta(\overline{[A,A]})=\delta'(\overline{[A,A]})=0,\delta(1),\delta'(1)\neq-1.$ In the infinite-dimensional case there is nothing to prove: necessarily $\delta=\delta'=0$ and f=f'. If A is finite dimensional the maps δ and δ' are completely determined by $\delta(1)$ and $\delta'(1)$ respectively. Then, $f(1)+\delta(1)=f'(1)+\delta'(1)$ and as f(1)=f'(1)=1 we conclude $\delta(1)=\delta'(1)$, hence $\delta=\delta'$ implying f=f'.

In the finite dimensional case, the linear maps $\delta:A\to Z(A)$ such that $\delta([A,A])=0$, are completely determined by the element $\delta(1)\in Z(A)$. In fact, $Z(A)=\mathbb{C}1$ and A=[A,A]+Z(A) imply that assertion. So we can define a map $\theta: \hom(A/[A,A],Z(A))\to \mathbb{C}$ such that $\delta\mapsto \delta(1+[A,A])$ for any $\delta\in \hom(A/[A,A],Z(A))$. It is not difficult to see that θ is a bijective linear map. We can restrict θ (removing the null element in each set) so as to have a group isomorphism $\theta: \hom(A/[A,A],Z(A))^*\to \mathbb{C}^*$ for the unique possible operation in $\hom(A/[A,A],Z(A))^*$, making θ a group isomorphism. Consider now the following sequence of group homomorphisms

(2)
$$1 \to \operatorname{Aut}(A) \xrightarrow{i} \operatorname{Aut}(A^{-})_{0} \xrightarrow{p} \mathbb{C}^{*} \to 1,$$

where i is the inclusion map and for any $g \in \operatorname{Aut}(A^-)_0$, we define p(g) = g(1), (the fact that p is a group epimorphism is an easy consequence of its definition). It can be checked that pi = 1 and that $\ker(p) = \operatorname{Aut}(A)$. Thus the sequence (2) is in fact a short exact sequence of groups. Moreover the maps i and p are homomorphisms of Lie groups (recall that a continuous homomorphism $f: G_1 \to G_2$ between the topological groups underlying, the (finite-dimensional) Lie groups G_i (i = 1, 2), is necessarily a Lie groups homomorphism). So, finally (2) is a short exact sequence of (finite-dimensional) Lie groups. Furthermore, we can assert:

THEOREM 3.1. – The short exact sequence (2) is split: there is a monomorphism of Lie groups $j: \mathbb{C}^* \to \operatorname{Aut}(A^-)_0$ such that pj = 1. The subgroups $\operatorname{Aut}(A)$ and $j(\mathbb{C}^*)$ of $\operatorname{Aut}(A^-)_0$ satisfy $f\delta = \delta f$ for any $f \in \operatorname{Aut}(A)$ and $\delta \in j(\mathbb{C}^*)$. Thus we have an isomorphism of Lie groups

(3)
$$\operatorname{Aut}(A^{-})_{0} \cong \operatorname{Aut}(A) \times \mathbb{C}^{*},$$

such that $g \mapsto (f, g(1))$ (the unique f provided by Proposition 3.2).

PROOF. – Let us denote by δ_{μ} the linear map $\delta_{\mu}:A\to Z(A)$ annihilating all commutators and making $\delta_{\mu}(1)=\mu 1$. Define now $j:\mathbb{C}^*\to \operatorname{Aut}(A^-)_0$ by $j(\lambda)=1+\delta_{\lambda-1}$. This is obviously an element in $\operatorname{Aut}(A^-)_0$ and a routine computations reveals that it is in fact a monomorphism of groups. The continuity of j is also easy to prove hence j is a monomorphism of Lie groups and trivially it verifies pj=1. So the group $\operatorname{Aut}(A^-)_0$ is a semidirect product of $\operatorname{Aut}(A)$ and $j(\mathbb{C}^*)$. But if we take $f\in\operatorname{Aut}(A)$ and $\delta=\delta_{\mu}\in j(\mathbb{C}^*)$ we have $f\delta=\delta f$, since for any x=c+a1 with $c\in [A,A]$ and $a\in \mathbb{C}$, we can write $f\delta(x)=f\delta(a1)=f(a\mu 1)=a\mu 1=\delta(f(a1))=\delta(f(c+a1))=\delta f(x)$. So $\operatorname{Aut}(A^-)_0$ is really a direct product of its subgroups $\operatorname{Aut}(A)$ and $j(\mathbb{C}^*)$. From this follows easily that the map given by (3) is a continuous isomorphism of topological groups hence a Lie groups isomorphism.

Completing the previous results, we can exhibit an epimorphism of Lie groups $q: \operatorname{Aut}(A^-)_0 \to \operatorname{Aut}(A)$ such that qi=1. This is given by q(g)=f (the unique $f \in \operatorname{Aut}(A)$ given by Proposition 3.2).

We can now extract some consequences for Lie derivations in topologically simple associative H^* -algebras. In the infinite dimensional case we proved before that $\operatorname{Der}(A^-) = \operatorname{Der}(A)$ and as the elements of $\operatorname{Der}(A)$ have also been described in section 2, there is nothing more to say. In the finite dimensional case, $\operatorname{Der}(A^-)$ is the Lie algebra of the group $\operatorname{Aut}(A^-)_0$, while $\operatorname{Der}(A)$ is the Lie algebra of $\operatorname{Aut}(A)$. In the finite dimensional case, any Lie groups monomorphism is an immersion, thus the inclusion map $i:\operatorname{Aut}(A)\to\operatorname{Aut}(A^-)$ induces by differentiation, a Lie algebras monomorphism $di_1:\operatorname{Der}(A)\to\operatorname{Der}(A^-)$. On the other hand $dp_1:\operatorname{Der}(A^-)\to\mathbb{C}$ is a Lie algebras epimorphism (since $dp_1dj_1=1$), and $dp_1di_1=0$. So $di_1(\operatorname{Der}(A))\subset\operatorname{ker}(dp_1)$ but a dimensional argument proves the equality $di_1(\operatorname{Der}(A))=\operatorname{ker}(dp_1)$ (the isomorphism (3) also says that $\dim(\operatorname{Der}(A^-))=1+\dim(\operatorname{Der}(A))$). Summarizing we have a short exact sequence

$$(4) 0 \to \operatorname{Der}(A) \xrightarrow{di_1} \operatorname{Der}(A^-) \xrightarrow{dp_1} \mathbb{C} \to 0$$

which is also split. As a corollary, we have a Lie algebras isomorphism $\operatorname{Der}(A^-) \cong \operatorname{Der}(A) \oplus \mathbb{C}$ which is the infinitesimal version of (3). Taking differentials it is easy to check that $dp_1 : \operatorname{Der}(A^-) \to \mathbb{C}$ acts in the following way: $dp_1(D) = D(1)$ for any $D \in \operatorname{Der}(A^-)$. In fact, any Lie derivation $D \in \operatorname{Der}(A^-)$ maps Z(A) to Z(A). Moreover the fact that $\operatorname{im}(di_1) = \ker(dp_1)$ means that for $D \in \operatorname{Der}(A^-)$, we have D(1) = 0 if and only if $D \in \operatorname{Der}(A)$. The map $dj_1 : \mathbb{C} \to \operatorname{Der}(A^-)$ acts mapping any $\lambda \in \mathbb{C}$ to the Lie derivation δ_{λ} which annihilates commutators an $\delta_{\lambda}(1) = \lambda 1$. Thus $\operatorname{Der}(A^-) = \operatorname{Der}(A) \oplus \delta_{\mathbb{C}}$ where $\delta_{\mathbb{C}}$ is the ideal of $\operatorname{Der}(A^-)$ of all maps δ_{λ} . Also $\operatorname{Der}(A)$ is an ideal of $\operatorname{Der}(A^-)$. Summarizing the results in the last paragraph we have:

THEOREM 3.2. – Let $A = \mathcal{HS}(H)$ be the complex H^* -algebra of Hilbert-Schmidt operators in the Hilbert space H. If H is infinite dimensional then $\operatorname{Der}(A^-) = \operatorname{Der}(A)$. If H is finite dimensional, there is a split short exact sequence (4) which proves that $\operatorname{Der}(A)$ and $\delta_{\mathbb{C}}$ are ideals in $\operatorname{Der}(A^-)$ and $\operatorname{Der}(A^-) = \operatorname{Der}(A) \oplus \delta_{\mathbb{C}}$. Thus any Lie derivation D of $\mathcal{HS}(H)$ for a finite dimensional H is of the form $D = D' + \delta$ with $D \in \operatorname{Der}(A)$ and $\delta : A \to Z(A)$ a linear map annihilating commutators.

Finally we can give a version of the previous result not only for topologically simple complex H^* -algebras, but for H^* -algebras with zero annihilator:

Theorem 3.3. – Let A be an associative H^* -algebra with zero annihilator and let D be a Lie derivation on A. Then there exists a derivation d on A such that

if we denote by $\{I_a\}$ the family of the minimal closed ideals of A we have:

- 1. If I_a is infinite dimensional then $D|_{I_a} = d|_{I_a}$.
- 2. If I_a is finite dimensional then $\delta_a := D|_{I_a} d|_{I_a}$ is a linear mapping from I_a into the center of A sending commutators to zero.

PROOF. – Denote by $\{I_a\}_{a\in A}$ the family of minimal closed ideals of A. Let us consider $I_{a_0} \in \{I_a\}_{a\in A}$.

If I_{a_0} is infinite dimensional and if we denote by d_{a_0} the restriction of D to I_{a_0} , since I_{a_0} is an infinite dimensional topologically simple associative H^* -algebra, from the classifications of topologically simple associative ([1]) and Lie H^* -algebras ([6]), we have that I_{a_0} is also a topologically simple Lie H^* -algebra and therefore $I_{a_0} = \overline{[I_{a_0}, I_{a_0}]}$. Hence, as D is continuous ([15]), we conclude easily that I_{a_0} is invariant under D. Theorem 3.2 now shows that $d_{a_0}: I_{a_0} \to I_{a_0}$ is a derivation, being also clear that $\|d_{a_0}\| \leq \|D\|$.

If I_{a_0} is finite dimensional with dim $I_{a_0} > 1$, as I_{a_0} is isomorphic to an associative algebra of the type $\mathcal{M}_n(\mathbb{C})$, n > 1, then $[I_{a_0}, I_{a_0}]$, the vector span of $\{[x,y]:x,y\in I_{a_0}\}$, is a simple Lie algebra of type A_l and $Z(I_{a_0})\simeq \mathbb{C}Id_n$. If we denote by D_{a_0} the restriction of D to $[I_{a_0},I_{a_0}]$, by [8, Theorem 9, p. 80] D_{a_0} extends to a derivation $d_{a_0}:I_{a_0}\to I_{a_0}$. If we call

$$\delta_{a_0} := D|_{I_{a_0}} - d_{a_0} : I_{a_0} o A,$$

we assert that $\delta_{a_0}(I_{a_0}) \subset Z(A)$ and that $\delta_{a_0}([I_{a_0},I_{a_0}]) = 0$. Indeed, let us write any element $x \in I_{a_0}$ as x = c + a with $c \in Z(I_{a_0}) \subset Z(A)$ and $a \in [I_{a_0},I_{a_0}]$, (note that this decomposition is unique). We have that the character of derivation of d_{a_0} implies $d_{a_0}(c) = 0$. As D is a Lie derivation then $D|_{I_{a_0}}(c) \in Z(A)$. Finally, as $d_{a_0}(a) = D|_{I_{a_0}}(a)$ for any $a \in [I_{a_0},I_{a_0}]$ we conclude $\delta_{a_0}(I_{a_0}) \subset Z(A)$ and $\delta_{a_0}([I_{a_0},I_{a_0}]) = 0$. Let us observe that we also have in this case $||d_{a_0}|| \leq ||D||$.

Finally, if dim $I_{a_0}=1$ we define $d_{a_0}=0$. As $A=\overline{\bot_{a\in A}\,I_a}$, the fact $\|d_a\|\leq \|D\|$ for all $a\in A$, and the continuous character of any d_a , allow us to extend $\{d_a\}_{a\in A}$ to a continuous derivation d on A. It is clear that d satisfies the conditions of Theorem 3.3.

COROLLARY 3.1. – Let A be an associative H^* -algebra with zero annihilator and let D be a continuous Lie derivation on A. Then there exists a derivation d on A and a linear mapping τ from A into the center of A such that $D = d + \tau$.

PROOF. – As d is also continuous ([15]), $A = \overline{\bot_{a \in A} I_a}$ and Z(A) is closed (the product in any H^* -algebra is continuous, see [7]), Theorem 3.3 gives us easily that D - d is a linear mapping from A into Z(A), and the proof is complete.

Acknowledgments. We thank the referee for the detailed reading of this work.

REFERENCES

- [1] W. Ambrose, Structure theorems for a special class of Banach Algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.
- [2] M. Brešar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525-546.
- [3] M. Cabrera J. Martínez A. Rodríguez, Structurable H^* algebras, J. Algebra 147 (1992) 19-62.
- [4] A. J. CALDERÓN C. MARTÍN, Lie isomorphisms on H*-algebras, Comm. Algebra, 31 No. 1 (2003), 333-343.
- [5] J. A. CUENCA, Sobre H*-álgebras no asociativas. Teoría de estructura de las H*-álgebras de Jordan no conmutativas semisimples, Tesis Doctoral, Universidad de Granada, 1982.
- [6] J. A. CUENCA A. GARCÍA C. MARTÍN, Structure Theory for L*-algebras, Math. Proc. Cambridge Philos. Soc. 107, No. 2 (1990), 361-365.
- [7] J. A. CUENCA A. RODRÍGUEZ, Structure Theory for noncommutative Jordan H*algebras, J. Algebra, 106 (1987), 1-14.
- [8] N. Jacobson, *Lie algebras*, Interscience. 1962.
- [9] N. Jacobson, Structure of Rings, Colloq. Publ. Vol. 37, Amer. Math. Soc., second edition, 1956.
- [10] I. KAPLANSKY, Lie algebras and locally compact groups, The University of Chicago Press, 1971.
- [11] M. Mathieu A. R. Villena, *Lie and Jordan derivations from Von Neumann Algebras*, Preprint.
- [12] J. R. Schue, Hilbert Space methods in the theory of Lie algebras, Trans. Amer. Math. Soc., 95 (1960), 69-80.
- [13] H. Schröder, On the topology of the group of invertible elements, arXiv: math.KT/ 9810069v1, 1998.
- [14] H. UPMEIER, Symmetric Banach Manifolds and Jordan C*-algebras, North-Holland Math. Studies, 104 (1985).
- [15] A. R. VILLENA, Continuity of Derivations on H*-algebras, Proc. Amer. Math. Soc., 122 (1994), 821-826.

A. J. Calderón Martín: Departamento de Matemáticas. Universidad de Cádiz. 11510 Puerto Real, Cádiz, Spain. e-mail: ajesus.calderon@uca.es

C. Martín González: Departamento de Algebra, Geometría y Topología. Universidad de Málaga. Apartado 59, 29080 Málaga, Spain. e-mail: candido@apncs.cie.uma.es

Pervenuta in Redazione il 21 marzo 2006