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The Banach-Lie Group of Lie Automorphisms
of an H"-Algebra.

A. J. CALDERON MARTIN - C. MARTIN GONZALEZ (¥)

Sunto. - Studiamo il gruppo di Banach-Lie Aut (A~) degli automorfismi di Lie di una
H*-algebra associativa complessa. Vengono anche ottenute alcune conseguenze ri-
guardanti la sua algebra di Lie, cioe Ualgebra delle derivaziont di Lie di A. Per una A
topologicamente semplice, nel caso di dimensione infinita si ha Aut(A~), = Aut (4),
il che implica che Der (A) = Der(A~). Nel caso di dimensione finita, Aut(A™)y ¢ il
prodotto diretto di Aut (A) e di un certo sottogruppo di derivazioni di Lie o da A al suo
centro, che annullano i commutatori.

Summary. — We study the Banach-Lie group Aut (A™) of Lie automorphisms of a com-
plex associative H*-algebra A. Also some consequences about its Lie algebra, the
algebra of Lie derivations of A, are obtained. For a topologically simple A, in the
mfinite-dimensional case we have Aut (A™)y = Aut (A) tmplying Der (A) = Der (A™).
In the finite dimensional case Aut (A™) is a direct product of Aut(A) and a certain
subgroup of Lie derivations 6 from A to its center, annihilating commutators.

1. — Preliminary results and definitions.

We recall that an H*—algebra A over C is a, non—necessarily associative, C—
algebra whose underlying vector space is a complex Hilbert space, endowed with
a conjugate—linear map * : A — A (x> x*), such that (x*)* = x, (xy)" = y*x* for
any «,y € A and the following hold

(xy|2) = (xlzy") = (y|x*2)

for all x,y,z € A. The map * will be called the involution of the H*—algebra. The
continuity of the product of A is proved in [7]. We call the H*—algebra A, topo-
logically simple if A® # 0 and A has no nontrivial proper closed ideals. H*—al-

(*) The authors are supported in part by the PCI of the UCA “Teoria de Lie y teoria de
espacios de Banach” by the PAI with project numbers FQM-298 and FQM-900, by the
project of the Spanish Ministerio de Educacién y Ciencia MTM2004-06580-C02-02 and
with fondos FEDER.
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gebras were introduced and studied by W. Ambrose [1] in the associative case,
and have been also considered in the case of the most familiar classes of non-
associative contexts [3, 6, 7, 12] and even in the general nonassociative contexts
[7]. Given an associative H*-algebra A, for any x,y € A, we shall denote by [x, y]
the usual bracket [x,¥y] := xy — yx. In this context, a Lie derivation of A is a
linear map D : A — A such that

for all x,y € A. If A and A’ are associative H*-algebras, a Lie tsomorphism
f:A — A’is alinear isomorphism, such that

f (e, yD) = [f(@),f ()]

for all x,y € A. In [7] it is proved that any H*—algebra A with continuous in-
volution splits into the orthogonal direct sum A = Ann(A) L L(A2), where
Ann(A) .= {x € A : A = Ax = 0} is the Annihilator of A, and L(A2%) is the
closure of the vector span of A2, which turns out to be an H*—algebra with zero
annihilator. Moreover, each H*-—algebra A with zero annihilator satisfies
A = 1 I, where {1}, denotes the family of minimal closed ideals of A, each of
them being a topologically simple H*—algebra. This focuses the interest on H*-
algebras to the topologically simple case. If A is an associative complex topolo-
gically simple H*-algebra, W. Ambrose proved in [1] that up to a positive factor of
the inner product, A is isometrically *-isomorphic to the algebra of Hilbert-
Schmidt operators HS(H) on a complex Hilbert space H. Under this *-iso-
morphism, the H*-involution of A is identified with the map HS(H) — HS(H),
T +— T* where T* is the adjoint of 7 relative to the inner product (- | -) in H. The
inner product in A is identified with the usual inner product in HS(H) given by

(T,8) = (T(e,)|S(ew))

where {e,} is a Hilbert basis of H.

We recall that any derivation on arbitrary H*—algebras with zero annihilator
is continuous [15]. Also, isomorphisms of H*—algebras with zero annihilator are
continuous [5, Corolario 1-2-37, p. 21].

The aim of the present paper is to study the Banach-Lie group of an (asso-
ciative) H*-algebra with zero annihilator. As a consequence, we will describe its
Lie algebra, the algebra of Lie derivations of A. We finally note that the de-
scription of the Lie derivations of A maybe could be done from the structure
theory of H*-algebras and some classical results on the subject in [2, 9, 10].
However, in order to make the exposition as self-contained as possible and to
show an application of the nice relation between a Banach-Lie group and its
associate Lie algebra, we opt for developing the study of the Lie derivation as it
is given in Section 3.
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2. — Automorphisms and derivations of associative H*-algebras.

Let A = HS(H) be the complex H*-algebra of all Hilbert-Schmidt operators
in the Hilbert space H with inner product (- |-). We consider now H as a left
complex vector space, and also as a right vector space H', with the action &/ := Jx
for all x € H and 4 € C. Then the couple (H, H') is a pair of dual vector spaces in
the sense of [9, Definition 1, p. 69], relative to (-|-). The H'-topology of H is
defined in [9, Definition 2, p. 70 ]. A linear map f : H — H turns out to be
continuous for the H’-topology of H, if and only if it has an adjoint (see [9,
THEOREM 1, p. 72]). The complex algebra of continuous linear maps H — H
(relative to the H'-topology of H), will be denoted by ¥z (H) (see [9, p. 73]). This
algebra agrees with that of continuous linear maps relative to the norm topology
of H. We shall denote by % (H) the ideal of finite rank elements in ¥z (H). Of
course we have §y(H) C HS(H) < ¥g(H) and §(H) is also an ideal in ¥z (H)
hence in HS(H). So the algebra HS(H) is an example of a prime algebra with
nonzero socle. In the context of nonzero socle, primeness is equivalent to pri-
mitiveness so we can also say that HS(H) is a primitive algebra.

Consider now any f € Aut (4). Applying the ISoMORPHISM THEOREM in [9, p.
79], we have the existence of a C-linear homeomorphism S : H — H such that
f(T) = STS™! for any T € HS(H). On the other hand, if D € Der (A), by applying
[9, Theorem 3, p. 87], there is a continuous linear map G : H — H such that
D(T) =[G, T] for each T € HS(H). The group Aut (A) is algebraic of degree < 2
(see [14, Definition 7.13, p. 117 and example 7.15, p. 119]), hence it is a Banach Lie
group in the operator norm topology. Its Lie algebra is then Der(4) (see for
instance [14, Theorem 7.14, p. 118]).

In case H is finite-dimensional, the polar decomposition provides a retraction
from GL (n,C) onto U(n,C) (the unitary group) which becomes a strong
deformation retract via the map (X, s) — X(X tX )‘S/ 2 AsU (n, C)is connected, we
conclude that GL (%, C) is also connected and therefore Aut (A) is it. Suppose now
that H is infinite-dimensional. Since any operator in L(H), the Banach algebra of
bounded linear operators on the Hilbert space H, allows polar decomposition, the
same retraction and homotopy as before, prove that the general linear group
GL (H) of invertible operators in L(H) is connected (see [13]). Thus Aut (4) is a
connected Banach Lie group in any case.

3. — Lie Automorphisms and derivations.

For any associative H*-algebra A, we denote by A~ the antisymmetrized H*-
algebra of A. Both algebras have the same underlying Hilbert space, involution
and inner product. The only difference is the product

[,-]:A” xA™ — A~
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of A~ which can be written in terms of the product of A by the formula
[x,y] := 2y —yx for all x,y € A. Using this notion, the group of Lie auto-
morphism of A is just Aut (A~) while the algebra of Lie derivations of A is just
the Lie algebra Der (A™). We have proved in [4], the following fact:letf : A — A’
be a Lie isomorphism of associative H*-algebras with zero annihilator, and
A = 1 c4l, the decomposition of A as the closure of the orthogonal direct sum of
its minimal closed ideals /,, then A = P | @ for some closed ideals P, Q <A with
P=1c4ly, Q= Localy, A= AjUAz, and there exists a C-linear bijective map
/' A — A such that (1) the restriction f'| is an isomorphism, (2) the restriction
f'lq is the negative of an anti-isomorphism, (3) f’|; = f];, for each infinite-di-
mensional /,, and (4) J, :=f| L —f | 7, s a linear map from 7, to the center of A,
mapping commutator to zero, for each finite-dimensional /,. In particular, if A
and A’ are topologically simple, we conclude some of the following excluding
possibilities:

1. If A is infinite-dimensional then f : A — A’ is an isomorphism or the
negative of an anti-isomorphism.

2. If A is finite-dimensional, there is an map f’ : A — A’ which is an iso-
morphism or the negative of an anti-isomorphism such that f = f’' + 6 where
0:A — Z(A) (the center of A’) and 6 maps commutator to zero.

Let now A = HS(H) be an associative topologically simple H*-algebra.
As in the previous section, we have again the structure of a Banach-Lie
group on Aut(A~). Trivially Aut(A) C Aut(A~) and indeed Aut(A4) is a
Banach-Lie subgroup of Aut(4~). In the same way Der(4) is a subalgebra
of Der(A~). According to our previous results, if A is infinite-dimensional,
then for any f € Aut(4A~), we have f € Aut(4) or f = —¢g for some anti-
automorphism ¢g:A — A. Denoting by Antiaut(4) the set of anti-
automorphisms of A, and writing — Antiaut (4) = {—f : f € Antiaut(4)} we
have Aut (A7) = Aut(A) U ( — Antiaut (4)). Moreover, it is not difficult to see
that Aut(A) N ( — Antiaut (4)) = 0. We also know that Aut(A4) is a connected
Banach-Lie group, and taking into account the adjoint map §: A4 — A (an
involutive antiautomorphism of A), the map Aut(4) — — Antiaut(4) such
that f+— —f#of, is an homeomorphism. This proves that Aut(4) and
— Antiaut (A) are the connected components of Aut(A~), and the identity
component of Aut(A7) is Aut(4A7)) = Aut(A4).

If A is finite-dimensional, and f € Aut (A~) then, there exists g € Aut(4)U
(— Antiaut (4)) such that f —g =0 : A — Z (A) where ¢ is a linear map annihi-
lating commutators: 6([A,A]) = 0. We can consider the following sets: S is the
one formed by all the linear maps f +J: A — A such that f € Aut(4), and
0:A — Z(A) is linear, 6([A,A]) = 0 and 6(1) # — 1; on the other hand S, is de-
fined as the set of all f + J such that f € — Antiaut (A),and 0 : A — Z(A) is linear,
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0([A,A]) =0, 6(1) # 1. 1t is straightforward that S; € Aut(A~) for ¢ = 1,2. Also
Aut (A7) = S; US, and it is not difficult to prove that S; NSy = 0. Moreover S; is
connected: consider an element f+0€S;, with f € Aut(4); we have
f(T)=PTP! for any T € A and P € A being an invertible element. Thus
P € GL (n, C) (we can identify A with M,,(C) and A* with GL (n, C)). Next, since
GL (n,C) is connected, consider a continuous path @ :[0,1] — GL (r, C) such
that Q0)=1id and Q)= P. Now define f:[0,1]—S; by fEt)M) =
QM Q(t)_1 + o(M), M € A. This is a continuous path in Sy, joining id + ¢ with
f+06.So S; is connected and in a similar way Sy is it. Of course these are the
connected components of the Banach-Lie group Aut(4~). Summarizing the
previous paragraphs we can claim:

ProrosiTION 3.1. — Let A be a topologically simple complex H*-algebra.
Then the group Aut(A~) of Lie automorphisms of A is a Banach-Lie group
with two connected components Aut(A~) = Aut(A~)y U Aut(A7);. The con-
nected component Aut (A~), agrees with the set of Lie automorphisms of the
form f+0 where fe Aut(A) and € hom(A,Z(A)), with o([A, A]) =0,
0(1) # —1. The other component is formed by the Lie automorphisms of the
form f+ 0 where f € — Antiaut (4) and J € hom (A4, Z (A)), with o([A, A]) =0,
o(1) # 1. If A 1is infinite-dimensional [A, Al = A and therefore 6 =0, hence
Aut (A7), = Aut (A) while Aut (A~), = — Antiaut (A).

Since the Lie algebra of the Banach-Lie group Aut(A~) is Der (A7), and
the Lie algebra of Aut(A) is just Der(A), taking into account that in the
infinite dimensional case, both groups have the same identity component
Aut (A7) = Aut (4) = Aut (A),, we conclude

(1) Der (A7) = Der(A4).

In order to refine our knowledge of Aut (A~), we can prove the following:

PROPOSITION 3.2. — Any element g € Aut (A™), can be written as g = f + o for
a unique f € Aut(A) and a unique o : A — Z (A), such that 6([A, A]) = 0 and
o(1) # —1.

ProoF. — The uniqueness property is the only thing we have to prove.
Suppose f+0=f+06 with f.f €AutA), 0,0 :A —Z (), (A A] =
d'([A,A]) = 0,5(1),0 (1) # —1. In the infinite-dimensional case there is nothing to
prove: necessarily d = ¢ = 0 and f = f". If A is finite dimensional the maps J and
¢ are completely determined by 5(1) and ¢'(1) respectively. Then, f(1) + 5(1) =
')+ @) and asf(1) = f'(1) = 1 we conclude 5(1) = &' (1), hence 6 = ¢ implying
f=r. O
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In the finite dimensional case, the linear maps J: A — Z (A) such that
O0([A,A]) = 0, are completely determined by the element 6(1) € Z (A). In fact,
Z(A)=C1 and A =[A,A]+ Z(A) imply that assertion. So we can define a
map 6:hom(A/[A,A],Z(A)) —» C such that J—o01+[A,A]) for any
0 € hom(A/[A,A],Z (A)). It is not difficult to see that ¢ is a bijective linear
map. We can restrict § (removing the null element in each set) so as to have a
group isomorphism 0 :hom (A/[A,A]l,Z(A))* — C* for the unique possible
operation in hom (A/[A, A],Z (4))*, making 0 a group isomorphism. Consider
now the following sequence of group homomorphisms

2) 1 Aut(4) 5 Aut(A ) B CF = 1,

where 1 is the inclusion map and for any g € Aut(A™),, we define p(g) = g(1),
(the fact that p is a group epimorphism is an easy consequence of its definition).
It can be checked that pi¢ = 1 and that ker (p) = Aut (A). Thus the sequence (2)
is in fact a short exact sequence of groups. Moreover the maps 7 and p are
homomorphisms of Lie groups (recall that a continuous homomorphism
f: Gy — G2 between the topological groups underlying, the (finite-dimen-
sional) Lie groups G; (i = 1,2), is necessarily a Lie groups homomorphism). So,
finally (2) is a short exact sequence of (finite-dimensional) Lie groups.
Furthermore, we can assert:

THEOREM 3.1. — The short exact sequence (2) is split: there is a mono-
morphism of Lie groups j: C* — Aut(A™)y such that pj = 1. The subgroups
Aut (A) and j(C*) of Aut (A7), satisfy fo = of for any f € Aut (A) and 6 € j(C).
Thus we have an isomorphism of Lie groups

3) Aut (A7), = Aut (4) x C*,

such that g — (f, g(1)) (the unique f provided by Proposition 3.2).

Proor. — Let us denote by J, the linear map J, : A — Z (A) annihilating all
commutators and making J,(1) = ul. Define now j : C* — Aut (A7), by j(1) =
1+ J;_1. This is obviously an element in Aut(A~), and a routine computations
reveals that it is in fact a monomorphism of groups. The continuity of 7 is also easy to
prove hencej is a monomorphism of Lie groups and trivially it verifies pj = 1. So the
group Aut(A~), is a semidirect product of Aut(4) and j(C*). But if we take
feAut(4) and 6 =, € j(C*) we have fo = df, since for any x = ¢ + al with
ce€[A,A] and a € C, we can write fo(x) = fo(al) = f(apd) = audl = 6(f(al)) =
o(f(c + al)) = Jf (). So Aut (A ™) is really a direct product of its subgroups Aut (4)
and j(C*). From this follows easily that the map given by (3) is a continuous iso-
morphism of topological groups hence a Lie groups isomorphism. O
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Completing the previous results, we can exhibit an epimorphism of Lie
groups q : Aut (A)y — Aut (A) such that qi = 1. This is given by q(g) = f (the
unique f € Aut (A) given by Proposition 3.2).

We can now extract some consequences for Lie derivations in topologically
simple associative H*-algebras. In the infinite dimensional case we proved before
that Der (A~) = Der (A) and as the elements of Der (4) have also been described
in section 2, there is nothing more to say. In the finite dimensional case, Der (A™)
is the Lie algebra of the group Aut(A~),, while Der (A) is the Lie algebra of
Aut (A). In the finite dimensional case, any Lie groups monomorphism is an
immersion, thus the inclusion map ¢ : Aut(4) — Aut(A~) induces by differ-
entiation, a Lie algebras monomorphism di; : Der (A) — Der (A~). On the other
hand dp; : Der (A~) — C is a Lie algebras epimorphism (since dp;dj; = 1), and
dpidi; = 0. So di;(Der (A)) C ker (dp;1) but a dimensional argument proves the
equality di;(Der(A)) = ker(dp;) (the isomorphism (3) also says that
dim (Der (A7)) =1 + dim (Der (4))). Summarizing we have a short exact se-
quence

4) 0 — Der(A)™ Dera) ™ -0

which is also split. As a corollary, we have a Lie algebras isomorphism
Der (A7) = Der (A) @ C which is the infinitesimal version of (3). Taking differ-
entials it is easy to check that dp; : Der (A~) — C acts in the following way:
dp1(D) = D(Q1) for any D € Der(A~). In fact, any Lie derivation D € Der(4™)
maps Z(A) to Z(A). Moreover the fact that im (di;) = ker (dp;) means that
for D € Der(A~), we have D(1) =0 if and only if D € Der(A). The map
dj1 : C — Der(A~) acts mapping any 4 € C to the Lie derivation J, which
annihilates commutators an J,(1) = /1. Thus Der (A~) = Der (4) & d~ where
oc is the ideal of Der(A~) of all maps J;. Also Der (A4) is an ideal of Der(4™).
Summarizing the results in the last paragraph we have:

THEOREM 3.2. — Let A = HS(H) be the complex H*-algebra of Hilbert-
Schmidt operators in the Hilbert space H. If H 1is infinite dimensional then
Der (A~) = Der (A). If H is finite dimensional, there is a split short exact se-
quence (4) which proves that Der (A) and dc are ideals in Der(A~) and
Der(A~) = Der(A) ® o¢c. Thus any Lie derivation D of HS(H) for a finite di-
mensional H is of the form D = D' + 6 with D € Der(A) and 6 : A — Z(A) a
linear map annihilating commutators.

Finally we can give a version of the previous result not only for topologically
simple complex H*-algebras, but for H*-algebras with zero annihilator:

THEOREM 3.3. — Let A be an associative H*—algebra with zero annihilator
and let D be a Lie derivation on A. Then there exists a derivation d on A such that
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if we denote by {I,} the family of the minimal closed ideals of A we have:

1. If1, is infinite dimensional then D|; = d|; .
2. If 1, is finite dimensional then 6, := D|; —d|; 1is a linear mapping
from 1, into the center of A sending commutators to zero.

Proor. — Denote by {I,}
consider I, € {14} ,c4-

If I, is infinite dimensional and if we denote by d,, the restriction of D to I,
since I,, is an infinite dimensional topologically simple associative H*-algebra,
from the classifications of topologically simple associative ([1]) and Lie H*-al-
gebras ([6]), we have that I, is also a topologically simple Lie H*-algebra and
therefore 1, = [1,,,14,]. Hence, as D is continuous ([15]), we conclude easily that
I,, is invariant under D. Theorem 3.2 now shows that d,, : I,, — I,, is a deri-
vation, being also clear that ||d,| < ||D||-

If I,, is finite dimensional with dim/,, > 1, as I,, is isomorphic to an asso-
ciative algebra of the type M, (C), » > 1, then [[,,,1,], the vector span of
{lz,y] : x,y € I,,}, is a simple Lie algebra of type 4; and Z(/,,) ~ CId,. If we
denote by D,, the restriction of D to [/, I,,], by [8, Theorem 9, p. 80] D, extends
to a derivation d, : I,, — I,,. If we call

04y =D|; —d,

we4 the family of minimal closed ideals of A. Let us

o gy — A,

I

we assert that d,,(I,,) C Z(A) and that d,,([14,, 14,]) = 0. Indeed, let us write any
element x € I, as ¥ = ¢ + a with ¢ € Z(I,,)) C Z(4) and a € [I,,,1,,], (note that
this decomposition is unique). We have that the character of derivation of d,,
implies d,(c) =0. As D is a Lie derivation then D| L, (c) € Z(A). Finally, as
dg,(a) = D| L, (@) for any a€l[ly,l,] we conclude 0gyUgy) C Z(A) and
5,10([100,1,10]) = 0. Let us observe that we also have in this case ||d,,|| < ||D].
Finally, if dim /,, = 1 we define d,, = 0. As A = 1,4 I, the fact ||d,|| < || D]
for all a € 4, and the continuous character of any d,, allow us to extend {d, } . , to
a continuous derivation d on A. It is clear that d satisfies the conditions of
Theorem 3.3. O

COROLLARY 3.1. — Let A be an associative H* —algebra with zero annihilator
and let D be a continuous Lie derivation on A. Then there exists a derivation d
on A and a linear mapping t from A into the center of A such that D = d + .

PRrOOF. — As d is also continuous ([15]), A = L4 I, and Z(A) is closed (the
product in any H*-algebra is continuous, see [7]), Theorem 3.3 gives us easily that
D — d is a linear mapping from A into Z(A), and the proof is complete. O
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work.
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