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Bollettino U. M. 1.
(8) 10-B (2007), 633-660

L? Regularity of Transmission Problems
in Dihedral Domains.

A. AIBECHE - W. CHIKOUCHE - S. NICAISE

Sunto. - Consideriamo il problema di trasmissione per Uoperatore di Laplace per un
cilindro retto con dati in LP. Applicando la teoria delle somme di operatori negli
spazi di Banach, dimostriamo che la soluzione ammette una decomposizione in una
parte regolare in W>P e una parte singolare esplicita.

Summary. — We consider the transmission problem for the Laplace operator in a straight
cylinder with data in LP. Applying the theory of the sums of operators in Banach
spaces, we prove that the solution admits a decomposition into a regular part in WP
and an explicit singular part.

1. — Introduction.

Let B = G x R where G is the bounded plane sector of opening w > 0 defined
by
G = {(rcosf,rsin);0 < 0 < 0,0 < r < 1}.

It is well known that the variational solution of the Dirichlet problem

-t = f in B,
(1) { u = 0 on 0B,

2
where f € LP(B), does not have the optimal regularity W27 (B) if r <2——1In
that case, this solution admits the decomposition @ p

(2) U =ug +cS,

where up € W2P(B), S is the so-called singular function which can be written
explicitly in this case, and the coefficient ¢ depend continuously on the data f, see
[12]. In the hilbertian case (p = 2), the technique used is essentially based on the
partial Fourier transform and Plancherel’s theorem. For p # 2, Clément-
Grisvard [5] proved the decomposition (2) by using the theory of sums of op-
erators in Banach spaces, as developped by Da Prato-Grisvard [8] and success-
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fully improved by Dore-Venni [9]. These two theories complement to lead to
optimal regularity and singularity results of the solution of (1). We also refer to
[18, 10] for some applications of such theories.

In this paper, we suppose that G is constituted of two bounded plane sectors
G1, G2 with respective opening w; and ws, separated by an interface X.

G ={(rcosf,rsinf); —mw; < 8 <0,0<r<1},
Gz = {(rcosf,rsin0);0 < 0 < w2,0 < r < 1},
2={r0;0<r<1}.

We consider the following transmission problem

—Au; = f; in G; x R,
U; = 0 on (0G; \ ) x R,
(3) Uy = U on 2 x R,
2 .
Zai% = 0 on 2 x R,
= Ou

where v; denotes the unit normal vector to 2 x R directed outside G; x R, u;
means the restriction of # to G; x R, f € LP(G x R), and a4, ag are two positive
real numbers such that a; # ag (only this case is of interest).

Our aim is to establish a decomposition similar to (2) of the variational solu-
tion of (3) in the case p # 2. Here, due to the interface, the regular part ug will
belong to PW?P(1B), where

PW*(B) := {u € H'(B); u; € W(By), i = 1,2}

is the space of piecewise WP functions on B.

A decomposition similar to (2) of the solution of (3) in the case p =2 was
obtained in [17].

The paper is organised as follows. In section 2, we recall the main results on
the two strategies of sums of operators, the one of [8] which rely on the following
explicit form of the inverse of the sum of two operators A and B

(4) A+B'=— 2% f A+ B+ »d,
Y

under appropriate assumptions on the resolvents of A and B and on the path 7,
and the one by [9] based on the formula

—zpz—1
(5) Aarpt=L 48

- - dz
7 sin w2
)

under appropriate assumptions on the imaginary powers of A and B.
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In section 3, we consider the following transmission problem with complex
parameter /

—Au; + Au; = f; in G,
u; = 0 on 0G; \ 2,
(6) w = U on X,
2
8 .
Z a; i _ 0 on 2,
izl 81)1'

where f € LP(G), 1 < p < +oo, v; here denotes the normal vector to X' directed
outside G; and wu; is still the restriction of u to G;.
By analogy with [1] who considered the Dirichlet problem (without interface), we
shall prove the estimate
c(p) ) )
l[ullo, < T 1fllop ~ VA:RAZ0, 1#0,
for all 1 < p < oo, and we deduce that the operator A, defined by

2 .
Da, :{u € H(l)(G);Aui € LP(G;),u1 = up and Zai% =0on Z},
= O

Ay u— {Aui}i:m?

is the infinitesimal generator of a strongly continuous semigroup of contraction,
which is also analytic. Such property will be useful to show that A, verifies the
assumptions concerning its resolvent in the application of the first strategy of the
sum of operators, and the ones concerning its imaginary powers when we apply
the second strategy.

In section 4 we study the behavior of the solution of the transmission problem
(6) with parameter 1. We give a decomposition of the solution into a regular and a
singular part, with a priori estimates of the regular part and the coefficients of
singularities uniform with respect to the parameter A. This extends to the case
p #2(1 < p < oo) Theorem 4.7 of [17] proved for p = 2. In other terms this gives
the analogue of Theorem 3.1 of [13] for the transmission case.

Finally in section 5, following the techniques of sections 5 and 6 of [16], we
shall apply respectively the two strategies of sums of operators to study the
boundary value problem (3). The first application allows us using (4) and the
results of section 4, to show existence and uniqueness of a strong solution of
problem (3) which admits a decomposition similar to (2). By applying the second
strategy we obtain the optimal regularity of uz.

The theory of sums of operators consists in writing the Laplace equation in 3d
in the form of a sum of two operators with values in Banach spaces, one operating
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on the variable z, the other on the variables « and y. This replaces the effect of
the partial Fourier transfom which reduces the space dimension.

2. — Sums of linear operators.
2.1 — The first strategy.

Let E be a complex Banach space and A, B two closed linear operators whith
dense domains D(A) and D(B) respectively.
Their sum is defined by

Lx = Ax + B,

for every « € D(L.) = D(A) N D(B).
We shall make the following assumptions on A and B:

H; There exist positive numbers My, Mg, R, 64, 0 such that 04 + 0 > =
and the resolvent p( — A) of —A contains the truncated sector

Sa={A1A >R, |arg | <04},

while the resolvent p( — B) of —B contains the truncated sector

Sg={/| > R,|arg | <0},

and
M
||(A+i)*1||gﬁ, Vi € Sy,
B+ 17 < ]# Vi € Sp.

Hy The spectra a( — A) of —A and o(B) of B do not intersect.
H3 The resolvents of A and B commute, i.e.
A+D)'" B+ =B+ A+
for every A € p(— A) and every u € p( — B).

Now we can recall the (see [8])

THEOREM 2.1. — Under the assumptions Hy, Hs, Hs, the closure L of L is
nvertible.

The inverse of L is defined by the Dunford integral (4) where the path y
separates o( — A) and ¢(B) and joins ooe™™ to coe’” where 0, is chosen so that
7'[—93 <0y<0A-
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The unique solution v € D(L) of the equation
Lv=A+Bw=f

is called the strong solution of Lv = f.

2.2 — The second strategy.

We introduce some different assumptions:

H; FE is a U.M.D. space, i. e., for some p € ]1, +oo[, or equivalently for all
p € 11, +o0[, the Hilbert transform is continuous in the space LP(R, E) (see [4]). In
practice all L? spaces are U.M.D.

H; p(A) D 1— 00,0] and there exists My > 0:

M
lA+t7Y SH—Al, vt > 0,

p(B) D ]1— 00,0] and there exists Mp > 0:
~ Mp
B+t <22 vt > 0.
|(B +1) ||_t+1, >

Hgs A® € L(E), B® € L(E) for all s € R and there exist K > 0, t4, t5 such
that 4 + w3 < 7, and

|A®|| < Kells vs e R,
|B¥|| < Kel'™ Vs e R,

where A%, B are the complex powers of A and B respectively. The main result
proved in [9] is summarized in the following theorem

THEOREM 2.2. — Under the assumptions Hs, H,, H; and Hg, the operator L is
nvertible.

The explicit construction of the inverse of L is given by the integral (5) where
y is any vertical line within the strip 0 < Rz < 1.

3. — Transmission problem and generation of a semigroup.

Let 4 be a complex parameter and f € LP(G), 1 < p < co. We consider the
solution u € V of the variational problem

(7 a;(u,v) = faﬁ de YweV,
G
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with
W OV
a;(u,v ——+ Auv pdu,
o= [of S5 )
where

V =H\G) = {v € H(®);v = 0 on 0G},

equipped with the natural norm || - ||, ,. The function a(x) is piecewise constant,
ie.,
a(@)=a; >0forx e G;, 1=1,2,

Wlth (25} 7& ag.
From now on, L?(G) will be equipped with the norm | - [|,,, defined by

1/p
el = ( [ aluay dac) .

G

It is clear that (7) is the weak formulation of problem (6).
The aim of this section is to prove that the following estimate holds

C
8) [[eello,, < |7|||f||o,p, RL>0, 270,

where the constant ¢ depends only on p (and not on 4).

It is well know that the estimate (8) is linked with the problem of knowing
wether the operator A, defined in section 1 generates an analytic semigroup.
When G is a smooth domain, the estimate (8) is well know for a general strongly
elliptic operator [2, 3] (for estimates in the C°-norm see [24] and in Hélder norms,
see [7]). In the case when G is a polygonal domain, Adeyeye [1] proves (8) for the
Laplace operator with different boundary conditions.

First we recall the results concerning existence, uniqueness and regularity of
the variational solution % of (7). It is clear that the sesquilinear form a; is con-
tinuous on V x V, it is also coercive for %4 > 0 thanks to Poincaré’s inequality.
On the other hand, since HL(G)— L”(G) (p' being the conjugate of p ie.

1 1
5 + 17 = 1) and then LP(G) — H1(G) = V', we deduce that the right-hand side of

(7) belongs to V'. Consequently applying the Lax-Milgram lemma, we get

LEMMA 3.1. — For each f € LP(G), there exists a unique solution u € H} (@
of (7), forall 2 € C: N1 > 0.

The singularities of problem (6) take the form
S(M) = ’7"”&”"157;7,(9),
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where 4, is a nonnegative real number and /lfn, tn are respectively the eigen-

values and eigenfunctions of the following Sturm-Liouville problem

—t (0) = 72t (0) for 0 € [ — w1, wz2], 0 # 0,
tn(07) = £,,(07),

azt,,,(07) = a1t;,(07),

tu( — 1) = ty(w2) = 0.

The singular behavior of the solution of (7) is given by the following theorem (see
Theorem 2.27 of [21]).

THEOREM 3.2. — If A, # ; for all m € N*, then for each [ € LP(G), there

exists a unique variational solution u € H(l)(G) of (6) which admits the de-
composition

9) w=ug+ > cuS™,

Im# l,
P

Jm €10, I%[

where uy € PW?P(G) is the regular part of w and the constants c,, of the sin-
gularities S™ are equal to

(10) ey = f af — K dz,
G

with K™ e LP(G) defined by
1

(m) _
(11) K =

( SGm) _ v(?ﬂ))7

where S©™ = yr~*nt,,(0) is the so-called dual singular function and v €
HY(G) is the solution of

(12) a@™,w) = - 3 q; f A" die, Yoo € HYG).
=12 G

To establish the estimate (8), we distinguish the case p > 2 to the case p < 2.
FIRST CASE p > 2: Here we follow the techniques of [1] who used the approach

of Sobolevskii [23] based on the dual mapping u — |u[P’ 7.
Let E(4, LP(G)) be the space

EU,LP(®) = {u € H(G);qu € '@}, p>2.
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This is a Banach space for the norm

w = ully g + [ 4ullo,-

We recall the next Green formula (cf. [12, Theorem 1.5.3.11] ).
THEOREM 3.3. — Let i =1 or 2. For u € E(4, L’(G;)) and v € WY(G;), with
p > 2andr > 2 such that v(0) = 0, and
v=0o0n 0G; \ 2,

we have

ou;
(13) f [vidu; + Vu; - Voilde = <V2 av; 7VE?)1>

L

where ys denotes the operator trace on X.

Let A, be the operator defined in section 1. The following theorem gives a
sufficient condition on A4,, which guarantees that the estimate (8) holds:

THEOREM 3.4. — Suppose that there exists s with 2 < s < p such that Da, C
WY5(G). Then any u € Dy, satisfies the next Green identity

_ p—2-- _E 2, 1p-2
(14) Gfa(Apu)m udx —2!a|Vu| |u|P“da

-2
+pra|u|p_4ﬁ2(Vu)2dac,
G
where we understand that

2

Vul=

i=1

8u2

ox;

ot 3(2)"

1=

PRroor. — Let us define

(15) . { w25 ifu>0

0 if u=0
From [1], we have
V(|u|p_2ﬂ):}2—7|u\p v+ P2 5 |u|p V.

As u € Dy, it is clear that u; € E(4,LP(Gy)), for i =1 and 2. The inclusion
D, € W'(G) implies that v € W'*(G), since the functions of W'#(G) are boun-
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ded. Then we can apply Green’s formula (13) to get
ou; .
f[vzdul + Vu; - Volde = ( ys— a0; JVsi ), =12,

Multiplying this identity by a; and summing up on 7, we get

2 2
15 o
Z a; f [v;du; + YV, - Vo;ldx Zal< i wil’ 2m>
=

=1 G i Vi

2
ou; 2
(S o)
i=1 Vi
=0

)

thanks to the transmission conditions. d
We are now in position to establish the following result
THEOREM 3.5. — Assume that (14) holds. Then

1
(16) Il < 5>

RA >0,

P
(17) llully, < 2157 1fllop:  SAF#O.
Consequently there exists a constant c(p) > 0 such that the estimate (8) holds.

PrOOF. — The proof of (16) and (17) is similar to Lemma 1.8 and Lemma 1.9 of
[1]. We set

I—— f a(A,w)|ulP*ude, R = f a|Vul2lul’2dz and S = f alulP Y2 (Vu)de.
G G G

By (14) we clearly have

(18) S| <R, and 1=R+7%2(R+S).

If u is solution of the transmission problem (6), then by multiplying the differ-
ential equation in (6) by v = |u|”’ ~%% and integration by parts, we have

(19) I+ f ajulPde = f of [ulP~ Ziide.
G G
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Taking the real part of the left-hand side we obtain

(20) RE+R2 [ aulde < [ af " do < £ o, ),
G G

by Hoélder’s inequality. Since (18) guarantees that $/ is nonnegative for p > 2,
the last estimate yields (16).
Now, taking the imaginary part in (19), we obtain

) -1
@) Sallullg, < 1f loplulls,” — ST

From (18), we have

N 7p—2<\ <p—2 <p—2
|\sl|f72 |\rS|_72 R_72 RI.

Owing to (20), we get 1
RL< | fllopllulf, -

The two last inequalities in (21) implies (17). (8) is a direct consequence of (16)
and (17). |

In view of the previous results, we then need to check the inclusion
Dy, € WH(G), for some 2 < s < p.

THEOREM 8.6. — There exists s > 2 such that Da, C WL5(G) and consequently
the estimates (16), (17) and (8) kold, for all p > 2.

PROOF. — From Theorem 3.2, u belongs to the span of PW?P(G) and a finite
number of singular solutions which behaves like 1*7t,,(0), 0 < A, < i% Since
W2P(G;) — W'S(G;), for all s>2, it suffices to find s>2 such that
7t (0) € WH(G), i.e., % > 1 — J,, thanks to Theorem 1.4.5.3 of [12]. This is sa-

i In that
> 2 (recall that 4,, > 0). O

tisfied for all s € Rif 1 — 4, < 0, otherwise it holds for each s <

last case, s may be chosen > 2 since -
1- 4,

SECOND CASE 1 < p < 2: We proceed by duality.

Let 1 < p < 2 and let u be the variational solution of (6). We have

(u,9)
(22) [wllg, = sup
9€L (@) H(ﬂ||o.p/

f aupda

= squ

veLy @ Nolloy
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Thanks to Lemma 3.1, there exists a unique solution u, € H{(G) of

a7 (U, v) = fa(pﬁ de YveV.
G

Moreover as p’ > 2, Theorem 3.6 yields the following estimate

(4
(23) [tgllo < Tl lollo,  RA=0, 2#0.

Owing to (22) we get

a5 (u,, u)
AN
H/M/HO,]) = Sup || H ,
9Ly (@) N1Plloy
a,;(t, )

9L, (G) ||(0H0,p'

f af
sup &
veLy @ 0llo,y

- 1 Nlo.pl12tll
el (@) lello,y

Using (23), we arrive at (8).
Similarly using the estimate (16) (resp. (17)) satisfied by «,, we deduce that »
satisfies (16) (resp. (17)) as well. O

Summing up we have proved the

THEOREM 3.7. — Let u € H{(G) be the solution of (7), then for all 1 < p < oo, u
satisfies the estimates (16), (17) and (8).

REMARK 3.8. — We easily check (8) when p =2, by taking as usual v =u
in (7). a

COROLLARY 3.9. — For all 1 < p < oo, Ay, generates a strongly continuous
semiagroup of contraction in LP(G) which preserves positivity.

ProOF. — The estimate (16) implies that 10, co[ C p(4,) and
1 1
||(Ap —A) || < 7 (4> 0),

and therefore —A,, is dissipative (see Theorem 1.4.2 of [22]).
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Consequently D(4,) = LP(G), because LP(G) is reflexive, see for example [19,
Corollary 1.1.4] or [22, Theorem 1.4.6]. Then applying Hille-Yosida Theorem, we
deduce that — A, is the infinitesimal generator of a strongly continuous semi-
group of contraction in LP(G).

To complete the proof we need the following lemma:

LEMMA 3.10. — Let f € LP(G) be real valued, 7 € [0, +oc[ and u the varia-
tional solution of (7). Then

f>0=u>0.
Proor. — Clearly if f is real valued, then u is real valued. Now we write
u=u" —u" whereu™ = sup (0,u) and u~ = sup (0, —u). Then " and u~ belong

to Hy(G).
Applying the variational identity with v = 4~ we obtain

fon(u+ —u7)-Vu du+ /lfoz(u+ —u)u de = fafu*dac.
G

G G
This gives
fa|Vu‘ |2d90+2fa|u‘|2d90 = —fafu‘dac <0,
e G G
since f > 0. This shows that «~ = 0 and then v = u* > 0. O

Let us denote by e ™ for ¢t > 0, the semigroup generated by —A,.

We now assume that f > 0, by Yosida approximation we get

. 1—A )t
eftApf :}lm et)Ap(A Ap) f
—00

— lim ¢!l
A—00

. _ 1200 —1
— lim [ oM gti*=Ay) f}

A—00

2k
= lim leﬁ > ()'kt') (h— Ap)kf] :

A—00 =0

AZ(A—AP)’L),} I

Lemma 3.10 gives (4 —Ap)*lf > 0 and then e *»f > 0. So the corresponding
contraction semigroup preserves positivity. O

COROLLARY 3.11. — Foreach 1 < p < oo, A, generates an analytic semigroup
n LP(G).

ProoOF. — Direct consequence of (8) (see Theorem 1.5.2 of [22]). O
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4. — Resolvent of the transmission problem in a corner domain.

The aim of this section is to extend Theorem 4.7 of [17] to the L”-norms,
1 < p < co. We actually want to obtain uniform estimate with respect to 4 for the
regular part and the singular one of the variational solution of (6) appearing in
the expansion (9). For that purpose, we first transform the expression (10) to
obtain an exact formula with respect to f.

LEMMA 4.1. — For all m € N, there exists T™ € V solution of

(24) a(T™ ) = 7 f aK™5de, Ywe V.
G
Consequently under the assumption of Theorem 3.2, we have
(25) Cm = fafw(m>d90,
G
where
(26) w™ = K™ — 7™,

PRrROOF. — The existence of 7" ¢ V solution of (24) is a direct consequence of
Lax-Milgram Lemma since K™ e LP(G).
From (10) and (24), we may write

Cm = fafK(m)dac — a;(u, T™).
G

As u is solution of the variational problem (7) and 7" € V we may write

a0, 7) = [ af T da.
G
The two previous identities yield (25). O

In order to estimate the L”-norm of w™ with respect to J, we write it as
follows (thanks to (11) and (26))

(27) w(M) =Y — ¢m
where
. e~ TVig(=m) it A,y < ?% —1,
2 —
( 8) l//m 2 /'{WL

. 2 2
e VAL rVDSC i S~ 1< dy <
p p
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and ¢,, is the remainder. y,, is defined such that y,, and ( — 4+ Ay, belong to
L?(G). Indeed by direct calculations one has

A =20 )VE 2ty <2y
(29)  (—A+Wy, = .

3 —2m o 2 2
—+ 7 lf — = 1 S l < BVE)
1+ V2 Vin 5 Tim 4 oy
where we have set
_A” 77‘\/7 ) 1 P ' d _ \/7 .y . 2
A v TV At fa ——1
Cym " e r "= nv (e r m) U Ay < > )
iy ) -
T = ZM 1 iy g, v Sy ( o ,%zmtm)
2m Jom 9 9
+ (e—r /lqﬂflmtm)ﬁn if -~ = 1< ;Lm < -
p P

LEMMA 4.2. — There exists a constant C > 0 (independent of 1 and m) such
that

(30) (= A+ Dl < CIVA .

P&OOF. — The terms of 7, have exponential decay in v/ in any norm since Ay
and V7 vanishes near the corner. Then for some ¢ > 0, we can show that
(81) 7l @y < Ce™ ™

On the other hand, from the explicit form (28) of y,,, one can write

Vi,
r

2
if Ay, <——1,and
p

P 00
/ % () /
S Cf |\/Z|p 6—1”31‘1\/)_4,. (m+1)p +1d7,.
0,p' 0

p/

HJS_%m
v1+r\/zwm

o0
< Cf |/1|p/e’p""%‘/z¢’)'”’p'“dr
0.p' 0

ifgl—1§/1m<g,.
p p

By the change of variable s = rRv/A, we arrive at

‘ \/7;14//777, S C|\/7L|Am+271% if ;"WL < E] - 17
(32) 0,p p
\ 3 — Zim A +2—2 . 2 2
A— < CWam if ——1</4,<—=.
1 + \/jﬁ" W'}’VL OA’p/— | | p/ - p/
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The estimates (31) and (32) drive to (30) thanks to (29). O
LEMMA 4.3. — There exists a constant C > 0 such that

2
;~m 717 X

(33) 1™ lg, < CIVZ

PRrOOF. — From the identity (27) it suffices to show that y,, and ¢,, satisfies
(33).
Indeed the explicit form of y,, given by (28) implies easily that

/ﬂbm_z/
W llo, < CIVA™ 7,
while ¢,, is looked as the variational solution of (due to (12) and (24))
a;(@,,, w) = fa( — A+ Dy, wde YweV.
G

We apply to ¢,, the estimate (8) derived in the previous section

C
||¢m||0,p’ < m ||( -4+ )‘)¢m||0,p"

It is clear that (— 4+ A)¢,, = (— 4+ Ay,,. Therefore (30) implies that ¢,, also
satisfies (33). O

THEOREM 4.4. — Under the assumption of Theorem 3.2, w admits the de-
composition

(34) U =Up + Z cme""ﬂS(’") + Z cme‘rﬂ(l + 1V )S™

2
o

where up € PW?P(G) satisfies

—1<dy<Z I <2—1
mSy m=y7

(35) ekl pwesey + IV lr ooy + VAR Loy < CILE o

and c,, satisfies
1 ~m7%
(36) el < CIVA" 71 £y,

Proor. — The estimation (36) follows from (25) and (33). It then remains to
prove (34) and (35).
The decomposition (34) follows from (9) by setting

up =g~ Y cule"™ — DS

2 2
]7—1<lm <

— Z Cm [e""ﬁ(l + V) —1|8™),

Jom Sl%* 1
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2
because we easily check that (¢~"V* — 1)S<mé) e PW2P(G) if A, > o 1 while
[67“/;(1 + T\/Z) —118™ e PW2P(@) if A, < 17 - 1.

From Theorem 2.27 of [21] and Peetre’s lemma (see for example [21]), there
holds

(37) lurll pwes <C{IlAurllLr@ + 1urllLe }
<C{|I(= 44 Durllzp@ + A+ 1ADIurll L@ }-

We apply to ug the inequality (8) of the previous section to get
C
(38) [urllpr@ < 7 1(= A4+ Durll o)

We then have to estimate ( — 4+ 2)ug in the LP-norm. Thanks to (34) we get

(=44 up =f— Z Cn(— A+ 2) (e—vﬂs(m))

2 _1<dp<2
p/ m p/

D IR G R I e VAR TR

Im<E-1
In other words, we have to estimate
2 2
(= A+ 2)(esm) it S 1<y <,
p p
F, =
- 2
(= A+ Do ™A +0VDS™| if 4y < oL
Straightforward calculations yield
HFWHLP(G) < C|\/Z|”_'7Am-
Therefore taking (36) into account we see that
(39) (= 4+ Dugll < (| f1lo,-
Finally we use the usual convexity inequality to estimate ||ug||y, ). Indeed
lurllwisg < elurllpwes@ + K{IH@LRHU}(G) Ve > 0.
For ¢ = |2 we get
(40) Vi
The estimates (37), (38), (39) and (40) yield (35). O

urllwis < [urll pwes) + KlAUR o)

COROLLARY 4.5. — Under the assumption of Theorem 3.2, u admits the
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decomposition
(41) w=ur+ D (A,
0< <%
where up € PW*(G) and
o—rVIgm) if ](% —1<ip< ]%7

e VA +ryDS™ i g, < 5 1.

The behavior in A of ug and cy, is given by

1A

(43) ekl pwzoy + VAR ey + D 1 % lewl < Cllf v,

O<im<§

for every A in the sector | arg (1)

< Oy where 0y € 10, 7[ is a given angle.

With the notation already introduced in section 1, we can write
U = (_Ap +)~)_lf7

consequently the decomposition (41) implies a similar decomposition of the re-
solvent of A,. Namely we may write

(44) ( *Ap + /1)71 =R() + Z T(2)® l//m(/l)

0<An<2
P
where R(4) is the continuous linear operator from L?(G) into PW??(G) defined by
RS :=ug,

and T,,(4) is the continuous linear functional on LP(G) defined by (so T, (1) is
identified with an element in L? (®))

(45) <Tm(/1)vf> = Cpy-

The estimate (43) implies

(46) IR 1oy pwea) + 1B o)1) < C
and

) 1
(47) 1Tl < CIAZ 7,

for all / such that |arg (1)| < 6.
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5. — Transmission problem in a cylinder.

Let B, 2, G; be defined as in section 1 and let B; = G; x R . Along this section,
the variables in G will be denoted x and y (x + iy = 7¢'’) and the third variable in
B by z.

For the sake of clarity, we shall denote 4 the Laplace operator in 2d while we
shall denote it 4 in 3d.

Given g € LP(B), we look for v, possibly in PW?2P(B) N Wé’p (B), solution of

A?)i =0 in Bi,i = 1,2,

V1 = Vg on 2 x R,
(48)

2 .
Z%% =0 on 2 x R.
L

We can equivalently write the equation 4v; = g; in B; as

(49) D?v; + Mv; = g; mbB;.

5.1 — Application of the first strategy.

We shall apply Theorem 2.1 to the equation (49) in the case of the Banach
space

E=LP(B)=L"R,X)
where
X = L*(G),

and with the operators A and B defined by
—Av = {M;}; ;5
for v € D(A) = L?(R,D(4,)),
—Bv = D%

for v € D(B) = W?P(R, X).
We denote by C the operator defined by

Cv=D,w

for v € D(C) = WHP(R, X)
It is well known that the spectrum of C ¢(C) = iR and that for ¢ € £ we
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have

- f D5 o)ds it Ry < 0,
(50) (C+un78|tor =4

i

f e M55 )ds it Ry > 0.

-0
From these expressions, we deduce the estimate

1

51 (C +uD! < =
(51) 1€ + ) my < e

Vi,  Ru#0.

5.1.1 — Spectral properties of B.

651

The density of D(B) in E follows from the fact that D(B) contains the space
D(R, LP(@)). We can write —B = P(C) where P is the polynomial P(z) = z2. Now

we can state the following results.

LeMMA 5.1. — Assume —B = P(C) where P is the polynomial
Pe)=2*+az+b
with two real numbers a and b. Then we have

@) o(—B)={-&+iaé+b, &R}

(ii) There exists R > 0 and 0g € }O,g [ such that the resolvent set p( — B)

contains the sector
Sy ={2€C; || >R, |argz|<n—0p}.

(iii) For every A € S, we have

1
52 B+n! = 0(—) Vi e S,
(52) || | 2wy ENAe b
(vi) Forb < 0, there exists M > 0 such that
(53) B+ <L viso.

“t+1

PrOOF.

(i) is an application of the spectral mapping theorem.

(i) o(— B)isthe parabola intersecting the x axis at the point b and given by

the equation

y2 = —a?(x - b).
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The two tangents to this parabola at the points of coordinates (b —1,a),
(b — 1, —a) are given by the equations

|a]

yia:i?(m—b—i—l).
They intersect on the x axis at the point ¥ = b 4+ 1 with an angle ¢g € }O,g { of
tangent taneg = M. Consequently the resolvent set contains the sector

2
{zcC; |z| >0,|arg[z — (b+ D]| < 7w —¢p}.

Thus for ¢ small enough, there exists B > 0 (R = |z9| where 2 is the intersection
point of the half-line | arg z| = = — (¢p + &) with the tangent to the parabola at the
point situated above the x axis) such that p( — B) contains the sector

{z€C; |z| >R,|argz| <m—(¢g +&)}.
(iii) For every A € Sp, the equation P(z) = 4 has two complex roots
at++/aZ—40b - 1)
2 )

where the square root is the analytic determination defined on the plane without
its negative real axis. Therefore

2:(2) = —

(54) B-NT1=C-2.)(C—zG)".

It is clear that z.(1) ~ & /1 for | 4| large enough. Consequently (52) follows from
(51) and (54).

(vi) b < 0implies that [0, co[ C p( — B), then the operator B + ¢ is invertible
for every t > 0, and (53) follows from (52). O

Thanks to Lemma 5.1, we conclude that in our particular case —B = D?, the
operator B satisfies Hy; and o( — B) = ] — o0, 0].

5.1.2 — Spectral properties of A
The properties of A are those of its realization —A,,. Thanks to Corollary 3.11,
we know that A, generates an analytic semi-group, thus A fulfils H; with some
GA > g
On the other hand, it is easy to check that the operator Az associated with the
quadratic form
(u,v) — (Vu, V),
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on the space L?(G) with inner product

(u,v) — (U, v), = fauvdac,
G

is a self-adjoint and positive operator with a compact inverse. Thus it has a
discrete spectrum. Let 0 < gy < us < us... be its eigenvalues repeated according
to their multiplicity. Since A, has the same spectrum than A, and
o( — B) =] — o0, 0], the assumption H, is clearly fulfilled.

The commutativity assumption Hs follows from the following lemma.

LEMMA 5.2. — Assume that B is defined as in Lemma 5.1, then the resolvents
of A and B commute.

ProoF. — Thanks to (564), it suffices to check that the resolvents of A and C
commute. This follows immediately from (50) and the explicit formula of the re-
solvent of A given by

@i eleo=3 1

=1 A

[ [ot. é)wj(é)dé] (@),
G

where wj is the eigenfunction of A; associated to the eigenvalue x; and where ¢
belongs to D(B) a dense subspace of E. O

We have checked all the assumptions of Theorem 2.1. Consequently the op-
erator sum L of A and B is closable ans its closure L 18 invertible. This ensures
existence and uniqueness of a strong solution v € D(L) of

—Lv=h.

Moreover, v is explicitely given by

1 N—lcg  @y-1
(55) vy f A+ 70— B\ hda,

where y could be, for instance, the imaginary axis with a small right detour to
avoid the origin. For each z, we can write

[(A+2D"'h)@) = (= 4, + )7 'h(2),

where we have considered % as a vector valued function of the only variable z.
Consequently (44) allows us to write

(56) V=g + Z Vs

O<).m<1%
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where
1
(57) = f RO — B hlds,
and
1 o A
(58) = ! (T, G — BY i)y, (Dd).

In what follows, similarly to section 6 of [16], we shall prove that vy € PW2P(B)
and thus it is the regular part of v, while v,, involved the singular behavior of v.

Let us underline that we differ from [16] in the definition of A, the operator B
being the same. This comes from the fact that a depends only on the x,y vari-
ables, thus the interface has no effect on the variable z. Therefore we only give
the main results on the regularity of v,, and we skip the details of the proof, due
to their similarities with [16].

5.1.3 — A direct study of v,,.

We have the following result.

. 2 . . . .
THEOREM 5.3. — Provided 17 — L 18 mot an integer, there exists a function

Gn € W/ P(R)

such that
(59) Vm = (Km * (Im)S(m>7
where
r 2
—_— for A, >1——,
n(t2 +1r2) or > P
(60) K, (rt) =
2¢3 2
S .3 for Ay, <1——,
7(t2 4 ¥2) p

and the convolution is in t. Morever Av,, € LP(B).

ProoOF. — First we prove that identity (59) holds with

_ 1 oyl
(61) %—qgﬂmwﬂ B h)ds
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We assume that & € D(B), a dense subspace of LP(B). Applying partial Fourrier
transform in z to (58), we get

. 1 h
Vm = z—m :[<T7n()~)72_—_l:2>W7n(l)d)“7

where 7 denotes the dual variable of z.
The decay at infinity of 7',,(1) and ,,(4) due to (47) and (42) allows us to apply
Cauchy’s formula. We obtain

D = — (T (); )y, (12)

(T (); h)e IS i, 51— % ,

—(Tu(2); YA + r|z|)e "1 S0™ if A, <1-— %

This can be seen as the Fourier transform of a convolution in z:
Vn = (K * 4)S™,

where
Gm = —(Tu(); ),

and

" i 7, >1-2,
P

K, =
2
A +rlehe ™ if 4, <1- =

An inverse application of Cauchy’s formula shows that

) 1 h
Qm = o f<T?’n(}~);W>dia

y

and therefore

1 o
an =5 [ (T3 6.~ B hydz.
J

By density, this identity is easily extended to any & € LP(5).
The regularity of ¢,, and as a consequence the regularity of 4v,, are obtained
exactly as in [16] (see Propositions 6.3, 6.4 and Theorem 6.5 of Loc. cit).
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5.2 — Application of the second strategy.

We are now able to prove the regularity of vg. Going back to (56). We have

Av; = Avg; + Z A/I]m7i in B;.

Im<%
And consequently
(62) Mg — Vi = gri =fi— Y Avpi—Vrii=12.
<2
P

The function g belongs to LP(3) by Theorem 5.3. On the other hand, (46) implies
the following estimates

1
1B )12 106 = O (W) ’

”R(/l)”LP(G)HH?ZIWZP(Gi) = 0Q).

By interpolation, we get

1
IBDlerx = O(TV) 0<o<l,

where

Xx = [sz:le(Gi)v H%:IWZP(Gl)] &p

=[LP(GY), W2 ()] x [LP(Ga), WP (G)]

ep &p
=112\ W*P(Gy), s=2(1—¢).
This shows that

1
B o) pweny = O (F) , Vs < 2.

With the help of (52), this yields
(63) vg € LP(R, PW*P(G)),

for every s < 2 (we recall that u € PW*?(G) if and only if u; € W*P(G;), 1 =1,2),
since the integral (57) converges in that space as a consequence of the estimate

- 1
IR = B) ™l e pwesy = O <|,1|2%> '
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We shall apply Theorem 2.2 to study the equation (62). For this purpose we
write it

2 .
D vg; + Avg; — vpi = gri 1 = 1,2.

First we must specify £, A and B. We define the space £ and the operator A
exactly as in section 5.1. We differ in the definition of the operator B. Here we
take

~Bv=D?v—v

for v € D(B) = W?P(R, X).

We shall check assumptions Hs, Hy, H; and Hg of Theorem 2.2: First the
space E is U.M.D and consequently H4 holds.

Lemma 5.2 implies, in the particular case P(z) = 2* — 1, that the commu-
tativity assumption Hj is fulfilled.

A direct application of the property (vi) of Lemma 5.1 allows us to conclude
that the operator B satisfies the assumption H;. For A, this assumption follows
from Theorem 3.7.

It remains to check Hg for A and B. Thanks to Corollary 3.9, 4, is the in-
finitesimal generator of a semigroup of contraction in X which preserves posi-
tivity. By Coifman-Weiss theorem [6] this yields

3K > 0:Vs € R, [JAP[| < K( + |se!.
This estimation just gives the existence of some constants ¢ and K(e) such that
3K >0:Vs € R, [|AF| < Ko,

Then the operator A verifies Hg with a constant 7 > g This is not sufficient to

apply Theorem 2.2 since the condition t4 + 75 < 7 is not fulfilled. However in the
particular case when p =2, Ay is a non negative self-adjoint operator in
X = L3(@). Accordingly Ags is a contraction for all s € R, i.e.,

1A = 1.

By interpolation, we deduce the existence of 74 < g such that

1A% = 0(el=).
On the other hand, the symbol of the operator B is 1+ rz)is. Consequently we
have

1B = 0(e)

for every ¢ > 0 by Mikhlin’s theorem.
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We then apply Theorem 2.2 and show the existence and uniqueness of
wg € D(L) = D(A) N D(B) = LP(R,D(A,)) N W2P(R, X),

solution of
Lwg = gr.

wg do not coincide necessarly with vp. However we can easily verify that the

difference
Yr = VR — WR

belongs to LP(R, Hy(G)) and solves the equation
D2y + Myri —yri =0, in By,i=1,2.

Thus yg can be extended over the system of the eigenfunctions w; of A, in L?, we
get

(64) yr = Y _(0;€9 + bje > )wi(o),

J=1

where cjz = u; + 1. All the coefficients a; and b; must vanish since the ex-
ponentials involved in (64) do not belong to L”(R). Therefore ¥z = 0 and con-
sequently

(65) vg = wg € LP(R, D(A,)) N W2P(R, X).

At first sight this is not the regularity result we expected for vg since D(A4,)
carries the singular solutions. However according to (63) and (65) we get

vg € LP(R,PW*P(G) N D(4,)) for every s < 2.

We now take advantage of the following lemma.

LEMMA 5.4. — For large enough s < 2 we have
D(A,) N PWH(G) C PW?P(G) N WéP(G)

Proor. - Let u € D(A,) N PW*P(G). By the definition of D(4,), » vanishes on
0G. Then to get D(4,) N PW*P(G) C W&’p (@) it is enough to choose s > 1. On the
other hand, by (9) a function u € D(4,) can be written

U = Uy + Z Cmm"/lm tn(0),
0</p<2/p’

with ug € PW?P(G) and c,, € C. Therefore as u € PW*?(3), we get
v, € PW(G).
As Theorem 1.4.5.3 of [12] shows that this last inclusion holds if and only if

2
Am > 8 ——,
p
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we obtain that 9
Cn=01f 4, <s——.
p

This means that « = u, if we choose s close enough to 2 so that no singular ex-

ponent 4,, are between s — % and E, =2- g O

p p
Accordingly we have

vp € WH(R,X) N LP(R, W, (G) N PW*P(G))

and then vp; € W2P(R, LP(G;) N LP(R, W?P(G;)), i = 1,2. Applying Lemma 4.4
of [16] we deduce that vg; € W2P(B;), and consequently vg € PW2P(B).
In summary we have proved the

THEOREM 5.5. — Let v € H 1(B) be the variational solution of problem (4R).
Then there exist vg € PWZP(B) N Wlp (B) and functions q,, € Wi P (R) such
that

V=7V + Z (K, * QM)S(M)

) 2
/L,,1<]7

where the kernel K,, is given in Theorem 5.3 and the singular functions S are
given in section 3.

REMARK 5.6. — For the sake of simplicity, we restrict ourselves to the case of
two sectors G;,1 = 1,2 with a common interface 2. The case of more than two
sectors can be treated similarly using the results from [21].
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