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Local Existence of Solutions for Perturbation Problems
with Non Linear Symmetries.

MARC LESIMPLE - TULLIO VALENT

Sunto. — St prova l'esistenza locale di famiglie di soluzioni per un problema di per-
turbazione quando l'operatore imperturbato e covariante per un’azione non lineare
di un gruppo di Lie.

Summary. — The existence of local families of solutions for perturbation equations is
proved when the free operator is covariant under a non linear action of a Lie group.

1. — Introduction.

Given two Banach spaces M and N, we are concerned with the problem of
existence of local solutions for the perturbation equation [5, 6]

(1.1) A() + &B(x) = 0,

(A and B defined on M with values in N, ¢ € R) where the operator A commutes
with two non linear actions of a Lie group & given on M and N respectively.

Supposing that the free equation A(x) = 0 admits a particular solution xg, a
reduction is made for the existence problem of local solutions for the perturba-
tion equation (1.1), by showing that the differential dA,, of A at %y is an iso-
morphism of M onto the orthogonal (relatively to some inner product) of the orbit
generated by the action of G on xy in N. Such a reduction is required, since even
if the kernel of dA,,, admits a topological supplementary in M, dA,, is in general
not surjective (for instance A is linearisation unstable at xy, e.g. [3, p. 244 ] ) and
the implicit function theorem fails. Such a reduction will be obtained as a con-
sequence of the “transversality” (as described in section 2) of the mapping A at
every point not too far from a.

The perturbation problem we consider, is expressed by equation (1.1) with
the hypothesis that the kernel of the differential dA,, of A at xy (A and B are
supposed differentiable in an open subset U of M) split and that the map B is
transversal at xy. Even then, a direct application of the implicit function
theorem fails. The difficulties encountered are related to the covariance of the
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mapping A under the action of G and can be overcome by extending the
transversality of B to a neighborhood of xy in U. Indeed, it will allow to show
that, locally, the elements F(x,&) = A(x) + eB(x) in N are orthogonal (rela-
tively to some duality on M x N) to the orbits under G (actually, as we shall
see, under the commutator subgroup of &) of the corresponding points x in M.
Hence we shall obtain a theorem of local existence of solutions for the per-
turbation problem, by proving that F(x,e¢) belongs to the orbit of xy for suf-
ficiently small values of e.

2. — Transversality of the mapping A.

In this section, we introduce some notations, and in order to state Proposition
2.1 (transversality criteria for the mapping A) we recall briefly the results we
need on non linear representations of Lie groups [1].

Let G be a Lie group, g its Lie algebra and g’ its derived algebra. We denote
by G’ the connected Lie subgroup of G (the commutator subgroup of G) asso-
ciated to g’. The mappings A and B, defined on a Banach space M with valuesin a
Banach space N, are differentiable in an open subset U of M, containing the
origin and connected. A duality on M x N is given by a separately continuous,
nondegenerated bilinear form (,). The action of G is given by two analytic re-
presentations (S, M) and (T, N) of G on M and N respectively, as defined within
the theory of non linear representations of Lie groups, presented in [1]. The
representation S (resp. T') is a morphism from & to the group of invertible ele-

ments in the space of formal power series of the form S, = S; + > Sy (vesp.
n>2

T, = T; + > T;L) where ¢g € G and S}; belongs to L,(M) (resp. Tg belongs to

n>2
L, (N)) the space of symmetric n-linear continuous mappings on M (resp. N). The
maps x+—— S,(x) = S;(ac) + > Sp) and @ Ty(x) = T;(x) + > Ty(x) are

n>2 n>2

supposed to be analytic in a neighborhood of the origin in M and N, respectively,
if g belongs to some neighborhood of the identity in G. The linear representation
S (resp. T") is supposed C* in M (resp. in N) and we denote by dS (resp. dT) the
analytic representation of g in M (resp. in N) obtained by differentiation of S
(resp. T) [1].

We suppose that the mapping A is covariant, in the sense that it commutes
with the action of G, namely

(2.1) AoS;=Ty0A foreverygeh.
Also, A is assumed to vanish at the origin (as occurs, for instance, if the linear

part T" is irreducible).
We associated to the mapping A the differential form w4 on U defined by
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wa@)p) = (p,A@)), x € U, p € M. Moreover, w, is supposed to be closed, i.e.,
(2.2) (21, dAy(2)) = (2, dA4(21)) , 1,22 € M and x € U

(where dA,; denotes the differential of A at x).
As shown in [7], an inner product on N, (|) and a linear mapping x: M — N
can be associated to the duality (,) such that

(x,y) = (k®)|y) for every (x,y) e M X N .

The transversality criteria for the mapping A, presented in [2], rely on the
construction of some linear representations S and T associated to S and 7. For
instance, S (with g € G) acts on the strict inductive limit M = J M, where

n>1

M, = 69 M with M = &;M (the projectif tensor product of M i—times), as the
i=1

isomorphism of M preserving the subspaces M,, defined by

Sme - eu)=> Y Sie 080 me o)

p=1i1++ip=n

for every ai, ..., x, € M [1,4]. That linear action of G on M and N is supposed to
preserve the duahty in the sense that 7 is the contragedient of S, namely,

(2.3) (Sy(0), Tyw)) = (p.y) for every (p,y) € M x N

(where the duality is extended to M x N , see [2]). In particular the linear re-
presentations S' and 7" are contragedlent (since S‘ u= =S and T = =1TM.
The following proposition has been obtained [2, Proposition 3.1].

PROPOSITION 2.1. — Suppose that A is C*. Then under conditions (2.1), (2.2)
and (2.3), for any point x € B(0,r) N U (with r small enough) A(x) belongs to the
polar of the orbit of x under g, that is to say,

(dSx(x), A(x)) =0 for every X € q'.

3. — Existence of local solutions for the perturbation equation
A(x) +eBx) =0

If » € M, let us denote by g’ = {dSx(x)/ X € @'} the orbit of « under g
(similarly gx denotes the orbit of x under g). Also we shall write ¢’ S) _
{dSx(x)/ X € V'} for the orbit along a subspace V of ¢’ (similarly gV the orbit
under g along a subspace V of g).

We have shown (Proposition 2.1) that A(x) € g’i ° (the polar of g’f relatively
to the duality (,)) for every X € ¢’ and « € U N B(0,r) with » small enough, that
is to say A is “transversal” (if not specified we intend under g’) in every point x of
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UNB(,r). We assume that a solution xy € U N B(0,r) of the free equation
A(x) = 0 exists, such that the operator B is transversal in xy. We shall show that
locally the solutions of the perturbation problem

3.1) A(x) +¢B(x) =0 with A and B differentiable in U,
under the hypotheses

(3.2) KerdA,, admits a topological suplementary £, in M
and

(3.3) ImdA, > aS°

are generated by the representation S from a curve x, in U passing through x.
The first step will consist of extending the transversality of B to a neigh-
borhood Uj of xy, in the sense that if x € Uy, there exists g € G such that
T} 0B oS, is transversal in .
Let (Xi,...,X,) be a basis of g with (Xi,...,X,), r<mn, such that
(dSx,, . ..,dSx,) is a basis of dS(g). The transversality condition above, stands on
the mapping

M,:G—TR"

g+— M,(g) = ((dSx,(x), T;A 0B oSy®))iz1.. »

and it will be possible to obtain it if there exists a subspace V of ¢’, V' # {0}, for
which the differential of M, in e does not vanish. More precisely, denoting by V*
the r-dimensional subspace of g generated by (Xi,...,X,), we give

DEFINITION 3.1. — A point X € VS, X #0, is “critical” for B in x € U if
dM,(X) = 0.

Consider the mapping
y:MxN—R"
@, y) — @@, y) = (dSx, (), y), . .., (dSx, (@), ¥));

with this notation we can write

M.%'(g) == 71'7- o V(xv Téfl o B o Sg(‘%.)) )

where 7, denotes the projection of R" on R".

LEMMA 3.1. - Suppose that there is a subspace V (of dimension p, p > 1) of g
which does not contain any cm'zéical element for B at xy and that B is transversal
at xo along V (i.e. B(xo) € gSV)°). Then there esists a neighborhood Uy of 2y in U

Lo
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and a unique differentiable map s in Uy with values tn V such that
Telwp sw) © B o Seaps@) 18 tmnsversal along V in x for every x i Uy te.:
Tmp s() © Bo Sexps(ac)(x) S C((S e

PROOF. — After renumbering the basis of V° say that (X3, ... ,Xp) is a basis of
V and consider the mapping

r:VxU—RP
X, %) — 1y o M (exp X)

with 7, the projection of R" on R”; so

F(X; x) = (<dSX1(DC) T;xp _X oB OSepr(x»)z 1,

The mapping [ is differentiable in V' x U and the partial differential at 0 of the
I
mapping X — I'(X,xy), which is given by Z—X(O,xo) = mp o dMy,|,, is an iso-

morphism of V on R? since by hypothesis V' does not contain any critical points
for B at xy (i.e., dMy,|,(X) # 0 for every X € V and X # 0). Now, B being sup-

posed transversal along V at xo, we have I'(0, ) = ((dSx, (o), B(x0))),_, =0

Therefore by the implicit function theorem there exists a neighborhood Uy of
in U and a unique differentiable map s on U, with values in V' such that
I'(s(x),x) =0 for every x € Up. So (dSx, (), Twp s@) 0 B o Seupsy@)) =0 for

i1=1,...,pand x € U,. O

REMARK 3.1. — Let us indicate by V,,(B) any maximal subspace of ¢/,
with basis (Xj,...,X}), such that the functions defined on U x G by
(x,9) — (dSx,(x), T1 1 oBoSyx)) are free. Under the hypothesis of Lemma
3.1, if V contalns some subspace Viu(B) then Texp —sw) © B o Seapsw 18
transversal in x since (dSX, ep —s(2) oBoSexps(x)> i=p+1,...,7, can be

written as a linear combination of (dSx,, T emo sw) © B oSexp 3(96‘)>1:1“...,p and so

vanishes. Thus Texp —s@)

0 B o Seepsw(@) € gx for every a € U,.

There exists a scalar product (|) on N, and a linear mapping x: M — N such
that (x,y) = (k(@)|y) for every (x,y) € M x N [7]. If E is a subspace of M, we
shall denote by E° (resp. x(E)1) the polar (resp. the orthogonal) in N of E with
respect to (,) (resp. to (|)). Proposition 2.1 and the previous lemma show that for
x € U sufficiently close to xy, A(x) and T! oBoS§, for some g, € G, are
transversal in x; so is A(x) + sT - oBoS,, . The next step will be to seek if

A(x) + 8T1,1 o B oS, (x) belongs (for £ small enough) to the orbit IC(C[ ) of xo

Hence 1f one can show, that for x sufficiently close to xy, the subspaces g”; S © do
not intersect the orbit of x(, the perturbated equation will be solved. Indeed, since
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Ax) + eTl,1 o Bo S, (x) = 0 can be rewritten as T1 ][A(Sgt(ac)) + eB(S,, ()] = 0,
Sy, (x) is a solutlon of equation (3.1). We first prove the following lemma.

We shall denote by M., the space M equipped with the topology induced by
C>(G, M) (recall that we have supposed that M coincides with the space of dif-
ferential vectors for S?).

LEMMA 3.2. - Let xy € U, there exists a subset Uy of U, open in M, and
containing xy, such that

vee U, (g )ﬂK(g’S) = {0}
(actually K(g )N K(g’<S Myt = = {0} for every subspace V # {0} of a').

REMARK 3.2. — Similarly, we have also that

(S, V))

k(qh) N x(g;, = {0} for every x € Uj.

[PrOOF OF LEMMA 3.2] — Let us consider the mapping a: Mo, — L(x(g"; S s R™
where a(x) is defined by a(x)(y) = y(x, %) for any y = r(dSx(x1)) with X € ¢’. That
mapping is continuous, since in M., the operator dS%, X € ¢, are continuous. We
have a(x1)(y) = (dSx,(@1),¥))iz1,.n #0if y € K(g’i), 80 a(x1) belongs to the set
of invertible elements of E(K(g’i), R™) which is open in it. Thus, a being con-
tinuous, there exists an open U; in M, (and U; C U )) containing x; such that
a(x) is invertible for every x € U;. Hence, if y € K(g ) N K(g’s ) for x € U; then
a(x)(y) = y(x,y) = 0, thus y = 0. So K(g’i) N K(g’f) = {0} for everyx € U;. If V
is a subspace of g’ of dimension p, by considering the mapping m, o a (1, being the
projection of R” on R") we obtain in the same way that ;c(q )N K(q’(S YL = {0}
for every « € Uj. O

We place ourself under the assumptions of Proposition 2.1. Accordingly (as

We shall see shortly) ImdA,, C g
= x(g'S ) © ImdAy,.
We shall show that to each ¢ sufficiently close to 0, it can be associated a point
2, close to g in U such that there is one solution of (3.1) located on the orbit of x,
(by the representation S restricted to G').

% , and so by condition (3.3) we can write

THEOREM 3.1. — Let V # {0}, be a p-dimensional subspace of @' with no cri-
tical points for B at xy and suppose that the operators dSk, with X € V, are
continuous. Assume the hypotheses of Proposition 2.1 to be satisfied and suppose
that

(3.4) ScA=T'0A.
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Then, under conditions (3.2) and (3.3), in a neighborhood Uy of x¢ in U, there
exists a differentiable family z., for ¢ small enough, of solutions of the pertur-
bation equation (3.1), generated by the representation S restricted to the com-
mutator G' of G.

Proor. — From Lemma 3.1, there exists an open neighborhood Uj of x
in U and a mapping s: Uy—V such that T;,l oBoS, € K(g’(S VoL ' with
9. = exps(x), for every x € Uy. By Proposition 2.1 one has A(x) € x(g”; ) C
(e S for every x € U N B(0,r) with » small enough. So up to take a sub-
neighborhood of x in Uy we have that A(x) + le Lo0BoSy (@) € (g’(S V)) for
everyx € Uy. Let us showthat A(x) + ¢ T;;I oBo S () remains on the orbit of x
if ¢ is small enough.

Denote by P,,,: N — K(g ) the projection on the orbit of xy in N and consider
the mapping ¢,: N —>K(g’s ): defined by Qo,(y) =y — Py (y). Recall that
Ker dA,, admits a topological supplementary space E,, in M, and consider the
mapping A from the open E,, N (U \ {xo}) x R, of the Banach space £, x R, into
K(q’s)L defined by A(x,) = gy {Awo + ) +¢ T1 °oBoSy, . (x+ x)}. The
mapping A is differentiable and if we 1ndlc;1te by A4y the mapping
x— A(x, 0) = gy, (Axo + ac)) one has d1y(0) = dA,,. Proposition 2.1 once again
gives that Im dA,, C q . Indeed, as A(xy) = 0 and (dSx(x), A(x)) = 0 for all x
in a neighborhood of x9, by differentiation at axy of the function
w(x) = (dSx(x),A(x)), one gets dy, (h) = (dSx(wy,dAy(h)) =0, for every
h € M. Thus ImdA,, = g’ﬁoo by (3.3) and dA,, £, is a linear homeomorphism of
E,, onto the Banach space K(g’io) Since A(0, O) 0, according to the implicit
function theorem there exist #)0, 7 € R, and a unique differentiable mapping u
from ] — n,#l into Ky, N Up\ {0} such that A(u(e),¢) = 0 for every e € 1 — 5, #5l. So
Axy +ule) +¢ T1 oBo ngﬂ(;)(xﬁ +ule) € K(q ) if ¢ € ] — n, yl. Therefore,

mﬂt(?)

dS% being continuous if X € V (by hypothesis), we can choose 7 such that
xo + ule) € Uy N Uy, where U is given by Lemma 3.2 and is open in M; so

(%) A(x0+u(e))+eT1 oBoS

J"O +u(:) Gay+ute)

=0

for every ¢ € ] — n,5l. Now, by (3.4), the relation ( x ) is equivalent to

A(Sy,, (x:)) + e B(S, (x,) = 0

with @, = xg + u(e). O
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