BOLLETTINO
UNIONE MATEMATICA ITALIANA

DANIELA GIACHETTI, GIULIA MAROSCIA

Porous Medium Type Equations with a
Quadratic Gradient Term

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 10-B
(2007), n.3, p. 753-759.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2007_8_10B_3_753_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per
motivi di ricerca e studio. Non é consentito 1’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=BUMI_2007_8_10B_3_753_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2007.



Bollettino U. M. 1.
(8) 10-B (2007), 753-759

Porous Medium Type Equations
with a Quadratic Gradient Term

DANIELA GIACHETTI - GIULIA MAROSCIA

Sunto. — I'n questa nota illustreremo un risultato di esistenza per il problema di Cauchy -
Dirichlet in Qr = Q x (0, T) per equazioni paraboliche con parte principale degenere
(del tipo “mezzi porosi”) aventi un termine di grado inferiore quadratico nel gra-
diente. Il termine noto f e il dato iniziale uy sono funziont limitate non negative.

Summary. — We show an existence rvesult for the Cauchy - Dirichlet problem in
Qr = Q2 x (0, T) for parabolic equations with degenerate principal part (of porous
mediwm type) with a lower order term having a quadratic growth with respect to the
gradient. The right hand side of the equation f and the initial datum wy are bounded
nonnegative functions.

1. — Introduction.

The model problem we refer to is:

g — div (a(u)Du) = )| Vul® + f onQr
(1) u(x,t) =0 onXp
w(ae, 0) = up(x) inQ

where 2 is a bounded open set in RY , T is such that 0 < T < +oo,
Qr=02x(0,T) and 27 =92 x (0,T). The real function a(u) is continuous,
nonnegative and strictly increasing in [0, +00) with a(0) = 0, and the real func-
tion f(u) is nonnegative and continuous in [0, +c0). Examples of a(s) and f(s) are:

(2) a(s) = s™, with m >0  f(s) =s", with v>0

In the particular case f = 0, our equation reduces to the classical porous
media equation, which has been widely studied: we just refer to the fundamental
book of Vazquez ([9]) and references therein.

We point out that the motivation for dealing with such kind of problems comes
from some applicative models in the framework of the fluid dynamics in porous
media, in petroleum engineering and in hydrology (see [5]). Indeed, this kind of
equations arise from the physical modelling of a simultaneous flow of two im-
miscible fluids in a porous medium (water and oil in the case of the so called
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secondary recovery in petroleum reservoirs, or air and water in groundwater
hydrology).

We point out that, while the regularity of weak solutions to problem (1) in the
general form:

(3) wy — divalx, t,u, Vu) = blx, t,u, Vu) + f

has been investigated in the literature (see [8], [4]), to our knowledge, a general
existence result was still missing.

The study of equations of type (3) started in [7]. Some problems with principal
part of porous medium type and lower order terms depending on % and its
gradient are also studied in [1]. The techniques we employed in order to prove
the existence of distributional solutions for our problem are inspired by the ones
used to show the result for nonlinear uniformly parabolic problems in the early
paper by Boccardo-Murat-Puel [2] and by those used in [3] for quasi-linear
parabolic problems with a degenerate coercivity at infinity (i.e. with
l}grolo a(u) = 0). We use a test function method: the test functions employed to get

the a priori estimates involve exponentials of a primitive of the ratio f(s)/a(s),
whose behaviour near s = 0 plays an essential role. An important tool in the
study of the present problem is to prove the existence of a distributional solution
to (1) by using the strong convergence in the space (L2(Q7))" of the gradient of
certain truncations of the solutions of suitable approximating problems.

As a further result of our theorem we get, by suitable adaptations, an existence
result for problems involving singular principal part at =0 (..
11}3(1) a(u) = +00) and possibly singular first order terms (i.e. }}H(l) Su) = +o00).

More specifically we deal with the case:
a(s) =s", —-1<m<0 p(s) = s, v>m—1

The “mixed” problem i.e. where the principal part of the operator is of porous
medium-type and the lower order term is singular in u = 0, is also considered.

2. — The main result.

Let us consider Q a bounded open set in RY, T'such that 0 < T' < 400 and the
sets Qr = Q x (0,7) and X7 = 02 x (0,T). We state the problem related to the
equation (1) in the general form:

uy — div (ax, t,u, Vu)) = b, t,u, Vu) + f(x,t) inQr
P)q ulx,t) =0 onXp
u(e, 0) = up(x) inQ

where f and % are nonnegative functions such that f € L>°(Qr) and uy € L>(0).
Moreover a(x,t,s,&): Q2 x (0,T) x R x RY — RY and b(x,t,8,8): Q2 x(0,T)x
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R x RY — R are Carathéodory functions (i.e. they are measurable with respect
to (x,t) for every (s, &) € R x RY , and continuous with respect to (s, &) for almost
every (x,t) € Qr) and they satisfy the growth conditions:

A1) There exists a continuous real function a : R—[0, 4-00) strictly increasing
on [0, +00) , such that a(0) = 0 and moreover:
a(e,t,s,8) - &> a)E? ae. inQr, andV(s, &) € R x RY;
A2) there exists 4 € R, with 4 > 1, such that:
la(x, t,s,6)| < da(s)|E| a.e. inQr, and¥(s, &) € R x RY;

A3) the following property holds, Vs > 0 and a.e. in Q7:
[a(x,t,s,E) — ale,t, s, pIE—n] > 0 V(& n) € RY x RV s.t.& # g

B) There exists a continuous function f: R—[0, +o00) such that f(s) > 0 if
s > 0, and there exists 0 < 4 <1 such that , for k¥ > 0, one of the following
hypotheses holds a.e. in @7 and V(s,¢) € R x R™:

BOir D e L0+ fbie.t.5,0) < poleP;
B2) if b ¢ LYN0,k) : A(s)|E[* < bla,t,s,E) < B(s)|EF

a

REMARK 2.1. — We point out that in the following we will show that a
distributional solution % of problem (P) verifies wu €[0,k], for
ke = kllwoll o s [[Fll o< > T)-

Furthermore we have to add a technical hypothesis we will need in the fol-
lowing:

H) if g is unbounded near s = 0: 3 ¢ > 0 such that g is decreasing in (0, ¢).

REMARK 2.2. — We observe that condition H) is always attained if the func-
tions a and f are power functions which is the model case we refer to.

Then we define some functions we will use in the following:

S S

4) A(s) 1=fa(0)d0', w(s) ::fa(o’)67"(g)d0',
0 0
P94 it P Loy
a(o) a
(5) y(s) :=

k
- /@da if §¢L1(O, k)

J a(o)
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and for M > 0 the truncation near the origin s = 0:

T m(s) := max{s, M}.

REMARK 2.3. — We point out that y is an increasing function. If /a € L(0, k),
y € L>*(0,k) and, for s € [0,k], y > 0, y(0) = 0;if /a & L0, k), Voo — © and, for
s € (0, k], y < 0. Hence ’® is bounded, so that function y(s) is well defined. This is
a fundamental remark since in the following we will deal with test functions of this
form.

Let us give the definition of a distributional solution of problem (P):

DEFINITION. — We say that u € L>*(Qr) is a distributional solution for pro-
blem (P) if, Vi € C0(Q): i w € LYQr) N C(0, T; L2 (Q)), nalx,t,u, Vu) € L*Qr)

loc

and 1P b(a,t,u, Vu) € LXQr). Moreover w(u) € L*(0,T; HY(Q), u(x,0)=
uo(x) a.e. in Q and YM > 0,7 y(u) € L*0,T; H(Q)). Finally ¥Y¢ € Cy(@Qr) the
following identity holds:

~[[ug+ [[ et Vs = [ [ bie.t.u, v + [ [ 12
Qr Qr Qr Qr

In the case that n = 1 we say that u is a distributional solution regular up to the
boundary of Q2.

Under the above hypotheses we are able to state the following:

THEOREM.— Under the assumptions Al1)-A3), B), H) and D1)-D2), there
exists at least ome bounded distributional solution to problem (P). If
B/a € LX0, k) the solution is regular up to the boundary in the sense of the above
definition.

3. — Sketch of the proof.

Step 0: The approximating problems.

Let us define the approximating problems:

() — div (@ (e, t, un, V) = by, t, un, Vuy,) + f(, 1) inQr
P) Un(2,1) =0 on Xy
’I/Ln(%, 0) = uO,n(x) inQ

where g, € L=(Q)NH (1) () is a suitable regularization of the datum obtained by
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a standard technique of convolution such that it satisfies the property
!
nh_{{}c n HuO,n||H(1)(Q) =0

We point out that we can always assume that u,,, is bounded uniformly in L*(£).
The functions a,,, b,, a,, f, are defined as follows:

an(x7 t7 S, ‘f) = a(x7 ta Tn(Tl/n(S))7 é)a bn(xv ta S, g) = T’n,(b(x7 ta TTL(Tl/n(S))7 é))v

an(s) = a(Tn(T1/u(5)),  B(s) = B(Tn(T1/u(s))),
where
Ty(s) :== max{—mn,min{n,s}}
For every fixed n € N there exists at least one weak solution

u, € L20, T;H(l)(.Q)) NL>(Qr) N C(0,T]; L*(Q)) to problem (P,) (see [2], [6])
The approximating functions of the ones defined in (4) and (5) are:

Ay(s) := f ay(o)da, W, (s) == f (@) do,
0 0
Mdc T e LY0,k)
an(o') a
= 8
_s an(a)da it a £L70,k)

In order to prove that the nonnegativity of the data implies u,, > 0 a.e.in Qr it
suffices to take ¢, = —(u,)_ as test function in (Py) in the case that B2) holds
and ¢, = —(u,)_e ") in the case that B1) holds.

Step 1: A priori estimates.

1) Uniform L>-estimates for {u,},: by rewriting (P,) in the new variable

v, = e 'u,, and by multiplying the new equation by the test function

¢, = e "(v, — k), where k = max (sup, e [0l s [Ifll1) and
Un ~

Bu(s)

T~
e anlS
J T8,

PR t Boe) . ¢ ._
an(8) := ogltlgnr(l”(e s), P,(s):= Orgtzg%ﬁn(e s), I'y(v,) =

we get that there exists k > 0 such that [[u,||;~q,) < k-
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2) Uniform L'-estimates (in the case B1)) or Llloc-estimates (in the case B2))
for {b,(x,t,u,, Vu,)},: in the case B1l) we use the test function ¢, :=
(en®) —1) € L30,T; HY(Q)); in the case B2) we use ¢, = (e"™) — 1)if(x) €

L%0,T; Hy(Q)), where 5 € C3(Q).

3) Uniform L*0,T; H{(Q)) estimates for {w,(u,)}, : the estimate can be
obtained by multiplying equation (P,) by the test function ¢, = "™y, (u,).
Hence:

(6) v )l 20, 7.11100) < €

4) Uniform L?-estimates (in the case B1)) or leoc-estimates (in the case B2))

Sor {a,(x,t, %, Vuy,)},: in the case that B1) holds, (6) implies the estimate:

(7) HVAn(un)”LZ(QT) <C, VneN

since |VA,(u,)| < |V, (u,)|. Then the boundedness of ay(x,t,u,, Vu,) follows
by A2). If B2) holds the estimate can be proved by considering the inequality
| (e, ) Uy Vun)|2 < Ma,(uy) % ﬁn(un)Wuﬂz and by hypothesis H) and Step1l
and Step 2.

Step 2: Convergence results.

o Strong convergence of {u,}, in LY(Qr) (case B1)) or L} (Qr) (case B2)): in

loc
order to get such convergence we use an Aubin-type theorem (see [3]).

e Strong convergence of {VTy(u,)}, in (L2Qr)Y (in the case B1)) or in
L7 .0,T; (L2 (@)Y) (in the case B2)), for any M > 0: we regularize the derivative

loc
in time and use again suitable test functions of exponential type.

e Passing to the limit. To pass to the limit on the terms a,(x,t,u,, Vu,) and
bu (2, t, Uy, Vu,) we use, as main tool, the following properties, that are verified
uniformly in » and for any C = K x [0, T] with K CC E' CC Q:

(8) ZIWITO ff |(}Ln(96‘,t, Uy, V?/Ln)|2 =0, ]}41210 ff by (2, t, %y, Vi) = 0.
CN{un <M} C{u, <M}

In order to prove the results in (8) we use for the first one on the left the test
function —[u, — M]_p?(x) and for the second one on the right the tests
—[e"n M=) _ 17, p?(x) (case B1)) and —[e@)=7@D _ 1] p%(x) (case B2)),
where the function p satisfies p € C3%(Q), p <1, p =1 on K and supp(p) = E'.
The requirements in the Definition are satisfied by the previous estimates. As
far as the assumption on the initial datum is concerned, we prove that u, — u
strongly in C([0, T]; L2 (Q)).

loc
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