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An Elementary Proof of the Exponential Conditioning
of Real Vandermonde Matrices.

STEFANO SERRA-CAPIZZANO

Sunto. — Si fornisce e si discute una dimostrazione elementare, proponibile in un corso di
Matematica Numerica della Triennale, del condizionamento esponenziale di matrici di
Vandermonde: si impega esclusivamente la definizione di condizionamento e l'espres-
sione esplicita della norma infinito su [—1, 1] dei polinomi di Chebyshev di prima specie.
La stessa idea dimostrativa funziona nel caso della ben nota matrice di Hilbert.

Summary. — We provide and discuss an elementary proof of the exponential con-
ditioning of real Vandermonde matrices which can be easily given in undergraduate
courses: we exclusively use the definition of conditioning and the sup-norm formula
on [—1,1] for Chebyshev polynomials of first kind. The same proof idea works vir-
tually unchanged for the famous Hilbert matrix.

1. — Introduction.

Given the grid G, = {ocf)"), ac(ln), ..., 2™} of pairwise distinct nodes and the set

of linearly independent functions ¢,¢,,...,9,, we define the (generalized)
Vandermonde matrix V,, of size n +1 as

(11) Vdij = @), @ = 2, 0,5 =0,...,n.

The classical Vandermonde matrix is obtained by putting ¢,(t) = t,7=0,....n,
so that (V})); j =), 4,j=0,...,n, and is invertible whenever the nodes are
pairwise distinct (see Subsection 1.1).

We wish to show that this choice of the basis functions (analogously to the
case of the Hilbert matrix) is delicate if we restrict our attention to the case of
real nodes i.e. x; = xE") €R,1=0,...,n Indeed we prove that the conditioning
of Vy ie. u(V,) = | V|||Vl is exponential as % and this tells one that the use of
such a basis makes the inherent error (related to e.g. the solution of a linear
system V,x = b) huge, already for moderate size of n, and therefore the
Numerical Analysts must be very careful when using such a kind of matrices (see
[1]). Here for a generic m-by-m matrix A, m € N, we consider the spectral norm

A . /
Al = sup ” acH’ related to the Euclidean vector norm ||| = /> ", |oe; 2.
x#£0,0eC™ HxH
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In fact, in [1, Theorem 4.1] Beckermann proved that

W(V,) = \/%(\/@rl)nil,

and the latter lower-bound may be attained up to a factor (n + 1)*/2; in addition,
very recently Li [3] slightly improved both these bounds. However, the proofs
are quite tricky and involve somehow sophisticate tools (for further discussions
see Remark 2.3 and Subsection 2.1). In Section 2 the conditioning of classical real
Vandermonde matrices is discussed, by employing only tools that could be
presented in detail in a classroom and whose prerequisites are reported below.

1.1 — Prerequisites and notations.

Let G, = {xé”),acgn), ..., 2™} be a grid of pairwise distinct nodes. The poly-
nomial p of degree at most » which solves the interpolation problem p(x;) = ¢, 9;
given values, x; = acgn), 1=0,...,n, exists and is unique: the existence comes
n
from the explicit formula p(x) = Y7, ¢:Li(x), with L;(x) = H
J=0, j#i
unicity follows from the fundamental theorem of algebra. Therefore the matrix
V., is invertible since the given interpolation problem is equivalent to the solution
of the linear system V,a =g, with p(x) = ayp + a1 + - - - + a, 2" (i.e. p is re-
presented in the canonical basis of polynomials, 1,x,...,2", in place of the
Lagrange basis formed by Lg(x), L1(x), . . ., Ly (x)).

Concerning the Chebyshev polynomials, their definition can be given as
Qre1(®) = 2q(x) — qr_1(x), k > 1, qo(x) = 1, q1(x) = x. By direct inspection it is
clear that ¢, (x) = 2" 1" + ¢,_1(x) with ¢,_; of degree at most » — 1 and n > 1.
Moreoverifx € [ — 1, 1] we consider the transformation x = cos (0), 0 € [0, z] and
therefore a simple trigonometric identity shows that g, (x) = cos (nf). As a con-
sequence ||qull,.;_1y =1 and p;, = 27" Vg, is such that p; is monic and the
famous identity

(1.2) 1P oo o1 = 277

is true for n > 1.

X — X5
. the
xi—mj

2. — Main results.

Here we furnish an elementary proof of the exponential conditioning as # of
any classical Vandermonde matrix V,, with real nodes.

THEOREM 2.1. — Let V,, be a classical real Vandermonde matrix with pair-

wise distinct nodes xf)”),xgn) 2™ and let 1(V,) be the (spectral) condition

r%n
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number of V.. Then there exists ¢ > 1 (independent of n) such that, for every n
large enough, it holds

ﬂ(‘/n) > C%,
where we have assumed that there exists the limit [ as n tends to infinity of

PrOOF. — Setting fy = V,e0 with (e;); =1 if k=1 and zero otherwise,
k,i=0,...,n,from the definition of the spectral condition number, we can easily
see that (fy); = 1 for every 1 =0, ...,n, and

2.1) Vol = | V|| > [IVieol| — It = \/7747—1,
240,0eC" ||90|| ”60”
- -1 1 1
P 7 I\ B S U
wpozec Il Ifoll Ifoll  vn+1
Let Sp = ji%axn |90]|, l = 7}1111010 Sn and fn = I/nen = ({,U;Z):[:(]_ We have

[Vall = sup
2#40,0eC™ !

with [ — 2¢ > 1. Hence, by invoking the second inequality in (2.1), we deduce
(-9
+

wVy) = 72 (Il —2¢)"

definitely that is the desired result with ¢ = [ — 2¢ > 1 and independent of n. For
I < 1 the reasoning is similar since

Viel VS 1 st A+
‘/1—1 — Sup || n 2 n n — Z n 2
Voll= 500 el = AT Tl ~ Vsl vasl

with [ + & < 1. Consequently, the first inequality in (2.1) implies
wV) > A+

for n large enough, and thesis follows with ¢ = (I + &)L

If /=1 then we use a different idea. First we consider the auxiliary
Vandermonde matrix W,, with nodes x]’ =x;/sy. In such a way we have
«; € [—1,1] and

Wy, =V,Dy, D, = diag;_,

eeny

W(8,7), sy = max [a].
7=0,...n

.....

From the sub-multiplicativity of the (matrix) norms (i.e. ||AB]|| < ||A|| - ||B]| for
any choice of m-by-m matrices A,B) we obtain u(W,) < u(V,)u(D,,) with
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u(Dy) = st if s, > 1 and u(D,) = ;" otherwise. Therefore

(22) ﬂ(Vn) > ,U(Wn)ﬂil(Dn)
where, by virtue of the relation [ = 1, for every ¢ > 0 there exists # for which
(2.3) sE>(1—9)", VYn>n.

Since ¢ > 0 is arbitrary, it suffices to prove the exponential conditioning of W,
(which means that we are assuming all the nodes in the interval [ — 1, 1]).

The inequalities in (2.1) still hold with W,, in place of V,, since they do not
depend on [. In this new context the key bound is from below and concerns
|Wa| > v + 1. We use the monic Chebyshev polynomials of first kind p; over
[ — 1, 1] having degree n > 1 (see [4] and Subsection 1.1). Hence, by calling x* the
vector of the coefficients of p; in the canonical ascending polynomial basis, by
monocity of p}, we deduce ||x*|| > 1 and then

W= sup |
240, xeC™!
W W)
- (| W ||

[l
W]

1
Zp]*l monicity ||an*|| .

Now, by direct inspection, the expression of the vector W, x" is such that its -
th entry is given by (W,a*); = 37/ ()Y (x*); = p;,(¥}) and consequently, by (2.1)
and by the latter inequality on |W,1||, we deduce

1(W,) =W |[[|W, |

1
>vn+1
[[Wha||
1
Dito oy @)l
1
>vn+1 >
V@ Dlp; g1
>12 2"

and finally the claimed result follows from (2.2) and (2.3). O
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REMARK 2.2. — Theorem 2.1 is still valid under the assumption that max. |x(”)|

has no limit as » tends to infinity. Indeed, if the above sequence has lc accumu-
lation points, k < oo, then n%ax \x(")| can be partltloned in exactly k sub-
J

sequences having limit: in other words N = U{nfj) : g €N} and on every
=1
Vandermonde subsequence V ¢ 9 We can d1rect1y apply Theorem 2.1 (since for

everyj =1,... k, the subsequence max |9c | has limit as q tends to infinity).
j=0,..
Therefore there exist positive numbers ¢;>1, j=1,...,k, for which

wV, 0 ) > c With q large enough. Putting together the partial information it is
true that

uVy) > c"

with n sufficiently large and ¢ = rnmlC ¢; > 1. If the set of accumulation points is not
J_
finite then the preceding reduction to Theorem 2.1 cannot be done in the same
manner since in}' ¢, #J = oo, may equal 1 although every c; is strictly larger than 1.
j&

In such a situation we can reduce the reasoning again to Theorem 2.1, by
exploiting a contradiction argument. Indeed, if the desired result does not hold
then we can define a subsequence 7, for which

(2.4) (V) < "

for every c > 1 and for every q > q.. By Theorem 2.1 it has to be true that
rgax \aﬂ | has no limit as g tends to infinity. However we can extract a sub-
j

.....

(.
sequence 7, from n, for which max |, o) | has limit as ¢ diverges infinity.
J=0,....,nq,

Therefore, again by Theorem 2.1, we have u(V,, ) > d"«, d > 1, definitely: it is
clear that the last inequality contradicts the relation in (2.4).

2.1 — A further comparison with the literature.

We recall that on this topic there exist many contributions where the ex-
ponential conditioning is proven, and also with best constants (see Beckermann
[1]). Other results can be found in [2, 5, 7, 8]. In all these works the findings are
more general, but the approach is more sophisticate and is not elementary: here
for not elementary we mean that advanced knowledge is required and therefore
the reasoning is not easily understandable e.g. by undergraduate students. For
instance Krylov vectors, Gram matrices, Hankel matrices, expansion coefficients
of orthogonal polynomials, and nontrivial inequalities involving these objects are
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basic tools in [1, 2, 3, 5, 6, 7, 8]. On the other hand, also some of these more
delicate proofs can be simplified, by only considering further polynomials asso-
ciated to the Chebyshev ones. As an example, let s, be the maximum of the
moduli of the nodes like in Theorem 2.1. Since the spectral norm of V,, cannot be
less than the Euclidean norm of any of its rows, it follows that ||V,,|| > sl'. In
analogy with our proof, take ¢, = 2""1p’ as the normalized Chebyshev poly-
nomial of degree » with unitary infinity norm on [ — 1, 1] and leading coefficient
equal to 2”1, see Subsection 1.1. Furthermore, arrange the coefficients of
Gn(®) = ¢y (/D) in the basis of the ascending monomials as a column vector y (see
[1, Proof of Theorem 4.1]): as a consequence, ||y| > (2/s,)"/2 (the leading
coefficient of the new polynomial ¢,,) and V. is the column vector containing the
samplings of ¢, at the given nodes. Hence ||V,,|| > v/» + 1 so that

Wyl 2

“IVayl — Ve + 1

We remark that similar bounds were obtained by Gautschi and Inglese [2] and by
Tyrtyshnikov [7].

Now if we require that our students know also the explicit expression of the
Chebyshev polynomials [4] and the associated recurrence coefficients (see
Subsection 1.1), then we are allowed to make a slightly more careful analysis.
Following [1, Proof of Theorem 4.1] we infer

(2.5) V) > s

Vol = 180,85, s

e n

and thus, setting i = —1, the use of Cauchy-Schwartz leads to the following
estimates

/"(V’ﬂ) 2”(1, Sn, 872“ L. 817/)” M

IVl
Qs Gs)®, - syl
- vn+1
_ |Qn(i)| > 1+ \/i)n -1+ \/é)ﬂl
IV 2vn+1
VR eVt a vt
- 2v/n + 1 o2Vl

REMARK 2.3. — A philosophical (or may be qualitative) motivation for this bad
behavior of the polynomial canonical basis (irrespectively of the choice of G, C R)
can be traced in the “quasi” linear dependence of the functions 1,z,...,x" over
the domain R with large 7. In fact, while the notion of linear dependence is the-
oretically boolean (on a given set of vectors, this property holds or does not hold
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and only one of these facts is true), in Numerical Analysis we can talk of “quasi”
linear dependence when a vector of the set can be approximated sufficiently well
by a linear combination of the others. In this respect we should observe that the
conditioning of a matrix gives a measure of the degree of linear dependence of the
row or column vectors, which compose the given matrix. In our case, e.g. on [0, 1],
when k is large the functions ¥ and 2*+! are “quasi” linearly dependent because
o — 24| oy = A — 1/ + 1)*/(k +1) is infinitesimal as k diverges but
[9/[| . jo.1) = 1 for every j € N. In fact, with regard to a generic Haar system
{¢0:¢1:---,¢,} onl C Randin order to deduce an exponential conditioning of the
associated Vandermonde sequence {(@(xi))zjzo}ﬂ - the precise formal condi-
tion is that

Q01 5---,0np

n—1
min ¢, — Z%%Hw[fb,b]m
Vb > 0, =

maxj—,..n ”ijHoo,[*b«,b]ﬂI

is exponentially decreasing as a function of n. We notice that this condition is
satisfied for ¢j(90) = o/ and for a nontrivial real interval 1.

As already observed, the latter bad functional behavior can be read directly in
the conditioning of the matrices V,, and also in the conditioning of the famous
Hilbert matrix H, [8], which comes from the same set of polynomial monomials
¢j(ac) = o/ via integrals, and for which a version of Theorem 2.1 can be stated and
proved in the same way (but working directly on H,, which is symmetric positive
definite). For generalizations of the Hilbert matrix on unbounded intervals, the
analysis can be much more involved and in that case it is probably much easier to
follow Todd [6] and to prove first an explicit formula for the inverse of a Cauchy
matrix; an other alternative is the use of the techniques by Taylor [5] or finally
the application of the tools in [1].

A this point we should observe that the pathological behavior of the poly-
nomial canonical basis ¢j(x) =a2/,7=0,...,n, is in actuality related to the do-
main only. Indeed if we shift to the complex field and we consider G, formed by
the (n + 1)-th roots of the unity, then the corresponding Vandermonde matrix is
the Fourier matrix F,, which is perfectly conditioned since F, is unitary and
therefore u(#,) = 1: indeed on the unit complex circle (where each node of G,
lies) the functions 1,z,...,2" are substantially linearly independent and more
precisely they are orthonormal with respect to the L? scalar product expressed in
the variable 0 with 2/ = exp(ij0), 0 € [0, 27).
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