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(8) 10-B (2007), 769-783

Computation of Biharmonic Poisson Kernel
for the Upper Half Plane

ALI ABKAR

Sunto. — Consideriamo innanzitutto il nucleo biarmonico di Poisson per il disco
unitario e studiamo il comportamento al bordo dei potenziali associati a questa
Sfunzione nucleo. Useremo poi alcune proprieta del nucleo biarmonico di Poisson
per il disco unitario per calcolare l'analogo nucleo biarmonico di Poisson per il
semipiano superiore.

Summary. — We first consider the biharmonic Poisson kernel for the unit disk, and study
the boundary behavior of potentials associated to this kernel function. We shall then
use some properties of the biharmonic Poisson kernel for the unit disk to compute the
analogous biharmonic Poisson kernel for the upper half plane.

1. — Introduction.

Let D ={z € C: |z| < 1} denote the open unit disk and T" = 9D denote its
boundary in the complex plane. The upper half plane will be denoted by

Ci={x+iwyeC: y>0}

Let 4 stand for the Laplace operator

Y
4

A = A = — _ e = 3
M Ere + 82/2)’ =0+,
in the complex plane. It is well-known that the Green function for the Laplacian
is the function
2

z2—(

1-{z

G(2,() = log , (,0) € D x D,

which is a fundamental solution to the Dirichlet problem for the unit disk;
4,G(z,0) = 9:(z), here d; denotes the Dirac measure at {. For details on the Green
function see [7].
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In this note we are concerned with the partial differential operator 4?. The
Green function for the operator 4* in the unit disk is the function

z'Cz

I'(z,0) =z - log ; __

n (1 - |z|2) (1 - |§|2), 0 €D xD.

This function solves, for fixed { € D, the boundary value problem

A0 =0/2), zeD,
I'(z,0) =0, zeT,
@z(z)F(Z,C) =0, zeT,

where 0, stands for the inward normal derivative with respect to the variable
z € ‘I, and J; denotes the Dirac distribution concentrated at the point { € D. For
a physical interpretation suppose that we are given a thin elastic plate spread
over all of the domain D and clamped at the boundary T. If we apply a force on
this plate at the point ¢, the biharmonic Green function z — I'(z, {) describes the
shape of the clamped plate at another point z (see [3]).

A real-valued function % defined on an open subset of the complex plane is
said to be bikarmonic if Au =0 (either in the usual or in the sense of dis-
tributions). The main objective here is the computation of biharmonic Poisson
kernel for the upper half plane. For this purpose we scrutinize the biharmonic
Poisson kernel for the unit disk in more detail (see § 2). This suggests a direct
method of calculating the desired kernel function for the upper half plane (this is
done in section 3).

2. — The biharmonic Poisson kernel for the unit disk.

Let u be a C*°-smooth function in a neighborhood of the closed unit disk.
Using Green’s formula twice we obtain

@1) e = [ 1e,04udAQ)
D
1 1
3 j[- 0o (A (2, 0)uUO do(©) + 5 [ ATz, O0pu(0) do(0),

where dA({) denotes the normalized area measure on the unit disk, and da({)
stands for the normalized arc-lengh measure on the unit circle. A computation
shows that

40,0 =60 O+ HE),  (0eDxD,
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where the second term is given by

1— |

TGF (z,0) e D x D.

H(z,0) = (1 - \z|2)

Moreover, another computation shows that for every (z,{) € D x Twe have

1 — |z (1—zFf}
G

For a possibly non-smooth function u satisfying some growth conditions, the
author and Hedenmalm [2] succeeded to find a Riesz-type representation for-
mula in terms of the functions H(z,{) and F(z,{). More precisely, the formula
(2.1) generalizes to

(2.2) FQ,O=- %8,Z@A¢F(z, 0= % {

w@) = [ 1(0du(©) + [ He 0di0) + [ > Fe0duo), ze D,
T T T

where u is a positive Borel measure on the unit disk, and v and 2 are two real-
valued Borel measures on the unit circle.

For fixed { € T, the function F'(z,{) defined by (2.2) is biharmonic; in the
sense that it satisfies the equation A?F(z, {) =0, z € D. The function F(z,{) is
known as the biharmonic Poisson kernel for the unit disk. This kernel function
has lots of interesting properties. Among other things, we shall see that Fatou’s
theorem concerning the almost everywhere existence of nontangential limits is
valid, so that the biharmonic Poisson kernel resembles the usual one. This
generalizes the classical Fatou’s theorem valid for the (harmonic) functions de-
fined by the usual Poisson kernel (see for instance [4]) to biharmonic functions
defined by the biharmonic Poisson kernel. To see another property of this kernel
function, we refer the reader to [1].

We now state a proposition which collects some intrinsic properties of the
biharmonic Poisson kernel for the unit disk.

PROPOSITION 2.1. — Let F(z,{) denote the biharmonic Poisson kernel for the
unat disk. Then
(@) F(z,0) >0for(z,)eDxT,
(b) [F(z,0)da(Q) =1forze D,
-

() F(rl,2) =F(z,0), for 2,0) e Tx Tand 0 <r <1,
(d) F(z,0) = 0 uniformly as |z| — 1 and z* € T'\ I, where z* = z/|?| for
2 # 0, and I; is an arc centered at (.

PrOOF. — The proof follows easily from the definition of F'(z, {). O
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For f € LX(T) the function

u@) = FLAYO) = [ Fe0f O do©
J

is called the F-integral of f. We shall see that the F-integral of a function
fe C(”g ) behaves very well in the closure of D. For f € L(T) and z € T we

define f on D by
~ flz) if r=1,
forz) = .
u(rz), if 0<r<1.

As a consequence of the biharmonicity of F'(z, {) in the z variable, we see thatf is
a biharmonic function inside D.

k
LEMMA 2.2. — Let f(z) = > cu2" z €T, be a trigonometric polynomial
on 1. Then n=-k

frz) = Z ™" ( (1 — 7'2)), 0<r<l1, ze.

n=—k
Proor. — The case » = 1 follows from the definition. Assume that 0 <r < 1

and z € T'. By definition

fw) = f F 00O do© = 3" e [ s, 02" dot0

n=—k T
We have to compute the following integrals:
_ 2 B 3
[ P a0 - { W&” 0 (1'”"):” do (o}
T o

We first assume that » is nonnegative. As for the first integral above, we see
from the definition of the usual (harmonic) Poisson kernel P(w, (), for w € 1D and
(e T, that

= 1r2P) gy — g g2y [0 g
jg_ e = ),[[|g_rz|25 o({)

= (1=) [ Pr2,0)0"da(0) = (1 - 7)(r2)".
]
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On the other hand,

f ﬁddé) = i (p+1)(g+ 1) f (20" (20)1¢"da ()
B T

p.q=0

i (p4n+1)(p + 1)p2PHngrtngp — (Tz)"{i(p +1)%% 4+ ni(p + 1)7210}

p=0 p=0 p=0
— ()" 1+72 n
- (1-12)P " (1-2)

and consequently,
_2)3
a-r )4 {"do(O) = ()" {1+ 7% + n(1 — 1)}
r |€ - 7‘2‘

Hence

[Fez 00 do = %(rz)" (A=) + A+ +nd —)
J

=02 (1450 -1).

Now assume that n = —p is a_negative integer. Similar argument, using the fact
that for ¢ € T we have (" = ({)’, we see that

f Frz, O do(0) = vz (1 +2q - 7'2)) ,
T 2
from which it follows that

7o) = [ 2000 do© = Y e [ Flrm 02" dot
T

n=-k T

= Z ez (1 + g(l - 72)).

n=—k

O

PROPOSITION 2.3. — Let f € C(T) and uw= F[f]. Then f is uniformly con-

tinuous on . In particular, the functions u.(2) = u(rz), (z€ T,0<r < 1)
converge uniformly to f as r — 1.

Proor. - It follows from Proposition 2.1(b) that for 0 < » < 1 we have

|u(rz)| =

[FO=.07 Qo0 < sup | £O1 = 1
T €
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Hence
IFlls = Il f € CeD.

k
Let p(z) = > cu2" be a trigonometric polynomial on [". By the previous lemma
n=—k

k
- n
Prz) = E_k:cnr‘"‘z" (1 +51- %))7 0<r<1, zeT.

In particular, p is continuous on D. Since the trigonometric polynomials are

dense in C(T), we can find a sequence of polynomials {p,},-; on T such that
lpn —fll+ — 0 as n — oco. It now follows that

B0~ £ |l5=IPu —fllx — 0, as n— oc.

Hence the sequence p,, converges uniformly tof on D. As we already observed,
each p,, is continuous on D, so that f is uniformly continuous on D. In particular,
if 0 < 7 < 1, then continuity of f on D yields

lim fr2) =), z€TT,

or equivalently,

[|24, —fH,’[(—>O7 as r — 1. O
Let P(z,{) denote the Poisson kernel for the unit disk, and consider the
Poisson integral of f € LY(T), that is,

PIfIG) = [ P, 0f©do®,  zeD.
J

According to a theorem of Fatou, P[f] has nontangential limits, almost every-

where on the boundary. We now consider the F-integral of f given by

u(z) = F[f1(z). The main result of this section is an analog of Fatou’s theorem:

the function «# has nontangential limit almost everywhere on the unit circle.
Let us fix a real number a > 1. For { € T, we define

Q0 ={zeD: z-{ <ald-]z]).

THEOREM 2.4. — (Fatow’s Theorem) Let f € L'(T) and let uw = F[f]. Then u
has nontangential limit for almost every { € 'I; that is

lim u(z) =f(Q), for almost every (e T.
2,032

Before we prove the theorem, we need a lemma which is key to the proof of
Fatou’s theorem. Exploiting the notations of Theorem, we define the non-
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tangential maximal function of u at { by

WO = sup u(a).
2€Q,(0)

For a subset £ of the unit circle, the notation |E| stands for the one-dimensional
Lebesgue measure of E.

LEMMA 2.5. — Let f € LX(T) and u = F[f]. Let uw’ be the montangential
maximal function of w at { € 1. Then for every positive number A we have

e 9+ 12a
{CeT: w) >} < THf”LI(T)'

Let us postpone the proof of the lemma and manage to deduce Fatou’s the-
orem form this lemma.

PrOOF OF THE THEOREM. — We can assume that f is real-valued (the same
argument can be applied to real and imaginary parts of f). Put

wp(©) = limsup [u) — fQ-

Qu(D32—(

It is clear that wy is nonnegative, moreover,

wr(Q) < limsup [u(2)| + |F(O] < u (O + [F(O].

Qu(0)32-¢

This implies that for every ¢ > 0 we have
HCeT: w@>e}| <[{CeT: w>e2}+|{LeT: [|fQO]>e/2}
According to the above lemma,

18 + 24
{CeT: wi)>e/2}| < %Hf”ycr)-

On the other hand, by Chebyshev’s inequality (see [4])

2
HEeT: [fO] >e¢/2}] < EHfHLl(T)'

Combining these relations, we obtain

20424

We now assume that g is a continuous function which approximates the function f
in the L'(T)-norm; that is || f — g||z1¢r) < & Since g is continuous, we conclude
that w,({) = 0, hence wy = wy_,. We now apply the above estimate to the function
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f—gtoget
HCeT: o) >el|=[{CeT: wy@) > e}

— M = (20 + 240)e,

from which it follows that wy = 0 almost everywhere on the unit circle. In other
words,

lim u(z) =f(0), for almost every (e T.
Q032

The proof is complete.

ProoOF oF LEMMA 2.5. — Recall the Hardy-Littlewood maximal function of
f € L(T) defined by

1
Mf(0) = sup —fIfI,
. el
where I; is an arc centered at { € T. Our first objective is to show that

u, () < B+40)Mf(©), (el

Assume this temporarily and use the well-known fact that the operator f — Mf is
weak-L! (see [8]), meaning that for every /. positive

3
e MO > A4 < Ml

we conclude that

1Fllzacry-

{eT: uZ(C)>},H§HC€T: T p— H<9+12“

3+4a) |~ A

Hence the lemma follows if we verify that the above inequality holds. To this end,
we may assume that ¢ = 1. Fix a point zg = 7pe® with the condition that |0y| < 7.
Recall the usual (harmonic) Poisson kernel

1o
1+75—2rgcos (0 — )’

P.,(0) = P(zp,e") = 20 = 1pe' € D.

Since P,,(0) is a decreasing function of 6 € [0, z], it follows that for |6y| < [0] <=

we have
sup {P,,®)|0] <t <=} =P, ().

On the other hand, for |6] < |6|, the above supremum is attained when ¢ = 6,
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and its value is
1-75 1+
1-|—7‘(2)—27"0_1—7"0.

Let us look at the biharmonic Poisson kernel F(e'’, zy) as a function of 6 for fixed
zo = roe'’. For this, we write

F..(0) = F(e" z), 20 = 19e™.

As a matter of fact, there is the following interesting relation between the
Poisson kernel and the biharmonic Poisson kernel:

FGO =10~ EPPEO+ PO}, GDeDxT.

We now define
D,,(0) = sup{F,,®)|0| <t < =}.

The function @,,(0) is an even function on the interval —n < 0 < z, it dominates
F,,(0), and it is a decreasing function of 0 < ¢ < zn. Indeed, @,, is the least de-
creasing majorant of /. Since Mf = M(|f|), we may assume that f > 0. Suppose
that @, is an increasing limit of a finite combination of characteristic functions of
the intervals ( — 0y, 0;,). More precisely, there is a sequence of positive numbers
¢ with Y7 ¢ < || @y |11 such that

n

1
hn(0) = Z Ck <m}{(ek,ak)(0)> — @, (0), as n — oo.

k=1

It follows from the monotone convergence theorem that
[ro.@ado = 1im [ ron.©0o
T T

n

O,
.= 1
= Jim ;ck% [ r0a0 < M)y

—0y k=1
< ME|| P, [l 101y

To have an upper bound for the L!(T)-norm of @,,, we first note that for
|60 < 10] < =, we have &,,(0) = F,,(|0]) and

1 1+7y  (1+m)?
®ZO(6)_2(1_T(2)){1_7"0+(17"0)2}’ |0|§|HO|

The second thing we need to know is the following estimate (see [5]):

100l <ma, 29 € Q).
1 — |zo]
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Since @,, is an even function, we can write

0l —2f 2,02 12 f 2,02
6o

It follows from the definition of @, that

o]
2 [ @0(9)@<%1(1_72){1+r0+(1+%)}
0 2n -

_ 16o] 1 + 7o)
=5 {(1+0)+1 7”0}

|00 8
< 7Ol _°
<o T

< 210 410
T (1 — |zo]) ~

< 2 +4a.

This yields
1Polliery < 1+ @2 +4a) =3 + 4a.
And finally it follows that

) = f FOF., 0% f O 05

< M| P | 11y
< B +4a)Mf ().
Since zy was arbitrarily chosen in Q,(1), we conclude that
wi(1) < B +4a)Mf (1),

completing the proof of the lemma.

3. — The biharmonic Poisson kernel for the upper half plane.

In this section we intend to find the upper half plane analog of F(z, () studied
in the previous section. Given the usual Poisson kernel for the unit disk, it is easy
to find the Poisson kernel for the upper half plane (or any other simply connected
region). What we need is a Moebius transformation which maps the given region
onto the unit disk, then a change of variables does the job. Unfortunately, the
biharmonic functions are not preserved under Moebius transformations; there-
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fore this method does not work. Instead, we have to appeal to a direct compu-
tation of the desired kernel function.

We first recall (see for instance [6]) the biharmonic Green function for the
upper half plane; this is the function

z—(

2
UG = [z = log|—=| +4Im@ Im@), &0 € Cyx U,

which solves, for fixed { € C,, the boundary value problem

AU, ) =0k), z€Cy,
URr,O=0, z€R,
an(z)U(Z7 C) = 0, zeR.

We start by the following lemma:

LeEMMA 3.1. - For fixed z € C we have

B (-2 2 2—Z
AgU(%C)—logC_z +2Re 73 ) leC,.
Proor. - Since U(z, {) is symmetric, we can write

2
UO=1- z|210g C_—; +4Im(&) Im(z), (2,0) e CLxC,.

It is enough to compute the bilaplacian of the first term, since

A(Imz) Im(0)) = 0.

Writing
O e P SR (ol k)
I — 2| logg_2 = -2 Z)log(l—z)(Z—z)’
we see that
o 2y ¢ —2f . (-2 . _z-%
a—§<|C—z| logﬁ )_(C_Z)l()gg“—? +(C_z)ﬁ'

Applying the differential operator Q_ to the expression above, we end up with
the desired result. ot O

From now on, we adhere to the following convention. For z and { in the upper
half plane we write

2 =x+1y, y >0,
{=t+1s, s>0.
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LEMMA 3.2. — Let z € C, be fixed. Then we have

@t —af + (s —y)* 4y(s +y)
t—af+s+y?) -+ s+y?

AQU(@O = 10g<

and

B N2 2
gAgU(z,C)z 2(23 Y) - 2(zs+y) - C—x) —(+y) .
-2 +G6-—y)" (Et-—2)"+6+y ((t—x)2+(s+y)2>

s

ProoF. — The first statement follows from Lemma (3.1). As for the second
equality we can just differentiate the expression 4:U(z,() with respect to the
variable s. O

LemMA 3.3. — The outward normal dertvative of 4:U(z, ) on the boundary of
the upper half plane, R, is
~4y PG s
R (ol

Proor. — It is enough to put s = 0 in the second expression of the Lemma
3.2). O

Motivated by the biharmonic Poisson kernel for the upper half plane given by
the equation (2.2), we can define the biharmonic Poisson kernel for the upper half
plane.

DEFINITION 3.4. — For z € C, and t € R we define the biharmonic Poisson
kernel for the upper halp plane as
10

s=0

y Y — @ -t
e ()

1
T

In the following lemma, we shall see that for fixed ¢ € IR, the function F'(z,1) is
biharmonic in its first variable.

LEMMA 3.5. - For fixed t € R, we have

AFF(z,t) =0, zeC,.
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Proor. — It is well-known that

Yy 1 .
Y (= C
(gc_t)2_|_y2 m(t_z), ze .,

is the usual (harmonic) Poisson kernel for the upper half plane. In particular, it is
biharmonic. What remains is to verify that

Y —y — 17
(@@= +y)*

is biharmonic. A direct computation shows that the expression

K, y) =

9 ot ot ot
A K =—K 2—— -
(x,y) 5t (@, ) + R K(x,y) + oy K(x,y),
vanishes identically for z = x + iy in the upper half plane. O

We shall at times refer to F'(z,t) defined in Definition (3.4) as the biharmonic
Poisson kernel for the upper half plane. Note that F'(z,t) can be written in the
form

F@z,t) =F@+iwy,t) =F,(x -1, 2 e Cy, teR,

where

1] y -t
Fyt) == .
o ”{y2+t2+y<y2+t2>2 e

We now proceed to study this new biharmonic kernel function in more details.
Indeed, we should verify that F'(z,t) enjoys the intrinsic properties of a kernel
function; it is an approximate identity.

THEOREM 3.6. — Assume that

F,t) =F@+iy,t) =Fy(x—-1), 2eC,, tekR,

where

1 Y ?/2 tz ]
F,t) == + ;

denotes the bitharmonic Poisson kernel for the upper half plane. Then

(a) the integral of the biharmonic Poisson kernel over the real line is 1:

ny(t)dt -1, y>0,
R

(b) for fixed y > 0, F, is a positive and even function on R which is de-
creasing for 0 < t < oo,
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(¢) forevery o > 0 we have

supF,(t) - 0, as y—0,
[t|>0

(d) for every 6 > 0 we have

ny(t)dt 0, as y—0.
/>0

ProOF. — To prove (a), it is easy to see that for ¥y > 0 we have
v -yt yt 17
f sdt= |52 =0.
(yz + t2) Y +1 t=—00

It now follows from the definition of F,(t) that

t=00

f F,@dt = 7 FiE + Z dt = {arctan(; )} =1

t=—00

As for part (b) we see that I, (t) = Fy( — t), that is F'; is an even function on R. A
computation shows that
3
Ipp—— <
i (y? + t2)°

fory > 0 and ¢ > 0. Therefore Fy is decreasing on the interval 0 < ¢ < co. Hence
its maximum value is attained for ¢ = 0, that is

F0) <F,0) ==, ¢>0.
my

Since I, is strictly decreasing on 0 < ¢ < oo, and F(t) — 0, as t — oo, we con-
clude that F, is positive.
It follows from part (b) that

3 2
Yy Y’ —yo

sup F,(t) = F,(0) = +

lt]>5 Y Y 22 (04 2P

—0, y—0.
This proves part (c). Finally, part (d) follows from the fact that
[ Rwa—o, y—o

which in turn is a consequence of the monotonicity of F,. O
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