BOLLETTINO UNIONE MATEMATICA ITALIANA

ELEONORA CRESTANI

A Generalization of Quasi-Hamiltonian Groups

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 10-B (2007), n.3, p. 829–842.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2007_8_10B_3_829_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

A Generalization of Quasi-Hamiltonian Groups

ELEONORA CRESTANI

Sunto. – Iwasawa classifca i gruppi finiti G in cui tutti i sottogruppi V sono permutabili, ciò UV = VU per ogni sottogruppo U di G. Tali gruppi sono detti quasi-hamiltoniani. Noi classifichiamo i gruppi finiti in cui i sottogruppi non permutabili hanno tutti lo stesso ordine e quelli che hanno una sola classe di coniugio di sottogruppi non permutabili.

Summary. – Iwasawa classifies finite groups G in which all subgroups V are permutable, that is UV = VU for all subgroups U of G. These groups are called quasihamiltonian.

We classify the finite groups whose non-permutable subgroups have the same order and the ones which have a single conjugacy class of non-permutable subgroups.

Introduction.

The structure of groups whose subgroups are all normal (hamiltonian groups) has been completely described by R. Dedekind and R. Baer. A long series of papers has dealt with generalizations of this result; let me mention two of them. A first generalization studies groups which satisfy conditions on the numbers of non-normal subgroups. Brandl (see [1]) classifies groups in which non-normal subgroups are in a single conjugacy class.

G. Zappa (see [5] and [6]) classifies finite groups whose non-normal subgroups have the same order. In addition to the groups found by Brandl, Zappa finds only the *p*-groups described in Theorem 1 and 2 in [6].

A second generalization studies groups whose subgroups have a property close to being normal. Iwasawa (see [2]) classifies finite groups G in which all subgroups V are permutable, that is UV = VU for all subgroups U of G. These groups are called quasi-hamiltonian. Our aim is to study finite groups whose non-permutable subgroups have the same order. This will also allow to classify the ones whose non-permutable subgroups are in the same conjugacy class.

1. - Preliminaries.

DEFINITION 1. – A subgroup H of G is permutable in G if HK = KH for all subgroups K of G. We will write HpermG.

Such subgroups are also called quasinormal.

We list here a number of well known properties of permutable subgroups:

- 1. if HpermG, $K \leq G$ then $H \cap KpermK$;
- 2. if H, KpermG then HKpermG;
- 3. if HpermG, $N \subseteq G$ then HN/NpermG/N;
- 4. if $H \leq G$, $N \subseteq G$, $N \leq H$ then HN/NpermG if and only if HpermG;
- 5. if HpermG, $K \leq G$ and (|H|, |K|) = 1 then $K \leq N_G(H)$;
- 6. if *H* is a Sylow subgroup of *G* and HpermG then $H \subseteq G$;
- 7. if *H* is a maximal subgroup of *G* and HpermG then $H \subseteq G$;
- 8. if H is a cyclic permutable subgroup of G then each subgroup of H is permutable in G.

PROPOSITION 1.1. – G is a finite non-nilpotent group whose non-permutable subgroups have the same order if and only if $G = N \times P$ split extension where $N \subseteq G$ is of prime order q, P is a cyclic p-group with $p \neq q$ and a generator of P acts on N as a nontrivial automorphism of order p.

PROOF. – Assume first that the non-permutable subgroups of G have the same order. Since G is a finite non-nilpotent group, there exist a non-permutable Sylow p-subgroup P and a maximal non-permutable subgroup M of G. As non-permutable subgroups have the same order, |M| = |P| and non-permutable subgroups are cyclic. It follows that P is a p-Sylow, maximal, non-permutable and cyclic subgroup.

Let N be the subgroup generated by all Sylow q-subgroups of G where q runs over all prime and $q \neq p$. These Sylow q-subgroups of G are permutable, as their order is different from |P|, and so they are normal. Set $g \in N$ an element of prime order q. $\langle g \rangle$ permutes with P, $P\langle g \rangle = G$ and so $N = \langle g \rangle$.

 $\Phi(P) \unlhd P$, it is permutable in G and then $g \in N_G(\Phi(P))$. It follows that $\Phi(P) \unlhd G$ and $[N, \Phi(P)] \le N \cap \Phi(P) = 1$.

Finally P and N do not commute, that is $[N, P] \neq 1$. Conversely, if G has the structure described in the statement, theorem in [1] proves that in G there is only a conjugacy class of non-permutable subgroup, with P as rapresentative. \square

Proposition 1.2. – If G is a finite nilpotent group whose non-permutable subgroups have the same order then G is a p-group.

PROOF. – Suppose G is not a p-group. Then $G=A\times B$ where A and B are nontrivial Hall-subgroups. The subgroups of G are $H\times K$ with $H\leq A$ and $K\leq B$. Let $H_1\times K_1$, $H_2\times K_2$ be subgroups of G such that $H_1H_2\times K_1K_2\neq H_2H_1\times K_2K_1$. It follows that either $H_1H_2\neq H_2H_1$ or $K_1K_2\neq K_2K_1$ Suppose $H_1H_2\neq H_2H_1$: $H_1\times 1$ and $H_1\times B$ are non-permutable in G but $|H_1\times B|\neq |H_1|$, a contradiction.

We are reduced to study p-groups. We indicate with $T(p^n)$ the class of finite non quasi-hamiltonian p-groups whose non-permutable subgroups have order p^n .

NOTATION:

 $E(p^3)$ is the non abelian group of order p^3 and exponent p $(p \neq 2)$;

$$M(p^{n+1}) = \langle x, y : x^{p^n} = y^p = 1, x^y = x^{1+p^{n-1}} \rangle;$$

 $S_{2^n} = \langle x, y : x^{2^{n-1}} = y^2 = 1, x^y = x^{-1+2^{n-2}} \rangle;$

 Q_{2^n} is the generalized quaternion group of order 2^n , D_{2^n} is the generalized diedral group of order 2^n and C_{p^n} is the cyclic group of order p^n . If A, B are non identity p-groups with cyclic centre, A * B indicates a central product with central subgroups of order p amalgamated.

2. – The groups in T(p).

PROPOSITION 2.1. – Let G be a group in T(p). Let A_1 and A_2 be subgroups of G of order p such that $A_1A_2 \neq A_2A_1$, and let N be a normal subgroup of G of order p. Then:

- 1. $\langle A_1, A_2 \rangle = A_1 N A_2$ has order p^3 and is isomorphic to D_8 if p = 2, non abelian of exponent p if $p \neq 2$;
- 2. N is the only subgroup of order p which permutes with both A_1 and A_2 . In particular N is the only normal subgroup of order p in G;
- $3 A_1 N \unlhd G$.

PROOF. – Let A_1 and A_2 be subgroups of G such that $|A_i|=p$, $A_i=\langle a_i\rangle$ for i=1,2 and $A_1A_2\neq A_2A_1$, and let $N=\langle n\rangle$.

 A_1N is a subgroup of G of order p^2 and so permutable. In particular A_1NA_2 is a subgroup of G of order p^3 and $A_1NA_2=\langle A_1,A_2\rangle$. As it contains non-permutable subgroups, we have $\langle A_1,A_2\rangle\cong D_8$ if p=2, $\langle A_1,A_2\rangle\cong E(p^3)$ if $p\neq 2$, so that: $\langle A_1,A_2\rangle=\langle a_1,a_2:a_1^p=1=a_2^p,[a_1,a_2]=n\in Z(\langle A_1,A_2\rangle),n^p=1\rangle$.

Let A_3 be a subgroup of G of order p such that $A_1 \neq A_3$ and $A_1A_3 = A_3A_1$. Having order p^2 , A_1A_3 is a permutable subgroup. In particular the subgroup $A_1A_3A_2$ has order p^3 and then $A_1A_3A_2 = A_1NA_2$. Moreover A_1A_3 and A_1N are normal subgroups of $\langle A_1, A_2 \rangle$ and they both contain all the coniugates of A_1 in $\langle A_1, A_2 \rangle$. Then $A_1A_3 = A_1N$. Likewise if A_3 is a subgroup of G of order p such that $A_2 \neq A_3$ and $A_2A_3 = A_3A_2$ then $A_2N = A_3A_2$. In particular N is the only subgroup of order p which permutes with both A_1 and A_2 and then N is the only normal subgroup of order p in G.

We prove now that A_1N is normal in G. Let $x \in G$.

Suppose first o(x) = p. If $a_1x = xa_1$ then $A_1^x \le A_1N$. If $a_1x \ne xa_1$ then $\langle a_1 \rangle$ and $\langle x \rangle$ do not permute. As seen before $\langle A_1, x \rangle = A_1N\langle x \rangle$ has order p^3 and $A_1^x \le A_1N$. In particular $A_1N \le \Omega_1(G)$.

Suppose now $o(x)=p^n$ where n>1. $\langle x\rangle$ is permutable in G and we may assume that $A_1\not\leq\langle x\rangle$. Set $\langle y\rangle=\Omega_1(\langle x\rangle)$. We have $\langle a_1\rangle\langle y\rangle=\langle y\rangle\langle a_1\rangle$ and likewise $\langle a_2\rangle\langle y\rangle=\langle y\rangle\langle a_2\rangle$. It follows that $\langle y\rangle=N$. $\langle a_1\rangle\langle x\rangle$ is a group with a maximal cyclic subgroup, its order is p^{n+1} and $|\Omega_1(\langle a_1\rangle\langle x\rangle)|>p$. If $p\neq 2$, $\langle a_1\rangle\langle x\rangle$ is either abelian or isomorphic to $M(p^{n+1})$ and then $x^{a_1}\equiv x \mod\langle y\rangle$. Hence, $(a_1)^x\in A_1N$. Suppose now p=2. If $\langle a_1\rangle\langle x\rangle$ is isomorphic to D_8 then $x\in\Omega_1(G)$. Since $D_{2^{n+1}}$ and $S_{2^{n+1}}$ with $n\geq 3$ contain non-permutable subgroups of order 4, we have that $\langle a_1\rangle\langle x\rangle$ is either isomorphic to $M(p^{n+1})$ or abelian. Then $x^{a_1}\equiv x \mod\langle y\rangle$ and $\langle a_1\rangle^x\in A_1N$.

Theorem 2.2. – Let G be a p-group. Then:

- 1. $G \in T(p)$ where $p \neq 2$ if and only if G is isomorphic to one of the following groups:
 - (a) $E(p^3)$;
 - (b) $E(p^3) * C_{p^n}$.
- 2. $G \in T(2)$ if and only if G is isomorphic to one of the following groups:
 - (a) D_8 ;
 - (b) $D_8 * C_{2^n}$;
 - (c) $D_8 * Q_8$.

PROOF. – Let A_1 and A_2 be subgroups of G of order p such that $A_1A_2 \neq A_2A_1$, and let N be the normal subgroup of G of order p.

By prop. 2.1, A_1 and A_2 have p conjugates in G.

 $C_G(\langle A_1, A_2 \rangle) = C_G(A_1) \cap C_G(A_2)$. Since $[G: C_G(A_i)] = p \ (i = 1, 2), [G: C_G(A_1) \cap C_G(A_2)] = p^2$. Set $H = \langle A_1, A_2 \rangle$; $H \unlhd G$. $H \cap (C_G(A_1) \cap C_G(A_2)) = Z(H) = N$ and then $G = H * C_G(H)$.

Moreover if $K \leq C_G(H)$, |K| = p, we have $KA_1 = A_1K$ and $KA_2 = A_2K$. Then K = N and $C_G(H)$ is cyclic or generalized quaternion, but if $n \geq 4$ then Q_{2^n} contains non-permutable subgroups of order 4. Hence we get the groups of the proposition.

The groups listed above are in T(p). In fact $E(p^3)$ and D_8 contain non-permutable subgroups of order p, and all subgroups of order different from p are normal as proved in Theorem 2 in [6].

3. – The groups in $T(p^n)$ with $n \ge 2$.

PROPOSITION 3.1. – Let $G \in T(p^n)$ with $n \ge 2$ and $|\Omega_1(G)| = p$. Then G is the generalized quaternion group of order 16 and $G \in T(4)$.

PROOF. – If $|\Omega_1(G)| = p$ then G is either cyclic or generalized quaternion. Q_8 and cyclic groups are hamiltonian and, if $n \geq 5$, Q_{2^n} contains non-permutable subgroups of different orders. $Q_{16} = \langle a, b : a^4 = 1, b^4 = a^2, b^a = b^{-1} \rangle$ is in T(4). In fact $\langle a \rangle$ and $\langle ab \rangle$ are not permutable, whereas the subgroup of order 2 and the subgroups of order 8 are normal.

PROPOSITION 3.2. – Assume $n \ge 2$ and let G be in $T(p^n)$ with $|\Omega_1(G)| > p$. Let A_1 and A_2 be subgroups of order p^n such that $A_1A_2 \ne A_2A_1$. Then:

- 1. A_1 and A_2 are cyclic;
- 2. $|A_1 \cap A_2| = p^{n-1}$;
- 3. $\langle A_1, A_2 \rangle = A_1 \langle t \rangle A_2$ for every $t \in \Omega_1(G) \setminus \Omega_1(A_1)$;

Moreover $\Omega_1(G)$ has order p^2 and is elementary abelian.

PROOF. – Since subgroups of order p are permutable, $\Omega_1(G) = \{g \in G : g^p = 1\}$ and it is elementary abelian. A_1 and A_2 are cyclic because otherwise they would be product of permutable subgroups. Set $A_i = \langle a_i \rangle$ (i = 1, 2). Having order p^{n-1} , $\langle a_i^p \rangle$ is permutable in G. We consider $\langle a_1^p \rangle \langle a_2 \rangle \leq G$ and $\langle a_2^p \rangle \langle a_1 \rangle \leq G$.

$$\begin{array}{l} \left(\left\langle a_{1}^{p}\right\rangle\langle a_{2}\right\rangle\right)\left(\left\langle a_{2}^{p}\right\rangle\langle a_{1}\right\rangle)=\left\langle a_{2}\right\rangle\langle a_{1}\right\rangle \text{ and }\left(\left\langle a_{2}^{p}\right\rangle\langle a_{1}\right\rangle\right)\left(\left\langle a_{1}^{p}\right\rangle\langle a_{2}\right\rangle)=\left\langle a_{1}\right\rangle\langle a_{2}\right\rangle.\\ \text{Hence }\left(\left\langle a_{1}^{p}\right\rangle\langle a_{2}\right\rangle)\left(\left\langle a_{2}^{p}\right\rangle\langle a_{1}\right\rangle)\neq\left(\left\langle a_{2}^{p}\right\rangle\langle a_{1}\right\rangle)\left(\left\langle a_{1}^{p}\right\rangle\langle a_{2}\right\rangle\right) \text{ and we get }\left|\left\langle a_{1}^{p}\right\rangle\langle a_{2}\right\rangle\right|=p^{n},\\ \left|\left\langle a_{2}^{p}\right\rangle\langle a_{1}\right\rangle\right|=p^{n}, \text{ so that }\left\langle a_{1}^{p}\right\rangle\leq\langle a_{2}\rangle \text{ and }\left\langle a_{2}^{p}\right\rangle\leq\langle a_{1}\rangle. \end{array}$$

 $\langle a_1 \rangle / \langle a_1^p \rangle$ and $\langle a_2 \rangle / \langle a_2^p \rangle$ have order p and, as seen in section 2, they generate a subgroup of order p^3 , which gives $|\langle a_1, a_2 \rangle| = p^{n+2}$.

Since $|A_1 \cap \Omega_1(G)| = p$ and $|\Omega_1(G)| > p$, there exists $t \in \Omega_1(G)$, $t \notin A_1$.

Having order p^{n+1} , $A_1\langle t \rangle$ is permutable in G, and $A_2 \cap A_1\langle t \rangle = \langle a_1^p \rangle$. It follows that $|A_1\langle t \rangle A_2| = p^{n+2}$ and then $\langle A_1, A_2 \rangle = A_1\langle t \rangle A_2$. Furthermore $N_{\langle A_1, A_2 \rangle}(A_1) = A_1\langle t \rangle$.

Suppose now that there exists $s \in \Omega_1(G)$, $s \notin A_1\langle t \rangle$. As proved above, $\langle A_1, A_2 \rangle = A_1\langle s \rangle A_2$ and $N_{\langle A_1, A_2 \rangle}(A_1) = A_1\langle s \rangle$. Hence we get $A_1\langle s \rangle = A_1\langle t \rangle$ which contradicts our assumptions.

With the following theorem, we complete the description of p-groups in $T(p^n)$ if $p \neq 2$. This reduces us to study 2-groups in $T(2^n)$ with $n \geq 2$.

Theorem 3.3. – Let G be p-group, $p \neq 2$. The following conditions are equivalent:

- 1. $G \in T(p^n)$ where n > 2;
- 2. $G \in T(3^2)$;
- 3. $G = \langle a, c, b : a^9 = c^3 = 1, b^3 = a^3, ac = ca, a^b = ac, c^b = ca^{-3} \rangle$.

PROOF. – Let A_1 and A_2 be subgroups of G of order p^n such that $A_1A_2 \neq A_2A_1$. By prop. 3.2, $A_1 = \langle a_1 \rangle$, $A_2 = \langle a_2 \rangle$ and $\langle A_1, A_2 \rangle = A_1 \langle t \rangle A_2$ where $t \in \Omega_1(G) \setminus \Omega_1(A_1)$. Moreover we can assume $a_1^p = a_2^p$.

 $A_i\langle t\rangle \leq G \text{ is either abelian or isomorphic to } M(p^{n+1}) \text{ and } A_i\langle t\rangle \triangleq \langle A_1,A_2\rangle \text{ for } i=1,2. \text{ So we get: } a_1^t=a_1^{1+hp^{n-1}}, a_2^t=a_2^{1+kp^{n-1}}, a_1^{a_2}=a_1^rt^s \text{ where } h,k\in\{1,\ldots,p\}, s\in\{1,\ldots,p-1\} \text{ and } r\equiv 1 \operatorname{mod}(p); \text{ from } a_1^p=(a_1^p)^{a_2}=(a_1^rt^s)^p=a_1^{rp}t^{sp}=a_1^{rp}, \text{ we have } r=1+jp^{n-1} \text{ and then: } a_1^t=a_1^{1+hp^{n-1}}, a_2^t=a_2^{1+kp^{n-1}}, a_{1}^{a_2}=a_1^{1+jp^{n-1}}t^s. \ \langle a_1,a_2\rangle \text{ has class } \leq 3 \text{ and derived subgroup contained in } \langle a_1^{p^{n-1}},t\rangle = \Omega_1(\langle A_1,A_2\rangle).$

If p>3 we obtain a contradiction. In fact $\langle A_1,A_2\rangle$ is regular, hence $(a_2a_1^{-1})^p=a_2^pa_1^{-p}x^p$ for some $x\in\langle A_1,A_2\rangle'$. So $a_2a_1^{-1}$ has order p but $\langle a_2a_1^{-1}\rangle$ does not normalize A_1 . It follows that there are not groups in $T(p^n)$ if p>3, $n\geq 2$.

Suppose now p=3. Since $\langle a_1,a_2\rangle/\langle a_1^{3^{n-1}}\rangle$ has class ≤ 2 , it follows that $\langle a_1,a_2\rangle/\langle a_1^{3^{n-1}}\rangle$ is regular and $(a_1a_2^{-1})^3\langle a_1^{3^{n-1}}\rangle=1$.

If $n \geq 3$ we obtain a contradiction: $a_1a_2^{-1}$ has order ≤ 9 but $\langle a_1a_2^{-1} \rangle$ does not permute with A_2 . Finally if p=3 and n=2, two non-permutable subgroups of order 9 generate a group of order 81 whose structure is partially described above: $H = \langle a_1, a_2 \rangle$, $a_1^3 = a_2^3$, $\Omega_1(H) = \langle a_1^3, t \rangle$. $\langle a_i, t \rangle$ is either abelian or isomorphic to $M(3^3)$. Since $[H:C_H(\Omega_1(H))]=3$ we can choose $a_1 \in C_H(\Omega_1(H))$; further we may choose t such that $a_1^{a_2} = a_1t$. a_1a_2 does not normalize A_1 . If $t^{a_2} = ta_2^3$ then $(a_2a_1)^3 = 1$, a contradiction. So we have $t^{a_2} = ta_2^{-3}$ and this shows that H is as in 3. Conversely , it can be easily checked that G is in $T(3^2)$.

Suppose now that G is in $T(3^2)$ and contains H as a proper subgroup; we may also assume that [G:H]=3. By theorem (4.12) in [4], $G=\langle b\rangle$ $C_G(\Omega_1(G))$.

We shall prove that $C_G(\Omega_1(G)) = \langle a, c \rangle$. It will be enough to show that $C_G(\Omega_1(G))$ contains no elements of order 9 or 27 outside $\langle a, c \rangle$.

First we note that $a^3 \in Z(G)$: indeed $\Omega_1(G) \cap Z(G) \neq 1$ and $c \notin Z(\langle a, b \rangle)$.

Suppose $y \in C_G(\Omega_1(G)) \setminus \langle a, c \rangle$ of order 9. $\langle a \rangle$ and $\langle y \rangle$ permute. Otherwise we have a contradiction: $\langle a, y \rangle \cong \langle a, b \rangle$ but $\Omega_1(\langle y, a \rangle) = \langle a^3, c \rangle \leq Z(\langle a, y \rangle)$ whereas $\Omega_1(\langle b, a \rangle) \not\leq Z(\langle b, a \rangle)$.

If $y^3 \in \langle a^3 \rangle$ then $a^3 = y^{3k}$, $y^a = y^{1+3h}$ and $(ay^{-k})^3 = 1$, which gives $y \in \langle a, c \rangle$. Assume now $y^3 \notin \langle a^3 \rangle$, that is $y^3 = a^{3k}c$. Since $\langle b \rangle \cap \langle y \rangle = 1$, $\langle b \rangle$ permutes with $\langle y \rangle$ and $y^b = y^{1+3i}a^{3j}$. Now $ca^{-3} = c^b = (y^3)^b = y^3 = c$, a contradiction.

Suppose $y \in C_G(\Omega_1(G)) \setminus \langle a, c \rangle$ of order 27. As $y^3 \in \langle a, c \rangle$, $y^3 = ac^k$ and then $y^9 = a^3$. b normalizes $\langle y \rangle$ and from $(y^9)^b = y$ we get $y^b = y^{1+3i}$. But $a^b = (y^3c^{-k})^b = y^{3+9i}c^{-k}a^{3k} = ac^ka^{3i}c^{-k}a^{3k} = a^{1+3i+3k} \in \langle a \rangle$, a contradiction. \square

4. – Groups in $T(2^n)$ with $n \ge 2$: first results.

In view of prop. 3.1 and 3.2, we will assume that the groups G in $T(2^n)$ that we consider satisfy $|\Omega_1(G)| = 4$.

We will be interested in studying the following groups:

$$T_1(n) = \langle a, b : a^4 = b^{2^n} = 1, a^b = a^3 \rangle \ (n \ge 2)$$
 and $T_2(n) = \langle a, b : a^8 = 1, a^4 = b^{2^{n-1}}, a^b = a^7 \rangle \ (n \ge 3).$

PROPOSITION 4.1. – $T_1(n)$ for $n \ge 2$ is in $T(2^n)$.

PROOF. $-Z(T_1(n)) = \langle a^2, b^2 \rangle$ and the square of every element of $Z(T_1(n))$ is in $\langle b^4 \rangle$. The elements of $T_1(n)$ are z, az_1, abz_2, bz_3 where $z, z_i \in Z(T_1(n))$. Since $\langle abz_2 \rangle$ and $\langle bz_3 \rangle$ have order 2^n , we have to prove that $\langle az_1 \rangle$ permutes with both $\langle bz_2 \rangle$ and $\langle abz_3 \rangle$.

 $(az_1)(bz_3) = abz_1z_3 = a^2b^aa^3z_1z_3 = ba^2az_1z_3 = bz_3(az_1)^3z_1^{-2}$. Setting $z_3^2 = b^{4i}$ and $z_1^2 = b^{4j}$, we get: $(bz_3)^2 = b^{2(1+2i)}$ and there exists an integer r such that $az_1bz_3 = (bz_3)^r(az_1)^3$.

The same if we consider abz_2 instead of bz_3 .

PROPOSITION 4.2. – $T_2(n)$ with n > 3 is in $T(2^n)$.

PROOF. – One see easily that: $Z(T_2(n)) = \langle b^2 \rangle$, $[a^2, T_2(n)] = \langle a^4 \rangle$, $|T_2(n)| = 2^{n+2}$, and $T_2(n)/\langle a^4 \rangle \cong T_1(n-1)$. Moreover, for each $g \in T_2(n) \setminus \langle a, b^2 \rangle$ we have $\langle b^2 \rangle = \langle g^2 \rangle$, $|\langle g \rangle| = 2^n$. It follows that non-permutable subgroups of $T_2(n)$ containing $\langle a^4 \rangle$ have order 2^n by prop. 4.1.

A subgroup not containing $\langle a^4 \rangle$ is cyclic; the possibilities are: $\langle a^2 b^{\pm 2^{n-2}} \rangle$ of order 2 and (if n>3) $\langle ab^{\pm 2^{n-3}} \rangle$ of order 4. Now $a^2 b^{\pm 2^{n-2}}$ normalizes every subgroup of $T_2(n)$. $\langle ab^{\pm 2^{n-3}} \rangle$ centralizes $\langle a,b^2 \rangle$ and , if $g \notin \langle a,b^2 \rangle$, we have $|g|=2^n$, $\langle g \rangle \cap \langle ab^{\pm 2^{n-3}} \rangle = 1$, $|\langle g,ab^{\pm 2^{n-3}} \rangle| = |T_2(n)| = 2^{n+2}$, so that $\langle g \rangle$ and $\langle ab^{\pm 2^{n-3}} \rangle$ permute.

Proposition 4.3. – Let $G \in T(2^n)$ with $n \geq 2$. Two non-permutable subgroups of order 2^n generate a group isomorphic to one of $T_1(n)$ $(n \geq 2)$, $T_2(n)$ (n > 2).

PROOF. – Let A_1 and A_2 be subgroups of G of order 2^n such that $A_1A_2 \neq A_2A_1$. By prop. 3.2, $A_1 = \langle a_1 \rangle$, $A_2 = \langle a_2 \rangle$ and $\langle A_1, A_2 \rangle = A_1 \langle t \rangle A_2$ where $t \in \Omega_1(G) \setminus \Omega_1(A_1)$. Moreover we can suppose $a_1^2 = a_2^2$.

 $\langle a_i,t\rangle$ (i=1,2) has a maximal cyclic subgroup and then it is either abelian or (if $n\geq 3$) isomorphic to $M(2^{n+1})$. Then $a_i^t=a_i$ or (if $n\geq 3$) $a_i^t=a_i^{1+2^{n-1}}$ for i=1,2. Moreover $\langle a_1,t\rangle \supseteq \langle a_1,a_2\rangle$ and then $a_i^{a_2}=a_i^jt$ with j odd.

Hence the possibilities are:

- 1. $a_1t = ta_1$, $a_2t = ta_2$. From $a_1^2 = (a_1^2)^{a_2}$, we have $2j \equiv 2 \mod(2^n)$ which gives $a_1^{a_2} = a_1^{1+h2^{n-1}}t$. Then we may choose t such that $a_1^{a_2} = a_1t$, $a_1t = ta_1$ and $a_2t = ta_2$. Setting $a = a_1a_2^{-1}$ and $b = a_2$, we get the group $T_1(n)$.
- 2. (if $n \geq 3$) $a_1^t = a_1$, $a_2^t = a_2^{1+2^{n-1}}$. As seen above, we may choose t such that $a_1^{a_2} = a_1 t$, $a_1^t = a_1$, $a_2^t = a_2^{1+2^{n-1}}$. Now $(a_2^2)^{a_1} = a_2 t a_2 t = a_2 a_2^{1+2^{n-1}} \neq a_2^2$, a contradiction. 3. (if $n \geq 3$) $a_2^t = a_2$, $a_1^t = a_1^{1+2^{n-1}}$.
- 3. (if $n \ge 3$) $a_2^t = a_2$, $a_1^t = a_1^{1+2^{n-1}}$. As seen above, we may choose t such that $a_2^{a_1} = a_2 t$, $a_2^t = a_2$, $a_1^t = a_1^{1+2^{n-1}}$. Now $(a_1^2)^{a_2} = a_1 t a_1 t = a_1 a_1^{1+2^{n-1}} \ne a_1^2$, a contradiction. 4. (if $n \ge 3$) $a_1^t = a_1^{1+2^{n-1}}$, $a_2^t = a_2^{1+2^{n-1}}$.
- 4. (if $n \ge 3$) $a_1^t = a_1^{1+2^{n-1}}$, $a_2^t = a_2^{1+2^{n-1}}$. From $a_1^2 = (a_1^2)^{a_2}$, we have $2 \equiv 2j + 2^{n-1} \mod(2^n)$ which gives $a_1^{a_2} = a_1^{1+j\cdot 2^{n-2}}t$ where j = 1,3. Hence we may choose t such that $a_1^{a_2} = a_1^{1+2^{n-2}}t$. Setting $a = a_1a_2^{-1}$ and $b = a_2$, we get the group $T_2(n)$.

5. – The groups in T(4).

Theorem 5.1. – There is no group $G \in T(4)$ having exponent > 4.

PROOF. – By prop. 4.3, a group $G \in T(4)$ contains a subgroup isomorphic to $T = \langle a, b : a^4 = b^4 = 1, a^b = a^3 \rangle$. Since exp(G) > 4, we can suppose $G = T\langle z \rangle$ where o(z) = 8. We note that $\Omega_1(G) = \Omega_1(T)$.

We first prove that $\langle z \rangle \unlhd G$.

Since $\langle z \rangle permG$, every element of order 2 normalizes $\langle z \rangle$.

Let t be an element of T of order 4. If $t^2=z^4$ then $t\in N_G(\langle z\rangle)$. Suppose that $t^2\neq z^4$. Then $\langle z,t^2\rangle \supseteq \langle z,t\rangle$ but if $z^t=z^it^2$, we have a contradiction: $(tz)^2=(z^i)^{t^2}z^i\in \langle z\rangle, |\langle tz,z\rangle|=16$ whereas $|\langle t,z\rangle|=32$.

It follows that $T \leq N_G(\langle z \rangle)$.

Suppose now $z^2 \in T$. Since $\langle ba^{2i}b^{2j}\rangle$ and $\langle baa^{2i}b^{2j}\rangle$ are not normal in T, we have $z^2 \in a\langle a^2, b^2\rangle$. From $(z^2)^a = z^6$, we get $z^b = z^{3+4k}$ and $(bz)^2 = y^2z^{3+4k}z = y^2z^{4(1+k)}$. Then bz has order 4 and $|\langle bz, b\rangle| \leq 16$, a contradiction because $|\langle b, z\rangle| = 32$. It follows that $z^2 \notin T$.

If $z^4=b^2$ then $G/\langle z\rangle\cong D_8$ and $\langle z,b\rangle$ is not permutable in G.

Suppose $z^4=a^2$. Since $|\langle z,a\rangle|=16$ and $G=\langle z,a\rangle\langle b\rangle$, we get $\langle z,a\rangle\cap\langle b\rangle=1$, and $|\Omega_1(\langle z,a\rangle)|=2$. Then $\langle a,z\rangle$ is either cyclic or a generalized quaternion subgroup of order 16. Suppose that $\langle a,z\rangle$ is cyclic. Then z^2 is in $\langle a\rangle$ and we have a contradiction. Suppose now that $\langle z,a\rangle\cong Q_{16}$. In this case the element az has order 4 and $\langle az\rangle\cap\langle b\rangle=1$. Then $\langle az,b\rangle$ has order 16 but it does not permute with

 $\langle a \rangle$, a contradiction. Assume now $z^4 = a^2b^2$. If t is an element of T of order 4, then $[z,t] \in \langle z^2 \rangle$. If $[z,t] = z^{2k}$ with k odd then $o(tz) \le 4$ and $|\langle tz,t \rangle| \le 16$ a contradiction because $|\langle t,z \rangle| = 32$. Hence, $[z,b] \in \langle z^4 \rangle$, $[z,a] \in z^4$. Now az has order 8, $(az)^4 = \langle z^4 \rangle$ but $[az,b] \notin \langle az \rangle$, a contradiction.

OBSERVATION 1. – A finite 2-group of exponent 4 has derived subgroup contained in $\Omega_1(G)$. In particular the derived subgroup of $G \in T(4)$ has order 2 or 4.

Proposition 5.2. – Let G be a group of exponent 4 with |G|=32, |G'|=2. Then G is in T(4) if and only if

$$G\cong\langle a,b,c:c^4=a^4=1,a^2=b^2,ca=ac,bc=cb,b^a=b^3\rangle=M\cong Q_8\times C_4.$$

PROOF. – Since |G|=32, |G'|=2 and $T=\langle a,b:a^4=b^4=1,b^a=b^3\rangle\leq G$, $G'=\langle b^2\rangle$. Every element in $G\setminus T$ has order 4. Let $c\in G\setminus T$. Now $c^2\in \Omega_1(G)=\langle a^2,b^2\rangle\leq Z(G),\ [c,a]\in\langle b^2\rangle,\ [c,b]\in\langle b^2\rangle$ so that $[c,a]=b^{2h},[c,b]=b^{2k}$.

c acts on T as a^kb^h and then, replacing c with $c(a^kb^h)$, we can suppose $c \in Z(G)$. We can have neither $c^2 = a^2$ ($(ac)^2 = 1$) nor $c^2 = b^2$ ($(bc)^2 = 1$).

Then, $G = \langle a, b, c : a^4 = b^4 = 1, c^2 = a^2b^2, b^a = b^3, ac = ca, bc = cb \rangle$.

Replacing a with ac, we get the presentation of the proposition.

Conversely, in the group

$$\left\langle a,b,c:c^{4}=a^{4}=1,a^{2}=b^{2},ca=ac,bc=cb,b^{a}=b^{3}\right\rangle$$

the subgroups $\langle ac \rangle$ and $\langle bc \rangle$ are non-permutable subgroups of order 4. Theorem 2 of [6] proves that subgroups of M of order different from 4 are normal, hence permutable.

PROPOSITION 5.3. – Let G be a group of exponent 4 with |G| = 32, |G'| = 4. Then G is in T(4) if and only if

$$G \cong \langle a, b, c : a^4 = b^4 = 1, b^2 = c^2, ca = ac, c^b = ca^2, b^a = b^3 \rangle = R.$$

PROOF. – Since |G|=32, |G'|=4, $T=\langle a,b:a^4=b^4=1,b^a=b^3\rangle$ is contained in G and $G'\leq \Omega_1(G)=\Omega_1(T)$, we have $G'=\langle b^2,a^2\rangle\leq Z(G)$. Let $c\in G\setminus T$. Then, $c^2\in\Omega_1(G)=\langle a^2,b^2\rangle$ and $c^2\neq 1$. Since $[c,a]\in\langle a^2,b^2\rangle$, $[c,b]\in\langle a^2,b^2\rangle$ we have $[c,a]=a^{2i}b^{2j}$, $[c,b]=a^{2h}b^{2k}$ and then $[cb^ja^k,a]=a^{2i}$, $[cb^ja^k,b]=a^{2h}$. Replacing c with cb^ja^k , we get $a^c=a^{1+2^i}$ and $b^c=a^{2h}b$. Since $a^2\in G'$, either i or h has to be odd. If they are both odd, $(ab)^c=ab$ and we replace a with ab. So, the possibilities are:

- $a^c = a$, $b^c = a^2b$. It can be neither $c^2 = a^2$ ($(ac)^2 = 1$) nor $c^2 = a^2b^2$ ($(cb)^2 = 1$). It follows that $c^2 = b^2$ and $G \cong R$.
- $a^c = a^{-1}$, $b^c = b$. It can be neither $c^2 = b^2$ ($(bc)^2 = 1$) nor $c^2 = a^2$ ($(c) \subseteq G$, $G/\langle c \rangle \cong D_8$ and then $\langle a, c \rangle$ is non permutable in G). It follows that $c^2 = a^2b^2$. Replacing a' = c, b' = a, c' = bc, we get $G \cong R$.

The subgroups $\langle ab \rangle$ and $\langle a \rangle$ of order 4 of R are non-permutable subgroups. Theorem 2 of [6] proves that subgroups of R of order different from 4 are normal, hence permutable.

OBSERVATION 2. — M and R are the only groups in T(4) of order 32. Moreover in R there are neither central elements of order 4 nor subgroups of order 8 isomorphic to the quaternion group.

PROPOSITION 5.4. – M is not contained in a group $G \in T(2^2)$ of order ≥ 64 . In particular a group G in $T(2^2)$ with |G'| = 2 has order ≤ 32 .

PROOF. – Suppose that there exists a group $G \in T(2^2)$ of order 64 containing M. $G = \langle a, b, c, d \rangle$ where $d \notin M$. Since $G' \leq \Omega_1(G) = \langle b^2, c^2 \rangle$ the possibilities are:

- 1. |G'| = 2. Then $G' = \langle b^2 \rangle$ and $[a,d] = b^{2h}$, $[b,d] = b^{2k}$, $[c,d] = b^{2r}$. Replacing d with $d(b^ha^k)$, we get [a,d] = 1, [b,d] = 1, $[c,d] = b^{2r}$. Moreover $d \notin Z(G)$: for each $w \in \Omega_1(G)$ there is $t \in M$ such that $t^2 = w$ and so if $d^2 = w$ then $(dt)^2 = 1$. Hence, we get: [a,d] = 1, [b,d] = 1, $[c,d] = b^2$. It can be neither $d^2 = a^2$ $((da)^2 = 1)$ nor $d^2 = a^2c^2$ $((dc)^2 = d^2ca^2c = 1)$, and if $d^2 = c^2$ then $(dac)^2 = d^2aca^2ac = 1$.
- 2. |G'|=4. Then $G'=\left\langle b^2,c^2\right\rangle$ and $[a,d]=b^{2h}c^{2k}$, $[b,d]=b^{2i}c^{2j}$, $[c,d]=b^{2r}c^{2s}$ where $h,k,i,j,r,s\in 0,1$. Since $[a,db^ha^i]=c^{2k}$, $[b,db^ha^i]=c^{2j}$ and $[c,db^ha^i]=b^{2r}c^{2s}$, replacing d with db^ha^i , we get $[a,d]=c^{2k}$, $[b,d]=c^{2j}$, $[c,d]=b^{2r}c^{2s}$. If $[a,d]=c^2$, we have $d\notin N_G\langle a,b\rangle$ and so $d^2=a^{2l}c^2$. Now $(da)^2=d^2ac^2a\in\langle a^2\rangle$, hence $da\in N_G(\langle a,b\rangle)$, a contradiction. It follows that [d,a]=1. Likewise we prove that [b,d]=1. We can not have $d^2=a^2$ because in this case $(da)^2=1$, a contradiction. Moreover, since $c^2\in G'$, we get $[d,c]=c^2a^{2i}$. Hence, we have the following cases:
 - (a) $d^2 = c^2$. If $[c, d] = c^2b^2$, we have that the groups $\langle dc, ac \rangle \cong Q_8$ and $\langle bd \rangle$ do not permute. If $[c, d] = c^2$, we have that the groups $\langle ac, db \rangle \cong Q_8$ and $\langle ad \rangle$ do not permute;
 - (b) $d^2 = a^2c^2$. If $[c,d] = c^2$, $\langle dab,c \rangle \cong Q_8$ does not permute with $\langle db \rangle$. If $[c,d] = a^2c^2$ then $(dc)^2 = d^2ca^2c^2c = c^2$ and, replacing d with dc, we are in the previous case.

In each case we reached a contradiction and then M is not contained in a group $G \in T(2^2)$ of order > 32

OBSERVATION 3. – Let $G \in T(4)$ of order ≥ 64 and let K be a subgroup of order 32 of G. By prop. 5.4, if K contains non-permutable subgroups then $K \cong R$. If K is quasi-hamiltonian then it should be either abelian or isomorphic to $Q_8 \times E$ where E is elementary abelian, but in both cases we should have $|\Omega_1(K)| > 4$.

Hence, a subgroup of order 32 of $G \in T(4)$ of order > 64 is isomorphic to R.

At this point, we note that we are in a situation already considered by Zappa in [5]. The argument of lemma 7 and prop. 3 of [5] allow to prove the following propositions:

Proposition 5.5. – Let $G \in T(2^2)$ with |G| = 64. Then:

$$G\cong V=\langle a,b,c,d: a^4=b^4=1, b^2=c^2, d^2=a^2, ca=ac, c^b=ca^2,\\ b^a=b^3, db=bd, a^d=aa^2b^2, c^d=cb^2\rangle.$$

Proposition 5.6. – If $G \in T(4)$ then $|G| \leq 64$.

 $5.1 - The groups in T(2^n), n > 2.$

Observation 4. – Let $G \in T(2^n)$, $T_1(n) \leq G$. By prop.3.2, $|\Omega_1(G)| = 4$ and $\Omega_1(G) = \Omega_1(T_1(n)) = \left\langle a^2, b^{2^{n-1}} \right\rangle$. Let K be a normal subgroup of G containing $\Omega_1(G)$. G/K is quasi-hamiltonian, and so if $u, v \in G$, o(uK) = 2 and $o(vK) \leq 4$, we get $[v, u] \in K$.

We always take $K = Z(T_1(n))$.

THEOREM 5.7. – If n > 2 there is no group G in $T(2^n)$ such that $|G| > 2^{n+2}$ and $T_1(n) < G$.

PROOF. - Suppose
$$G \in T(2^n)$$
, $T_1(n) \leq G$. We may assume that $[G:T_1(n)]=2$.

The subgroups generated by elements of order 2 or 4 are permutable and so $\Omega_2(G)$ is abelian or isomorphic to $Q_8 \times E$ where E is elementary abelian. Since $\Omega_2(T_1(n))$ is the direct product of two cyclic groups of order 4, we get that $\Omega_2(G)$ is abelian.

Let $z \in G$, $z \notin T_1(n)$ of order 4. Since every element of $\Omega_1(T_1(n))$ is a square in $T_1(n)$, we have $z^2 = t^2$ and $(zt)^2 = 1$, a contradiction. It follows that $\Omega_2(G) = \Omega_2(T_1(n))$.

Let $z \in G \setminus T_1(n)$ of order 2^m where $m \le n$ and $z^2 \in T_1(n)$. The elements of order $\le 2^{n-1}$ are ab^{2i} , a^3b^{2i} , a^2b^{2i} and b^{2i} (i an integer).

If $z^2=b^{2i}$ then $\langle z \rangle$ and $\langle b \rangle$ permute. Otherwise, since $ba^2=a^2b$ we would get $\langle b,z \rangle \cong T_1(n), \Omega_2(\langle z,b \rangle) = \Omega_2(G) = \Omega_2(T_1(n)), a \in \langle z,b \rangle$ and then $T_1(n)=\langle z,b \rangle$, a contradiction. $\langle z,b \rangle$ is either abelian or isomorphic to $M(2^n)$. In both cases $o(zb^{-i}) < 4$, a contradiction.

If $z^2=ab^{2i}$ then, by obs.4, we get $[b,z]\in \langle z^4,b^2\rangle$ so that $b^z=b^{1+2j}z^{4i}$. Now $ba^2=b^{z^2}=(b^{1+2j}z^{4i})^{1+2j}z^{4i}=b^{1+2h}z^{8i(1+2j)}\in \langle b\rangle$, a contradiction.

If $z^2 = a^3b^{2i}$, replacing z with z^{-1} , we are in the previous case.

If $z^2 = a^2b^{2i}$ then, by obs.4, we get $[a,z] = a^{2r}b^{2s}$ and $[b,z] = a^{2h}b^{2k}$. If $[a,z] = b^{2s}$ then $(za)^2 = z^2ab^{2s}a = z^2a^2b^{2s} \in \langle b^2 \rangle$ and, replacing z with za, we are in a previous case. If $[b,z] = a^2b^{2k}$ then $(zb)^2 = z^2a^2b^{1+2k}b = a^2b^{2i}a^2b^{1+2k}b \in \langle b^2 \rangle$ and, replacing z with zb, we are in a previous case.

Finally if $a^z=a^3b^{2s}$ and $b^z=b^{1+2k}$, $(zab)^2\in \langle b^2\rangle$ and, replacing z with zab, we are again in a previous case.

Suppose now $z \in G \setminus T_1(n)$ of order 2^{n+1} . Since $G \in T(2^n)$, $\langle z \rangle$ perm G and it can not contain a non-permutable subgroup. Now all the elements of order 2^n in $T_1(n)$ generate non-permutable subgroups and so this case is not possible.

THEOREM 5.8. – There is no group G in $T(2^n)$ such that $T_2(n) \leq G$.

PROOF. – Suppose first n=3, and let $G\in T(8)$, $T_2(3)\leq G$, $[G:T_2(3)]=2$. $G/\Omega_1(G)$ is quasi-hamiltonian, $T_2(3)/\Omega_1(T_2(3))\cong Q_8$ and then $G/\Omega_1(G)\cong Q_8\times C_2$. This proves that elements outside $T_2(3)$ have order ≤ 4 .

Let $z \in G \setminus T_2(3)$ of order 4.

If $z^2 = a^4$ then $\langle z, a \rangle$ is either abelian or isomorphic to $M(2^4)$. In both cases $(a^2z)^2 = 1$, a contradiction.

Suppose $z^2=a^2b^2$. Since $(z^2)^b=z^6$ and $\langle b,z^2\rangle \le \langle z,b\rangle$, it can be neither $b^z=y^{1+2i}$ nor $b^z=b^{1+4k}z^2$. Hence we get $b^z=b^{3+4k}z^2$. $(zb)^2=z^2b^{3+4k}z^2b=a^6b^{3+4k}a^2b=b^{7+4k}b=b^{4k}$ and so $|\langle zb,b\rangle|\le 16$, a contradiction because $|\langle b,z\rangle|=32$. Finally if $z^2=a^2b^6$, replacing b with b^{-1} , we are in the previous case.

Assume now n>3 and let $G\in T(2^n)$, $T_2(n)\leq G$. Since $\Omega_1(T_2(n))\cap Z(T_2(n))=\langle a^4\rangle$, $\Omega_1(T_2(n))\cap Z(G)\neq 1$, we have $\Omega_1(T_2(n))\cap Z(G)=\langle a^4\rangle$. The subgroups of $G/\langle a^4\rangle$ are $H/\langle a^4\rangle$ where $\langle a^4\rangle\leq H\leq G$ and $b\langle a^4\rangle$ is non-permutable in $G/\langle a^4\rangle$. Let $H/\langle a^4\rangle$ and $K/\langle a^4\rangle$ be subgroups such that $H/\langle a^4\rangle K/\langle a^4\rangle\neq K/\langle a^4\rangle H/\langle a^4\rangle$. H and K are non-permutable cyclic subgroups of G of order C0 and C0 and C1. It follows that C1 and C2 and C3 by theorem 5.7, C3 and C4 and then we have C5 and C6.

6. - Conclusions.

The task of classifying finite p-groups in $T(p^n)$ is now completed. Our results are collected in the following theorem:

Theorem 6.1. – The following conditions are equivalent:

- The group G is in $T(p^n)$;
- G is isomorphic to one of the following groups:

1.
$$\langle a, b : a^4 = 1, b^4 = a^2, b^a = b^{-1} \rangle$$
 where $p = 2$ and $n = 2$;

2.
$$\langle a,b,c:a^p=b^p=c^p=1, [a,b]=c, [a,c]=1, [b,c]=1 \rangle$$
 where $p>3$ and $n=1$;

3.
$$\langle a,b,d:a^p=b^p=d^{p^m}=1, [a,b]=d^{p^{m-1}}, [a,d]=1, [b,d]=1\rangle$$
 where $p\geq 3,\ n=1\ and\ m>1;$

4.
$$\langle a,c,b:a^9=c^3=1,a^3=b^3,ac=ca,a^b=ac,c^b=ca^{-3} \rangle$$
 where $p=3$ and $n=2$;

5.
$$\langle a, b : b^4 = 1 = a^2, b^a = b^{-1} \rangle$$
 where $p = 2$ and $n = 1$;

6.
$$\langle a, b, c : b^4 = a^2 = 1, c^{2^{m-1}} = b^2, b^a = b^{-1}, bc = cb, ac = ca \rangle$$

where $p = 2$, $n = 1$ and $m > 1$;

7.
$$\left\langle a,b,c,d: b^4=a^2, b^2=c^2=d^2, b^a=b^{-1}, c^d=c^{-1}, \right.$$
 $\left. bc=cb, ac=ca, bd=db, ad=da \right\rangle$ where $p=2$ and $n=1$;

8.
$$\langle a,b,c:a^4=c^4=1,a^2=b^2,b^a=b^3,a^c=a,b^c=b\rangle$$
 where $p=2$ and $n=2$;

9.
$$\langle a,b,c:a^4=b^4=1,c^2=b^2,b^a=b^3,ac=ca,b^c=ba^2 \rangle$$
 where $p=2$ and $n=2$;

10.
$$\left\langle \begin{array}{ccc} a,b,c,d: & a^4=b^4=1, b^2=c^2, d^2=a^2, ca=ac, c^b=ca^2, \\ & b^a=b^3, db=bd, a^d=aa^2b^2, c^d=cb^2 \end{array} \right\rangle$$
 where $p=2$ and $n=2$;

11.
$$\langle a, b : a^4 = b^{2^n} = 1, a^b = a^3 \rangle$$
 where $p = 2$ and $n \ge 2$;

12.
$$\langle a, b : a^8 = 1, a^4 = b^{2^{n-1}}, a^b = a^7 \rangle$$
 where $p = 2$ and $n \ge 3$.

Brandl [1] classified the finite groups in which the non normal subgroups are in a single conjugacy class. We can use the list given above to solve the analogous problem for non-permutable subgroups.

Proposition 6.2. – The group $G = N \rtimes P$ in prop. 1.1 has only a conjugacy class of non-permutable subgroup.

The groups listed in theorem 6.1 have at least two conjugacy classes of non-permutable subgroups.

PROOF. – Let $G = N \times P$ be a split extension where $N \subseteq G$ is of prime order q, P is a cyclic p-group with $p \neq q$ and a generator of P acts on N as a nontrivial automorphism of order p. Then G has only a conjugacy class of non-permutable subgroup, whose rapresentative P has q conjugates.

In groups 1, 5, 6, 7, 9 and 10, listed in theorem 6.1, the non-permutable subgroups $\langle a \rangle$ and $\langle ab \rangle$ are not conjugated. In fact $N_G(\langle a \rangle)$ is maximal in G and

 $\langle ab \rangle \not \leq N_G(\langle a \rangle)$. In groups 2, 3, 4, 11 and 12, listed in theorem 6.1, the non-permutable subgroups $\langle a \rangle$ and $\langle b \rangle$ are not conjugated. $N_G(\langle a \rangle)$ is a maximal subgroup of G and $\langle b \rangle \not \leq N_G(\langle a \rangle)$. In group 8 of theorem 6.1, non-permutable subgroups $\langle ac \rangle$ and $\langle bc \rangle$ are not conjugated. In fact $N_G(\langle a \rangle) = \langle ac, c \rangle$ is maximal in G and $\langle bc \rangle \not \leq \langle ac, c \rangle$.

REFERENCES

- R. Brandl, Groups with few non-normal subgroups, Comm. in Algebra, 23, no. 6 (1995), 2091-2098.
- [2] R. SCHMIDT, Subgroup Lattices of Groups, de Gruyter Exposition in Mathematics, 14, Walter de Gruyter & Co., Berlin, 1994.
- [3] M. Suzuki, Group Theory I, Gundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 247, Springer-Verlag, Berlin-New York, 1982.
- [4] M. Suzuki, Group Theory II, Gundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 248, Springer-Verlag, New York, 1986.
- [5] G. ZAPPA, Finite groups in which all non normal subgroups have the same order (italian), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13, no. 1 (2002), 5-16.
- [6] G. ZAPPA, Finite groups in which all non normal subgroups have the same order II (italian), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 14, no. 1 (2003), 13-21.

Dipartimento di matematica Università di Padova Via Trieste, 63 - 35121 Padova e-mail: crestani@math.unipd.it

Pervenuta in Redazione

il 31 maggio 2005 e in forma rivista il 21 settembre 2007