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A Generalization of Quasi-Hamiltonian Groups

ELEONORA CRESTANI

Sunto. - Iwasawa classifca © gruppt finiti G in cut tutti © sottogruppi V sono permutabili,

cio UV = VU per ogni sottogruppo U di G. Tali gruppi sono detti quasi-hamiltoniana.

Noi classifichiamo © gruppi finiti in cui © sottogruppi non permutabili hanno tutti

lo stesso ordine e quelli che hanno una sola classe di coniugio di sottogruppi non
permutabili.

Summary. - Iwasawa classifies finite groups G in which all subgroups V are per-
mutable, that is UV = VU for all subgroups U of G. These groups are called quasi-
hamailtonian.

We classify the finite groups whose non-permutable subgroups have the same
order and the ones which have a single conjugacy class of non-permutable sub-
groups.

Introduction.

The structure of groups whose subgroups are all normal (hamiltonian groups)
has been completely described by R. Dedekind and R. Baer. A long series of
papers has dealt with generalizations of this result; let me mention two of them.
A first generalization studies groups which satisfy conditions on the numbers of
non-normal subgroups. Brandl (see [1]) classifies groups in which non-normal
subgroups are in a single conjugacy class.

G. Zappa (see [5] and [6]) classifies finite groups whose non-normal subgroups
have the same order. In addition to the groups found by Brandl, Zappa finds only
the p-groups described in Theorem 1 and 2 in [6].

A second generalization studies groups whose subgroups have a property
close to being normal. Iwasawa (see [2]) classifies finite groups G in which
all subgroups V are permutable, that is UV = VU for all subgroups U of G.
These groups are called quasi-hamiltonian. Our aim is to study finite groups
whose non-permutable subgroups have the same order. This will also allow
to classify the ones whose non-permutable subgroups are in the same con-
jugacy class.
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1. — Preliminaries.

DEFINITION 1. — A subgroup H of G is permutable in G if HK = KH for all
subgroups K of G. We will write HpermG.

Such subgroups are also called quasinormal.

We list here a number of well known properties of permutable subgroups:

if HpermG, K < G then H N KpermK;

if H, KpermG then HKpermG;

if HpermG, N <G then HN /NpermG /N

if H<G,N<G, N < H then HN /NpermG if and only if HpermG;

if HpermG, K < G and (|H|,|K|) = 1 then K < Ng(H);

if H is a Sylow subgroup of G and HpermG then H < G;

if H is a maximal subgroup of G and HpermG then H < G;

if H is a cyclic permutable subgroup of G then each subgroup of H is
permutable in G.

e i ol o

PROPOSITION 1.1. — G is a finite non-nilpotent group whose non-permutable
subgroups have the same order if and only if G = N x P split extension where
N <G is of prime order q, P is a cyclic p-group with p # q and a generator of P
acts on N as a nontrivial automorphism of order p.

PRrOOF. — Assume first that the non-permutable subgroups of G have the
same order. Since G is a finite non-nilpotent group, there exist a non-
permutable Sylow p-subgroup P and a maximal non-permutable subgroup
M of G. As non-permutable subgroups have the same order, |M| = |P| and
non-permutable subgroups are cyclic. It follows that P is a p-Sylow, max-
imal, non-permutable and cyclic subgroup.

Let N be the subgroup generated by all Sylow g-subgroups of G where ¢ runs
over all prime and q # p. These Sylow g-subgroups of G are permutable, as their
order is different from |P|, and so they are normal. Set ¢ € N an element of
prime order q. (g) permutes with P, P(g) = G and so N = (g).

@(P)<4P, it is permutable in G and then g € Ng(P(P)). It follows that
O(P)dG and [N, o(P)) <K NNP(P)=1.

Finally P and N do not commute, that is [V, P] # 1. Conversely, if G has the
structure described in the statement, theorem in [1] proves that in G there is only
a conjugacy class of non-permutable subgroup, with P as rapresentative. O

PropoSITION 1.2. — If G is a finite nilpotent group whose non-permutable
subgroups have the same order then G is a p-group.
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PRrOOF. — Suppose G is not a p—group. Then G = A x B where A and B are
nontrivial Hall-subgroups. The subgroups of G are H x K with H < A and
K <B. Let H; xKj;, Hy x Ky be subgroups of G such that H;Hyx
Kle 75 H2H1 X KgKl. It follows that either H1H2 7é H2H1 or KlKg 75 K2K1

Suppose H1Hy # HoHy: Hy x 1 and H; x B are non-permutable in G but
|H1 x B| # |Hi|, a contradiction. d

We are reduced to study p-groups. We indicate with 7'(p™) the class of finite non
quasi-hamiltonian p-groups whose non-permutable subgroups have order p”.

NOTATION:

E(p?) is the non abelian group of order p* and exponent p (p # 2);
M@p ) = (x,y:a’" =y’ =1,a% = a,/.1+p"’1>;
So = (o =g = L —a 1,

Q2 is the generalized quaternion group of order 2", Dy. is the generalized
diedral group of order 2" and C,. is the cyclic group of order p*. If A, B are non
identity p—groups with cyeclic centre, A * B indicates a central product with
central subgroups of order p amalgamated.

2. — The groups in T'(p).

PROPOSITION 2.1. — Let G be a group tn T(p). Let A1 and Ay be subgroups of G
of order p such that A1As # AxA;, and let N be a normal subgroup of G of order
p. Then:

1. (A1, Az)= A;NA; has order p* and is isomorphic to Ds if p = 2, non
abelian of exponent p if p # 2;

2. N is the only subgroup of order p which permutes with both Ay and As.
In particular N is the only normal subgroup of order p in G,

3 AIN4G.

Proor. — Let A; and Ay be subgroups of G such that |4;| =p, 4; = (a;)
for i=1,2 and A4, # A2A;, and let N = (n).

AN is a subgroup of G of order p? and so permutable. In particular A;NAs; is
a subgroup of G of order p® and A;NAy = (A1, As). As it contains non-permu-
table subgroups, we have (A1,A2) = Dg if p =2, (A;,As) = E@®) if p #2, so
that: (Ay,Az) = (a1,a2 : af =1 =ab,[a1,a2] = n € Z((A1,Az)),nP =1).

Let A3 be a subgroup of G of order p such that A; # As and A;A3 = A3A;.
Having order p?, A1A3 is a permutable subgroup. In particular the subgroup
A1A3A; has order p? and then A;A3As = A;NAs. Moreover A1 Az and A;N are
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normal subgroups of <A1,A2> and they both contain all the coniugates of 4; in
(A1,A3). Then A1Az = A;N. Likewise if Aj is a subgroup of G of order p such
that Ay # A and AzA3 = A3Ay then AyN = A3A,. In particular N is the only
subgroup of order p which permutes with both A; and A, and then N is the only
normal subgroup of order p in G.

We prove now that A;N is normal in G. Let x € G.

Suppose first o(x) = p. If ey = xay then A7 < A;N. If @y # way then (a;)
and (x) do not permute. As seen before (A;,x)=A;N(x) has order p? and
A7 < A;N. In particular A1N <Q(G).

Suppose now o(x) = p" where n > 1. (x) is permutable in G and we may as-
sume that A; £ (x). Set (y) = 21((x)). We have (a1)(y) = (y)(a1) and likewise
(a2)(y) = (y){az). It follows that (y) = N. (a;1)(x) is a group with a maximal cyclic
subgroup, its order is p"*! and |Q;((a1)(x))| > p. If p #2, (a1)(x) is either
abelian or isomorphic to M(p"*!) and then ™ = x mod(y). Hence, (a1)" € A1N.
Suppose now p = 2. If (a;)(x) is isomorphic toDg then x € Q;(G). Since Dy, and
Soiri With 7 > 3 contain non-permutable subgroups of order 4, we have that
(a1)(x) is either isomorphic to M(p"*!) or abelian. Then x* = x mod(y) and
((ll )49 S AlN. O

THEOREM 2.2. — Let G be a p-group. Then:

1. G € T(p) where p # 2 if and only if G is isomorphic to one of the fol-
lowing groups:
(@) E@®);
(b) E(pg) ES Cpn.

2. G € TQ2)if and only if G is isomorphic to one of the following groups:
(@) Ds;
(b) Ds * Car;
(¢) Ds*@Qs.

ProOF. — Let A; and A be subgroups of G of order p such that A;As # A2A;,
and let N be the normal subgroup of G of order p.

By prop. 2.1, A; and Az have p conjugates in G.

Cq((A1,42)) = C(A1)NCg(Az). Since [G : Ca(A)]=p (1=1,2), [G : Cg(A1)N
Ce(A2)] = p?. Set H = (A1,Az); HYG. HN (Ce(A1) N Ci(Ag)) = Z(H) = N and
then G = H x Cq(H).

Moreover if K < Cg(H), |K| = p, we have KA; = A;1K and KAy = A2K. Then
K = N and C;(H)iscyclic or generalized quaternion, butif» > 4 then Q2. contains
non-permutable subgroups of order 4. Hence we get the groups of the proposition.

The groups listed above are in T(p). In fact E(p?) and Dy contain non-per-
mutable subgroups of order p, and all subgroups of order different from p are
normal as proved in Theorem 2 in [6]. |
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3. — The groups in T(p") withn > 2.

ProposITION 3.1. — Let G € T(p") with n > 2 and |21(G)| = p.
Then G is the generalized quaternion group of order 16 and G € T(4).

Proor. — If |Q:(G)| = p then G is either cyclic or generalized quaternion. Qs
and cyclic groups are hamiltonian and, if n > 5, Q2» contains non-permutable
subgroups of different orders. Qs = (a,b: a* = 1,b* = a?,b* = b71) is in T(4).
Infact (a) and (ab) are not permutable, whereas the subgroup of order 2 and the
subgroups of order 8 are normal. O

PROPOSITION 3.2. — Assume n > 2 and let G be in T(p™) with |Q2:1(G)| > p. Let
Aq and Az be subgroups of order p™ such that A1Ag # AsAy. Then:

1. A; and Az are cyclic;
2. |A1 ﬂAQ‘ = pnil;
3. <A1,A2>: Al <t>A2 fO?" every te Ql(G) \ .Ql(Al),'

Movreover Q1(G) has order p* and is elementary abelian.

ProoF. — Since subgroups of order p are permutable, Q;(G)=
{g € G:g’ =1} and it is elementary abelian. A; and A, are cyclic because
otherwise they would be product of permutable subgroups. Set A; = (a;)
(i = 1,2). Having order p"~1, (a?) is permutable in G. We consider (a)(az) < G
and (ab)(a;) < G.

() (a2)) ((08) (@) = (a2} (ar) and] () e

Hence ((a!){a2))({ab ){a1)) # (<a2> a)({a}) (az) andwe get |(a Y (az)| =p",
|(ab)(a1)| = p", so that (a}) < (az) and (ab) < (a1).

(a1)/{a1?) and (ag)/(a2P) have order p and, as seen in section 2, they generate
a subgroup of order p?, which gives |(a1, az)| = p"*2.

Since |41 N 21(G)| = p and |Q2:1(G)| > p, there exists t € 21(G), t¢ A;.

Having order p"*!, A;(t) is permutable in G, and Az NA;(t)= (a?). It
follows that |A;(t)As| =p™™® and then (A;,As)=A;(t)As. Furthermore
N g, 4,)(A1) = Ax(t).

Suppose now that there exists s € Qi(G), s¢A;(t). As proved above,
(A1,Az) = A1(s)Az and N 4, 4,)(A1) = A;(s). Hence we get A;(s) = A;(t) which
contradicts our assumptions. O

(et e) - .

With the following theorem, we complete the description of p—groups in
T(p"™) if p # 2. This reduces us to study 2—groups in 7'(2") with n > 2.

THEOREM 3.3. — Let G be p-group, p # 2. The following conditions are
equivalent:
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1. G € T(p") wheren > 2;
2. G e T3>
3. G={(a,¢c,b:a° = =1,0°=d? ac = ca,a’® = ac,c® = ca™®).

PrOOF. — Let A; and Ay be subgroups of G of order p™ such that A;Ay #
AsA;. By prop. 32, Ay ={(m), As=(az) and (A;,As)=A;(t)As where
t e Q1(G)\ 21(A;). Moreover we can assume a;” = agP.

A;(t) < G is either abelian or isomorphic to M(p" ™) and A;(t) <(A;,As) for

. n—1

i=1,2.Soweget: a = a """ al = al™" ol = altt where b,k € {1,...,p},

se€{l,...,p—1}andr = 1 mod(p); from o} = (a])* = (@[t*)’ = a 't = a?g,we
. n—1 n—1 san—1

have 7 = 1+ jp"~! and then: !} = a} ™", af, = aé*kp , a2 = a7 4y, a2)

has class < 3 and derived subgroup contained in <a1 71,t>: Q1(<A1,A2>).

If p>3 we obtain a contradiction. In fact (A;,A,) is regular, hence
(aza; M = aba, PP for some x € (A1, As)'. So aza;! has order p but (aza;?)
does not normalize A;. It follows that there are not groups in T'(p") if p > 3,
n > 2.

Suppose now p = 3. Since (a1,az2)/ <a§"71> has class <2, it follows that
(a1, a2>/<a§H> is regular and (a;a;1)? <a§"71>: 1.

If n > 3 we obtain a contradiction: a;a,’ has order <9 but (a;a;') does
not permute with As. Finally if p =3 and n =2, two non-permutable
subgroups of order 9 generate a group of order 81 whose structure is
partially described above: H = (ay,az), o = a3, Q(H) = (ai,t). (a;t) is
either abelian or isomorphic to M(3?). Since [H : Cy(Qi(H))] =3 we can
choose a; € Cy(©2:(H)); further we may choose ¢ such that a'fz = at. a102
does not normalize A;. If t# = tag then (a2a1)3 =1, a contradiction. So we
have 2 =ta;® and this shows that H is as in 3. Conversely , it can be
easily checked that G is in T'(3%).

Suppose now that G is in 7'(3%) and contains H as a proper subgroup; we may
also assume that [G : H] = 3. By theorem (4.12) in [4], G = (b) Cs(2:(G)).

We shall prove that C(Q21(G)) = (a,c). It will be enough to show that
C(21(@)) contains no elements of order 9 or 27 outside (a, c).

First we note that a® € Z(G): indeed 2,(G) N Z(G) # 1 and c¢ Z({a, b)).

Suppose y € Ca(21(G)) \ (a, c) of order 9. (a) and (y) permute. Otherwise we
have a contradiction: (a,y) = (a,b) but Q:1((y,a)) = (¢?,¢) < Z((a,y)) whereas
Qu((b,a)) £ Z((b, ).

If y? € (a®) then a® = y**,y* = y"*3" and (ay*)® = 1, which gives y € (a,c).
Assume now y? ¢ (a?), that is ¢* = a3’“c. Since <b> N(y)=1, (b) permutes with
{y) and y* = y"*3a¥. Nowca 3 =c* = (i)’ =1 = ¢, a contradiction

Suppose y € Ca(21(G) \ (a,c) of order 27. As i® € (a,c¢), y® = ac® and then
¥’ =a* b normalizes (y) and from (4°) =y we get y* =y"**. But
ab = (yBc k) = o3+ hgdh = gckadic gk = g1 33k ¢ (@), a contradiction. O

14+3h
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4. — Groups in T(2") with n > 2: first results.

In view of prop. 3.1 and 3.2, we will assume that the groups G in 7'(2") that we
consider satisfy |Q:(G)| = 4.
We will be interested in studying the following groups:

Tin) = {a,b:a* =b*" =1,a" = ¢®) (n > 2) and
Ty(m) = {a,b: a8 =1,a* = v ab = a®) (n > 3).

PROPOSITION 4.1. — T1(n) for n > 2 is in T(2").

PrOOF. — Z(T1(n)) = (a?,b%) and the square of every element of Z(T1(n)) is in
(b*). The elements of Ty (n) are z, az1, abzs, bzg Where z, z; € Z(T1(n)). Since (abzz)
and (bz3) have order 2", we have to prove that (az;) permutes with both (bzs)
and (abzs).

(az1)(bzs) = abz1z3 = a2baBz125 = balaz 73 = bzs(az1)’z 2. Setting 252 = b¥
and z;2 = b¥, we get: (bzg)? = b21+2) and there exists an integer » such that
az1bzg = (bz3) (az1)’.

The same if we consider abzs instead of bzs. O

PROPOSITION 4.2. — To(n) with n > 3 is in T(2").

PROOF. — One see easily that: Z(Te(n)) = (b?), [a?, To(n)] = (a*), |To(n)| =
2"+2 and To(n)/{a*)= T1(n — 1). Moreover, for each g € T>(n) \ (a,b*) we have
(b*)=(g*), |{g)| = 2". It follows that non-permutable subgroups of T(n) con-
taining (a') have order 2" by prop. 4.1.

A subgroup not containing (a*) is eyclic; the possibilities are: (a?6*2*) of
order 2 and (if n > 3) <abi2"'73> of order 4. Now a2b*2"* normalizes every sub-
group of To(n). (ab*?"") centralizes (a,b?) and , if g ¢ (a,b?), we have |g| = 2,
{g)N{ab*® ™Y =1, [(g,ab*?")| = |Ta(n)] = 2"*2, so that (g) and (ab*®"")
permute. O

ProprosITION 4.3. — Let G € T(2") with n > 2. Two non-permutable sub-
groups of order 2" generate a group isomorphic to one of T1(n) (n > 2), Te(n)
m>2).

ProoF. — Let A; and Ay be subgroups of G of order 2" such that A;A4s # AA;.
By prop. 3.2,A1 = <(L1>,A2 = <CL2> and <A1,A2>:A1 <t>A2 wheret e .Ql (G) \ .Ql (Al)
Moreover we can suppose a2 = as?.

(a;,t) (i = 1,2) has a maximal cyclic subgroup and then it is either abelian or
(if m > 3) isomorphic to M(2"™). Then a! =a; or (if n>3) al = a}JFZH for
i =1,2. Moreover (a;,t) 9(a,as) and then af?> = )t with j odd.
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Hence the possibilities are:

1. (L1t = t(ll, (lzt = t(l2
From “1 (a )%, we have 2j =2 mod(2”) which gives a =a;
Then we may choose ¢ such that a}* = a;t,a:t = ta; and agt = taz
Setting @ = a0, Land b = ay, we get the group T1(n).

. n—1
2. (ifn>3)al =ay,a = aé*z

As seen above we ma choose t such that af?* = at, at =y
1 s

L — n—

ab = a;’z .Now (ad)" = agtagt = a2a1+2 # a2, a contradlctlon

3. (ifn>3)ab = ap, al = al*?"".
As seen above we may choose t such that ay' = aqt, az = g,
al = a%*zn .Now (a))™ = astast = ala”Z' #a2,a contradlctlon
: o2t g 142nt

4. (1fn>3)a =a, ) Uy = .

From al (al)“z we have 2=2j4+2"1 mod(2") which gives

n—1
1+h2 t.

“1 = ai“z t where j=1,3. Hence we may choose ¢ such that
a1 = ”2 “t. Setting a = a1a, Land b = ag, we get the group Ta(n).
O

5. — The groups in 7(4).
THEOREM 5.1. — There is no group G € T(4) having exponent > 4.

ProOOF. - By prop. 4. 3 a group G € T(4) contains a subgroup isomorphic to
=(a,b:a* =b* =1,a" = ¢®). Since exp(G) > 4, we can suppose G = T'(z)
Where 0(z) = 8. We note that Q;(G) = Q,(T).

We first prove that (z) 4G.

Since (z)perm@, every element of order 2 normalizes (z).

Let t be an element of T of order 4. If t* = z* then t € N((2)). Suppose that
t2#2%. Then (z,)<(z,t) but if z'=z?, we have a contradiction:
(t2)? = (2 2l € (2), |(tz,z)| = 16 whereas [(t,z)| = 32.

It follows that 7' < Ng((z)).

Suppose now 22 € T. Since <ba2ib27> and (baa®b¥) are not normal in T', we have
22 € a{a?,b?). From (2%)" = 25, we get 2* = 23" and (bz)? = 2234k = 4224040
Then bz has order 4 and |<bz, b)| < 16, a contradiction because |(b,z)| = 32. It
follows that 22 ¢ T.

If z* = b* then G/(z)= Dg and (z,b) is not permutable in G.

Suppose z* = a?. Since |(z,a)| = 16 and G = (z,a)(b), we get (z,a) N (b)=1,
and |21((z,a))| =2. Then (a,z) is either cyclic or a generalized quaternion
subgroup of order 16. Suppose that (a, ) is cyclic. Then 2% is in (@) and we have a
contradiction. Suppose now that (z,a)= Q6. In this case the element az has
order 4 and (az) N (b)= 1. Then (az, b) has order 16 but it does not permute with
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(@), a contradiction. Assume now z* = a?b?. If t is an element of 7' of order 4, then
[2,t] € (2%). If [2,t] = 2% with k odd then o(tz) < 4 and |(tz,t)| < 16 a contra-
diction because |(t,z)| = 32. Hence, [z,b] € (z'), [2,a] € z*. Now az has order 8,
(az)* = (z*) but [az, b]¢ (az), a contradiction. O

OBSERVATION 1. — A finite 2-group of exponent 4 has derived subgroup con-
tained in ©,(G). In particular the derived subgroup of G € T'(4) has order 2 or 4.

ProposiTION 5.2. — Let G be a group of exponent 4 with |G| =32, |G'| = 2.
Then G s in T(4) if and only if

G%<a,b,c:c4:a4:l,az:bz,cazac,bc=cb,b“:b3>:M%ngal.

PRrOOF. — Since |G| =32, |G'| =2 and T = (a,b: o' =b* =1,0" = b3) <G,
G' = (b%). Every element in G \ T has order 4. Let ¢ € G\ T. Now ¢® € (G) =
(a?,b%) < Z(@), [c,a] € (b?), [c,b] € (b%) so that [c,a] = b*",[c,b] = b?.

c acts on T as a*b" and then, replacing ¢ with c(a*b"), we can suppose ¢ € Z(G).
We can have neither ¢ = a2 ((ac)® = 1) nor ¢ = b2 ((be)® = 1).

Then, G = (a,b,c: a* = b* =1,¢% = a?b%,b" = b*, ac = ca, bc = cb).

Replacing a with ac, we get the presentation of the proposition.

Conversely, in the group

(a,b,c:c* =a* =1,a* = b% ca = ac,bc = ¢b,b” = b*)

the subgroups (ac) and (bc) are non-permutable subgroups of order 4. Theorem
2 of [6] proves that subgroups of M of order different from 4 are normal, hence
permutable.

ProposITION 5.3. — Let G be a group of exponent 4 with |G| = 32, |G'| = 4.
Then G is in T(4) if and only if

G~ (a,bc:a* =b"=1,0*=* ca =ac,c =ca® b" = b*) = R.

PrOOF. — Since |G| =32, |G| =4, T={(a,b:a’=b*=1,0=b%) is con-
tainedin G and G’ < Q1(G) = 1(T), we have G’ = (b?,a*) < Z(G). Letc € G\ T.
Then, ¢? € (G) = (a?,b*) and ¢® # 1. Since [c, a] € (a?,b%), [c,b] € (a?,b?) we
have [c,a] = a®b¥, [c,b] = a®b® and then [cb/a*, al=a®, [cb/a*,b]= a?".
Replacing ¢ with cb/a*, we get a¢ = a'*% and b¢ = a?'b. Since a® € G', eitherior h
has to be odd. If they are both odd, (ab)° = ab and we replace a with ab. So, the
possibilities are:

2 _ 2p2

e a =a, b =a?b. It can be neither ¢ =a? ((ac)> =1) nor ¢ = &

((eb)® = 1). Tt follows that ¢* = b and G =~ R.
e a° =a!,b° = b. It can be neither ¢ = b2 ((bc)* = 1) nor ¢ = a2 ((c) <G,
G/(c) =2 Dg and then (a,c) is non permutable in G). It follows that

¢ = a?b?. Replacing o' =c¢, b’ = a, ¢’ = bc, we get G ~R.
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The subgroups (ab) and (a) of order 4 of R are non-permutable subgroups.
Theorem 2 of [6] proves that subgroups of R of order different from 4 are normal,
hence permutable. O

OBSERVATION 2. — M and R are the only groups in 7'(4) of order 32. Moreover
in R there are neither central elements of order 4 nor subgroups of order 8
isomorphic to the quaternion group.

PROPOSITION 5.4. — M is not contained in a group G € T(22) of order > 64.
In particular a group G in T(2%) with |G'| = 2 has order < 32.

PROOF. — Suppose that there exists a group G € T(2?) of order 64 containing
M. G = (a,b,c,d) where d¢ M. Since G’ < (@) = (b?, ¢*) the possibilities are:

1 |@|=2 Then G = (0 and [a,d] = b, [b,d]=b%, [c,d]=b>.
Replacing d with d(b"a*), we get [a,d] =1, [b,d] =1, [c,d] = b>.
Moreover d¢ Z(G): for each w € Q1(G) there is t € M such that t? = w
and so if d? = w then (dt)® = 1. Hence, we get: [a,d] =1, [b,d] =1,
[c,d] =02 Tt can be neither d2=a? ((da)®=1) nor d?= a2
((de)? = d2ca?c = 1), and if d2 = ¢2 then (dac)? = d2acalac = 1.

2. |G'| =4. Then G’ = (b%,¢®) and [a,d] = b*c*, [b,d] = b*c¥, [¢,d] =
b* ¢* where h, k,i,7,7,s € 0,1. Since [a, db"a'] = %, [b, db"a'] = ¢¥ and
[c,db"a’] = b?" ¢, replacing d with db"a’, we get [a, d] = ¢%*,[b,d] = ¢¥,
[c,d] = b*¢*.If [a,d] = %, we have d¢ N{a,b) and so d® = a?c*. Now
(da)® = d2aca € (a*), hence da € N¢({a, b)), a contradiction. It follows
that [d,a] = 1. Likewise we prove that [b,d] = 1. We can not have
d? = a2 because in this case (da)? = 1, a contradiction. Moreover, since
¢ € G', we get [d, c] = c?a?. Hence, we have the following cases:

(a) d? = c2. If [c,d] = c?b?, we have that the groups (dc,ac) = Qg and
(bd) do not permute. If [¢c,d] =c? we have that the groups
(ac,db) = Qs and (ad) do not permute;

(b) d? = a*c®. If [c,d] = ¢, (dab, c) = Qs does not permute with (db). If
[¢,d] = a2¢? then (dc)* = d2ca?c®c = ¢ and, replacing d with dc, we
are in the previous case.

In each case we reached a contradiction and then M is not contained in a
group G € T(2?) of order > 32 O

OBSERVATION 3. — Let G € T(4) of order > 64 and let K be a subgroup of
order 32 of G. By prop. 5.4, if K contains non-permutable subgroups then K = R.
If K is quasi-hamiltonian then it should be either abelian or isomorphic to Qs x £
where E is elementary abelian, but in both cases we should have |2;(K)| > 4.

Hence, a subgroup of order 32 of G € T'(4) of order > 64 is isomorphic to R.
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At this point, we note that we are in a situation already considered by Zappa
in [5]. The argument of lemma 7 and prop. 3 of [5] allow to prove the following
propositions:

PROPOSITION 5.5. — Let G € T(2%) with |G| = 64. Then:
G=V={(abcd:a'=0"=1,0®=d* = a? ca = ac,c® = ca?,

b" = b%,db = bd, a” = ad®b?,c" = cb?).

PRrOPOSITION 5.6. — If G € T(4) then |G| < 64.

5.1 — The groups in T2"), n > 2.

OBSERVATION 4. — Let G € T(2"), T1(n) < G. By prop.3.2, |2:(G)| =4 and
Q(G) = Q1(T1(n)) = {a,b%" ). Let K be a normal subgroup of G containing
21(G). G/K is quasi-hamiltonian, and so if u,v € G, o(uK) = 2 and o(vK) < 4, we
get [v,u] € K.

We always take K = Z(T1(n)).

THEOREM 5.7. — If n > 2 there is no group G in T(2") such that |G| > 2"+2
and Ti1(n) < G.

PRrOOF. — Suppose G € T'(2"), T1(n) < G. We may assume that [G : T1(n)] = 2.

The subgroups generated by elements of order 2 or 4 are permutable and so
(@) is abelian or isomorphic to Qg x £ where E is elementary abelian. Since
Q5(T1(n)) is the direct product of two cyclic groups of order 4, we get that Qx(G)
is abelian.

Let z € G,z¢ T1(n) of order 4. Since every element of Q;(7T1(n)) is a square in
Ty(n), we have 22 = {2 and (2t)* = 1, a contradiction. It follows that 2(G) =
Qo(T1(n)).

Let z € G\ T1(n) of order 2™ where m < n and 22 € Ty(n). The elements of
order < 2" ! are ab®, a®b¥, a?b? and b% (i an integer).

If 2% = b* then (z) and (b) permute. Otherwise, since ba? = a®b we would get
(b,2) =2 T1(n), 22((z,b)) = 2(G) = 2(T1(n)),a € (2,b) and then T1(n) = (z,b), a
contradiction. <z,b> is either abelian or isomorphic to M(2"). In both cases
0(zb™") < 4, a contradiction.

If 2% = ab® then, by obs.4, we get [b,2] € (2,b?) so that b* = b1*%z%. Now
ba? = b = (b12H) T4 — plt2hBi042) ¢ (p) 3 contradiction.

If 22 = a3b%, replacing z with z~1, we are in the previous case.
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If 22 = a?b? then, by obs.4, we get [a,z] = a®b®* and [b,z] = a®b*. If
[a,2] = b* then (20)® = 22ab®a = 22a2b* € (b*) and, replacing z with za, we are
in a previous case. If [b, z] = a2b? then (z2b)? = 22a2b'T2b = a2b%a2b!12kp € (b%)
and, replacing z with zb, we are in a previous case.

Finally if ¢* = a3b% and b* = b1*2 (zab)? € (b*) and, replacing z with zab, we
are again in a previous case.

Suppose now z € G\ T1(n) of order 2"*1. Since G € T(2"), (z)perm G and
it can not contain a non-permutable subgroup. Now all the elements of order
2" in Ty(n) generate non-permutable subgroups and so this case is not
possible. O

THEOREM 5.8. — There is no group G in T(2") such that Te(n) < G.

PRrOOF. - Suppose first n =3, and let G € T(8), T:3) < G, [G : T2(3)] = 2.
G/1(G) is quasi-hamiltonian, 79(3)/2;1(T2(3)) = Qs and then G/Q1(G) =2 Qg x Cs.
This proves that elements outside T%(3) have order < 4.

Let z € G\ T2(3) of order 4.

If 22 = a? then (#,a) is either abelian or isomorphic to M 2%). In both cases
(a22)? = 1, a contradiction.

Suppose 22 = a2b?. Since (:2)’ =25 and (b,2%)<(z,b), it can be neither
b =y'2 nor b* = bT422. Hence we get b* = b3T%22. (2b)% = 2203422 =
a3+ a2h = ™D = b* and so |(zb, b)| < 16, a contradiction because |(b, z)| = 32.

Finally if 22 = a?b®, replacing b with b1, we are in the previous case.

Assume now n >3 and let G e T@"), Ts(n) <G. Since Q:(Ts(n))N
Z(T2(n) = (a*), 21(To(m)) NZ(G) # 1, we have Qi(T2(n)) NZ(G) = (a*). The
subgroups of G/(a*) are H/{a') where (a') < H < G and b(a*) is non-per-
mutable in G/(a'). Let H/(a') and K/(a') be subgroups such that
H/(a*)K/{a*) # K/{a*)H/(a*). H and K are non-permutable cyclic subgroups
of G of order 2" and (a') < H. It follows that |H/(a')| =2""1 = |b{a")|,
G/{a*)e T@" 1) and Ti(n—1) = To(n)/{a*) < G/{(a*). By theorem 5.7,
Ty(n)/{a*) = G/{a*) and then we have T(n) = G. O

6. — Conclusions.

The task of classifying finite p—groups in 7(p") is now completed. Our results
are collected in the following theorem:

THEOREM 6.1. — The following conditions are equivalent:

o The group G is in T(p"™);
o G is isomorphic to one of the following groups:
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L (a,b:a* =10 =a?b" =b"') wherep =2 and n = 2;
2. {a,b,c:aP =b? =cP =1,[a,b]l =c¢,[a,c]=1,[b,c]l=1)
wherep >3 andn =1;
3. {a,b,d:a’ =" =d"" =1,[a,b] = d" " ,[a,d] = 1,[b,d] = 1)
wherep >3, n=1and m > 1,
4. {a,c,b: 0" = =1,a3 =%, ac = ca,a’ = ac,c® = ca3)
where p =3 and n =2;
5. {a,b:b* =1=0%0"=b"1) wherep =2andn =1;
6. (a,b,c:b*=a*= 1,2 =020 = b1, be = cb,ac = ca)
wherep =2, n=1and m > 1;
7 [obed: =2 2=c2=d®b"=b"1cl=c1,
) be = ¢b,ac = ca,bd = db,ad = da
wherep =2 andn =1;
8 (a,bc:a*=c*=1,0*=0%0" =% 0 =a,b° =b)
where p =2 andn = 2;
9. {a,b,c:a* =b* =1,¢% = b2, b* = b, ac = ca,b® = ba?)
where p =2 and n = 2;
10, {@bied: at =b*=1,0% =%, d? = a?,ca = ac,c® = ca?,
: b = b3, db = bd, 0 = aa?b?, c? = cb?
where p =2 and n = 2;
11. {a,b:a* =" =1,a" = a®) where p =2 and n > 2;

12. (a,b:a* =1,a* =b*",a’ = a”) where p =2 and n > 3.

Brandl [1] classified the finite groups in which the non normal subgroups are
in a single conjugacy class. We can use the list given above to solve the analogous
problem for non-permutable subgroups.

ProposITION 6.2. — The group G = N x P in prop. 1.1 has only a conjugacy
class of non-permutable subgroup.

The groups listed in theorem 6.1 have at least two conjugacy classes of non-
permutable subgroups.

ProOF. — Let G = N x P be a split extension where N <G is of prime order g,
P is a cyclic p-group with p # q and a generator of P acts on N as a nontrivial
automorphism of order p. Then G has only a conjugacy class of non-permutable
subgroup, whose rapresentative P has ¢ conjugates.

In groups 1, 5, 6, 7, 9 and 10, listed in theorem 6.1, the non-permutable
subgroups (a) and (ab) are not conjugated. In fact N((a)) is maximal in G and
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(ab)Z Ng({a)). In groups 2, 3, 4, 11 and 12, listed in theorem 6.1, the non-per-
mutable subgroups (a) and (b) are not conjugated. N¢({a)) is a maximal sub-
group of G and (b)% N¢({a)). In group 8 of theorem 6.1, non-permutable sub-
groups (ac) and (bc) are not conjugated. In fact Ng({a)) = (ac, ¢) is maximal in
G and (bc)Z (ac,c). O
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