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Well Posedness of Balance Laws
with Non-Characteristic Boundary

RiNALDO M. COLOMBO - MASSIMILIANO D. ROSINI

Sunto. — Questa nota presenta un risultato di buona positura per un problema ar valori
miaziali ed al contorno per un sistema non lineare di leggi di bilancio, nel caso non
caratteristico.

Summary. — This note presents a well posedness result for the initial-boundary value
problem consisting of a nonlinear system of hyperbolic balance laws with boundary,
m the non-characteristic case.

1. — Introduction.

In this paper we study the well posedness of the following initial-boundary
value problem for a nonlinear system of balance laws

ou+ o f(w) = gt,x,u) @ x)eQ
(1.1) u(ty, ) = ux) x < ¥,
b(u(t,P())) h(t) t>t,

in the non—characteristic case. Here #, & are L' functions with small total var-
iation, b is smooth, ¢, € R is the initial time, the conserved variables vary in
Q={{tx e R%: ¢ > to, x <¥(t)} for a suitable Lipschitz map ¥: [t,, +oo[ — R,
u € U denotes the unknown vector of the conserved quantities. The present
result, related to [2, 12, 16], extends those in [9, 10].

In the sequel we consider separately the convective part

O+ 0f(w) = 0 tx)eQ
(1.2) ulty, ) = ul®) <Y,
but,B@®) = ht) t>t,

and the source part

ogu = gt,x,u) @ x) e
(1.3) wty, ) = ulx) x <Y,
b(u(t,¥(®))) h(t) t>t,
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of (1.1). Indeed, the well posedness of (1.1) follows from the well posedness
of (1.2), (1.3) and their compatibility. Therefore, we require those assump-
tions on f and g that make (1.2) and (1.3) well posed, and ask that there exists
a domain which is invariant for both (1.2) and (1.3). This geometric assump-
tion replaces other compatibility conditions between the convective part and
the source term, such as those in [3, 15, 20], see [14, Section 13.8]. Finally, to
obtain the well posedness globally in time, we assume that (1.2) is a Temple
system. In fact, we need to require on (1.2) hypotheses that ensure the well
posedness for large data because the total variation and the L™ norm of the
solution may well grow exponentially with time, see 5. in Theorem 2.6.

Below, we follow the definition [2, Definition NC] of solution to the boundary
value problem (1.2). This framework is suitable, for instance, in applications to
traffic modeling, where no physical viscosity is present.

2. — Preliminaries and Main Result.

As general references on the 1D theory of hyperbolic systems of conservation
laws, we refer to [6] or [14].

Concerning the convective part (1.2), following [5], we denote with o—
L;(o)(u) the i-th generalized Lax curve exiting # and parametrized through
the signed arc length o. Let r;(u) = 8(,(51-(0)(%))“:0 be the i-th right eigen-
vector of Df(u) corresponding to the eigenvalue A;(u), for i =1,..., n.
On (1.2) we assume:

(F) Let U be the closure of an open subset of R”, with 0 € U, f:U+— R" be
smooth, such that its Jacobian Df has n real eigenvalues /4i,..., 4, with
max ;—i. ,SUP ;e A4i(w)| < 4 for a constant 4>0 and such that
O + O.f (u) = 0 is a Temple system, i.e.

(#'1) The system is strictly hyperbolic in ¢/, i.e. foralli=1,...,% —1 holds
Sup ki (W) < infyeppdior (u).

(F9) Fori=1,...,n, the i-shock curve and the i-rarefaction curve coincide.

(F3) In U, there exists a system of Riemann coordinates {wy, ..., w,}, such
that 0,,u is parallel to r;. Moreover, the coordinate change w is in

CZ(L{, wld)) as also its inverse: w! =u € C2(w(Z/{),L{).

On the source part (1.3), essentially an ordinary differential system, we assume
(here, | - | denotes the norm (2.5) in R"):

() g: [ty, +ool x R x U+ R" is such that
(Gy) For ae. t € [ty, +oof and all x € R, g(t,x,0) = 0.
(G2) For all (x,u) € R x U the map t+— g(t,x,u) is measurable.
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(G3) The map x— g(t,x,u) is uniformly in BV(R, R"), i.e. there exists a fi-
nite positive measure y such that for a.e. t € [t,, +oc[, for all x;, 22 € R
with 21 < s and for all u € U,

|g(t7 902+7 7/{/) - g(t7 £L1—, u)‘ S ,U([.’)Cl, xZ])

(Gy) For ae.te[t,,+oo[ and x € R, the map u—g(t,x,u) is locally
Lipschitz and sublinear in I/, i.e. for every compact subset K of U/, there
exists a function lx € Ly, ([t,, +ocl, R) such that for a.e. ¢ € [t,, +ocl, all
x € R and all uy,up € K,

|g(t7xau2) _g(t7xau1)| S lK(t) . ‘7/{/2 - ul|

and there exists a function I¢€ Lj,([t,,+ool,R) such that for
a.e. t € [ty,+ool, all x € R and all u € U,

lg(t,,u)| < U(E) - |ul.

On the domain 22 we assume that

(@) The function ¥ describing the boundary of Q is Lipschitz and non—char-
acteristic, i.e.there exists a fixed m e {1,...,m —1} such that for
a.e. t € [t,, +ool
(2.1) supAn(u) < @) < 214161{{ Ims1(®) .

ue

The case ¥ > sup 4,(u) is essentially equivalent to a Cauchy problem. On the
contrary, if ¥ < inf /;(u), then the boundary condition has no effect on the so-
lution.

Finally, on the boundary condition we assume that

(B) The map #: [t,, +oo[ — R™ is in L' and has bounded variation. b: U/ — R™ is
smooth and there exists a Lipschitz map o4: U x R” — R™, such that for all
u € U and all & € bUf), the state

u = (ﬁm(am) 0 Lyp-1(Opm—1) 0 -0 L2(a2) 0 EI(UI))(a)
satisfies b(u) = h if and only if (a1, ...,0m) = ap(l, h).

Clearly, if b(u)=h, then o,(u,h) =0. Moreover, if the m x m matrix
Dy,b(0) - [r1(0), ..., 7,(0)] is non singular and |6(0)|, TV (k) are both sufficiently
small, then (B) holds in a neighborhood of # = 0, see [2, Formula (3.2)]. Using
Riemann coordinates, boundary conditions may take a simpler form, see for
instance [1, Remark 2.3].

Introduce the definition of weak entropic solution to (1.1), along the same
lines of [1, Definition 2.2], [2, Definition NC] and [6, Definition 4.2]:
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DEFINITION 2.1. — u: Q—U is a weak solution of the problem (1.1) if

(1) for any function g € C({(¢,x) € R%:t <t, orx < )}, R)

+oo ¥(b)
[ ot 0)ut.2) + o0t 20f (utt, ) do dt
t, —o0
+oo P(t)
" f f o(t,2) g(t, @, ut,x)) de dt
t, —oo

w(t,)
+ f oo, x)ulx)de =0,

(1) u satisfies the boundary condition, i.e. for a.e. T € [t,, +ool

b(u(t,x)) = h(x).

lim
(t,2)— (7, (7)), t,x)eR

Given an entropy-entropy flux pair (4, q) (see [14, Section 3.2]), the weak solu-
tion u is entropic if for any ¢ € C°({(t,x) € R%:t <t, orx < P()}, [0, +ocl)
+oo ()
f [Opp(t, ) n(u(t, x)) + Oep(t, @) q(u(t, x))] da dt
t, —oo
400 P(t)
+ f f o(t,x) Dy(udt, 2)g(t, @, u(t, ) de dt
t, —oo
Y(t,)
+ [ty mo@@) e > 0.
The following definition of solution to (non—characteristic) Riemann pro-

blems with boundary is a slight generalization of the analogous definition in [2,
Section 3], see also [18, Chapter 1].

DEFINITION 2.2. — Fix w in R with sup ,cAn@) < o <inf ey dp1(uw) for
some m € {1,...,n—1}. Let w € U and h € R™ be fixed. The solution to the
Riemann problem with boundary

O + Onf (w) 0 t>0, x<wt
(2.2) w0,2) = u x<0
b(ult,wt)) = h t>0

is the restriction to {(t,x):t > 0, x < wt} of the Lax solution to the standard
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Riemann problem
{ O+ Of(w) = 0 () €[0,+o0] x R

(2.3) w(0.2) {u if 2 <0

w ifax>0

where u satisfies b(u) = h and the solution to (2.3) contains waves only of the
families 1,... ,m.

Under assumptions (F), () and (B), (2.2) admits a unique solution. Indeed,
(B) ensures that there exists a unique such %. In the case of the Cauchy problem,
we generalize [2, Definition NC] as follows, see also [1, Definition 2.2]:

DEFINITION 2.3. — Let u: Q+— U be such that for a.e. t € [ty, +o0l, x— u(t, x) is
in BV(] — 0o, P (®)], R"). u solves the convective problem (1.2) if
@) for any function p € C°({(¢,x) € R%:t < t, or & < Y}, R)

+oo P
f [Orp(t, ) ult, @) + Opp(t, ) f (u(t, x0))] dac dt
t, —o0

P(t,)
+ f oo, x)u(x)de =0,
() u satisfies the boundary condition, i.e. for a.e. T € [ty, +o0[
b(u(t,x)) = h(z).

lim
(ta)— (P (), tx)eR
Recall the following definition of solution to (1.3), see [12, Definition 2.2].

DEFINITION 2.4. — u: Q—U is a solution to (1.3) if for all (t,x) € Q the map
t—ult,x) is an absolutely continuous Carathéodory solution [17, Chapter 1] of

ou = g(t,e,u) telf,x),1l
{ w(p(r,x),x) = u(x) if f(z,x) =t,
b(u(f(r,x),x)) = h(p(r,x)) if f(r,x) > 1, ©=¥(B(r,®))

where for any (t,x) € Q
(24) Pt x) =inf {s € It,,t[: (Os+ A — O)t,x) € 2, VO € [0,1]}.

In the following, we express vectors and functions in their Riemann co-
ordinates w. Therefore we introduce

| = max |vi] for v € R"
(2.5) lull - = I?ﬁ(u)\ for u € U
Vi) = Z TV (w;(u)) for u: R—U .

i=1



880 RINALDO M. COLOMBO - MASSIMILIANO D. ROSINI

Remark that on any compact subset of U, || - || (resp. TV,,( - )) is equivalent to the
usual Euclidean norm (resp. total variation) because of (#3).
For t > t,, let D; be the set of triples p = (i, h, ¥), where

w € L'NnBVR,Y)  with @) =0 for x > ¥(t)
h e L'nBV([t,+oc[, R™)
¥ e C([t,+ool, R x R),

and (2.1) holds, see also [2, Formula (2.4)]. Introduce in D;
TV(p) = TV,@)+TV(R)+ [b(u(¥(t)) — k(1)
d(p,p’) @ —@l|p + 1o =B llgx + ([ ¥ =¥ o -

For ¢ > t, and M > 0, introduce also Dy = {p € Dy: TV(p) < M}.
The invariance assumption ensures the compatibility between (1.2) and (1.3).

(U) The set U is invariant with respect to both (1.2) and (1.3).

Here, invariance is understood as follows.

DEFINITION 2.5. — U is tnvariant for (1.2), resp. (1.3), if any admissible data
(U, h, V) attaining values in U, i.e. u(] — oo, ¥(t,)]) C U, leads to a solution u
to (1.2), resp. (1.3), attaining values in U, i.e. u(Q) C U.

By admissible data (u,h,¥) € D;, we mean that (1.2), resp. (1.3), with data
(u, h,¥) admits a solution in the sense of Definition 2.3, resp. Definition 2.4, for
all times ¢t > t,. For a treatment of invariant domains for conservation laws,
see [19]. Recall that a closed set U/ is invariant with respect to (1.2) if and only if
any Riemann problem with data in U/ yields a solution attaining values in . In
the case of (1.3), a condition for invariance is provided, for instance, by the
classical Nagumo condition [21]. Remark that, in both cases, i/ needs neither be
convex nor compact in the u coordinates.

Below we show that (1.1) generates a process F'

F:{(p,t1,t): p €Dy, ta >t > t,} — e
t>t,

(U, h,),t1,t2) —  (u(te), T-t,h, Tt,—1,¥),

where u(t2) is the solution to (1.1) at time £, with data (u, &, ¥) and initial time ;,
while 7 is the translation operator, i.e. (7:h)(s) = h(t + s) and (7 ¥)(s) = ¥ (L + s).
The main result of this paper is

THEOREM 2.6. — Let (1.1) satisfy assumptions (F), (G), (B), () and (U).
Then, there exists a unique process F with the properties:
1. For all t € [t,, +ool and (u,h,¥) € Dy, the function u:Q—U defined by
(ut, ), Ti1,h, T, ¥) = F((,h, V), 1,,1) is a weak entropic solution to (1.1).
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2. For all ty,ts,t3 with t3> to> t1> 1, F'(F(p, t,12), ta, t3) =F(p,t,t3) for all
Db € Dy, while for all t > t,, F(p,t,t) = p forall p € D,

3. If (u,h,¥) € Dy, with u, h piecewise constant and ¥ is piecewise linear and
continuous, then the corresponding solution u for small times is the gluing of
the solutions to the Riemann problems on the points of jump of u and at
(to, P(15))-

Moreover, for every T,M > 0, there exist constants L, C such that:

4. Fix (u,h,¥), @ 0, ¥") in Dy y and call u, w' the corresponding solutions
to (1.1) yielded by F. Then, if t,t' € [t,, T],

lu®) — & Ol < Ll — @ |y |9 — 2| gt o — ||t — 7]).

5. For any data (@, h,¥) € Dy, u, the solution yielded by F satisfies

t
Cfl(‘r)d‘[
@l <e o (lall~ + IRlg~)

TV (u(t)) < e (TV,, (@) + TV(R) + [b(a(¥(t,))) — h(t,)|)

1+ Cu(] — 00, Plty) — dm(t — o))t — t,).

6. IfU 1s compact, then C does not depend on T.

The proof is based on the main results in [2, 5, 9] and is deferred to Section 3.

3. — Technical Proofs.

Throughout this section, ¢ > 0 is sufficiently small and fixed. All estimates are
uniform in e. The limit ¢ — 0 will be considered only in the final part of the section.

3.1 — The Convective Paxrt.

Throughout this paragraph we let ¢, = 0.
We apply the approximation algorithm introduced in [5], [9], which specia-
lizes the algorithm given in [6] to possibly non convex Temple systems.
By (U), we can write w(lf) as the Cartesian product of closed intervals Z;,
n
ie. wld) = [[Z;, see [19]. For all i, let Z¢ be a finite subset of Z; with the

.=l
properties

(i) Ulw—ew+e DZ;and 0 € Z;;
weTé

.. 1 . o .
(i) there exists a positive 6° such that min
w)w! €T3 Wi Fw!

/

w; —

wl| > &%
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—1/e finfZ; = —o0
minZ; if infZ; > —oo,

1/e if supZ; = 00

(i) mlnIi:{ maxzi:{maxli if supZ; < oo.
Then the set G° = [, Z¢ is an e-grid in wlf), see [9].

As in [5, 9], fix an e—grid G° and consider the Riemann problems

{atu—kamf(u) =0

w ifx<0
u®») = {u’" ife>0

3.1) l

with initial data u!, %" such that w' = w(u!),w” = ww") € G°. Let the states

u?, ..., u" be given through their Riemann coordinates w°, ..., w" as follows:
w' = wh) = @, .. wl )

(3.2) w o= .. wh kg w)) i=1,...,m—1
w' = wu) =W, wy,...,w,_,w),)

S
Clearly w' € G, i = 0,...,n. Introduce f;(u'';s) = [ L;(L;(u'",s))ds and let o;
be the solution of 0

(3.3) Liw o) =u' fori=1,...,m.

The exact weak entropic solution to (3.1) is the juxtaposition of wu;(t,x) =
ul + st ) riub), i = 1,...,n, where ' = w 1(w') and s; is the solution to
{ Osi + Oufi(us) = 0

s0.2) = {0 ifx<0

g ifx>0.

Let now s— f*(u'"1;s) be the piecewise linear function that coincides with
s fi(u'1;s) on w(G°). A piecewise constant weak solution to (3.1), with en-
tropy defect O(e), is obtained gluing ui(t,x) = u’ + si(t, x)r; (), i=1,...,n,
with s? the exact solution to the (approximate) Riemann problems
{ Osi + OufF ' Lys)) = 0

(84) 5:(0,0) — {

0 ife<O
g if.’)0>07

where g; is given by (3.3), see [5]. Let
(n,h,¥) € PC x PC x PLC
(3.5) Do(G) =1 (i, h,¥) € Dy: w@)(R) C &, w(u(u,h))(R) C G°

sup A (w) < ¥ < inf Lp,41(0)
ueld uel

(3.6) Dom(G") = Do(G) N Doy -
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Above, PC is the set of piecewise constant functions R — R” with finitely many
jumps. Observe that if « € PC N L'(R) then u has compact support. PLC is the
set of piecewise linear and continuous functions [0, +oo[ — R with finitely many
corners on any compact interval.

Now we can start the standard wave front tracking procedure [5, 9, 10], see
also [2,4, 6,7, 8,11, 13], to construct an approximate solution to (1.2). First, fix an
e—grid G and approximate the data (u,h,%¥) in (1.1) through (¢, k% ¥*) in
Do m(G%).

At time ¢t =0, at every point & € ] — oo, P*(0)[ where #* has a jump, we
approximately solve the Riemann problem (3.1) with «!= %% —) and
u" = u®(x + ) by means of the exact solutions to the n Riemann problems (3.4). At
(0,%°(0)) we approximately solve the Riemann problem with boundary re-
stricting to Q° the juxtaposition of the solutions to (3.4) with %! = #¢(¥*(0) — )
and »" given by the condition (B), i.e.

u" = (Lylom) 0 Lin—1(@m-1) 0 - - 0 La(a2) 0 L1(071)) (W (P*(0) —)),

with (o1, ...,0m) = ap@*(P*0) — ), h*(0)).

Gluing the local approximate solutions above, we obtain a piecewise constant
approximate solution of (1.2) on ° defined up to the first time ¢;, at which one of
the following interactions take place:

(I) two or more waves collide in the interior of £°;
(IT) one or more waves hits the boundary;
(ITT) the boundary condition % changes.

In case (I), we extend the approximate solution beyond ¢; by solving the cor-
responding Riemann problem, while in cases (II) and (IIT) by solving the corre-
sponding Riemann problem with boundary. Observe that in the case (II) no wave
comes out from the boundary. We need to prove that this procedure gives an ap-
proximate solution ¢ defined on all ©°. To this aim, we prove that the total variation
of the approximate solution and the number of interaction points are bounded.

First we prove that the total variation of the approximate solution u* is
bounded for all ¢ uniformly in e. Fix a positive time ¢; then % at time ¢ and the
approximate boundary conditions /¢ can be written as

N, N,
u' = Zua Alwa ol and &f = Z h(l Altartal »
a=1 a=1
where x) = P*(t) and t) =¢. For a =1,...,N,, call g;, the total size of the i—
waves in the Riemann problem between u, and u,.; at x, as defined by (3.3).
Clearly, 0,0, 1 € {1,...,m}, is a wave starting from the boundary.

In the sequel we omit ¢ to simplify the notation. Following [5], we introduce
for later use the quantity ; , as the signed length of the wave o; , measured in the
space of the Riemann coordinates. More precisely, set u! = u,_1 and u" = u,,
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then ;, = w' — w~!, where w'~! and w' are defined in (3.2). Introduce the fol-

lowing functionals

m N n N

Vv = ZZ|Ti,a| +K Z Z|Ti,a|7 Vh = Z‘haﬂ _ha|
i=1 a=1 i=m+1 a=1 a>0

Q = Z |Ti1.a1 Ti2.0.2| ) Yy = V+K,V,+Q

il >i2, ayp<ag

where K and K, are suitable positive constants. @ is essentially the Glimm in-
teraction potential, see [6]. We omit the dependencies on p, ¢ and e.

PROPOSITION 3.1. — Fix the total variation of the initial data. Then, if the
constants K, K, are sufficiently large, along any approximate solution u, the
map t— (V + K, V},)(t) is non increasing.

ProOF. — The map ¢t — (V + K, V},)(®) can change is value only after an inter-
action. Thus, fix a time ¢ >0 at which an interaction takes place, and let
AV =V(t+) — V(t—) and AV), = V},(t+) — V},(t—). Consider the cases (I), (I)
and (III) separately:

(I) Clearly 4V}, = 0. By [5, Paragraph 2], we have that AV < 0.
(IT) Again AV, = 0. Furthermore AV < 0 because no wave start from the
boundary.

(ITT) By [2, Paragraph 6], 37, qo‘ < Lip{w} | D1yl |hs — h-| and thus
AV + K AV;, < 0 for Kj, > Lip{w} || hO'bHCo.

The proof is complete. O
PROPOSITION 3.2. - The total number of interactions is finite.

PRrOOF. - To bound the number of interaction points, we prove that at any
interaction either the number of waves decreases, or Y diminishes at least by a
fixed quantity, provided Kj is sufficiently large. Consider the cases (I), (II)
and (III) separately:

(I) The number of waves can increase only if the waves belong to different
families, but in this case, by [5, Paragraph 2], 4Q < —0,2.
(IT) In this case, the number of waves decreases because all the waves hit-
ting the boundary are absorbed by it.
(III) In this case 4Q = > 7" 1 > 1 i > uo1

by the proof of Proposition 3.1,
AY < (Lipw) [|Dyopllo A+ V) — Kp) by — h—| < =6,

. Therefore,

<VEL

+ +
Ti0Tka Tio

for Kj, > Lipw)(||Dyopl|c0) A+ V) + 1.
The proof is complete. O



WELL POSEDNESS OF BALANCE LAWS ETC. 885

By the same argument used in [5, 9], the above algorithm yields a semi-
group S°:[0, +ool x Dom(G)—Dyu(G"), for every &>0, whose orbits ap-
proximately solve (1.2). Recall the definition (3.5) and introduce the three
canonical projections n;, ¢ = 1,2, 3, defined in Dy p;. With a slight modification
of the construction in [5], one can prove the following proposition, where we
write the x-jump of a function A: [0, +oo[ — R at (¢, x,) as 4h,({) = h(t,x, + )—
t, e, — ).

PropPoSITION 3.3. — Under (F), for any M, e > 0 and for any e-grid G°, the
system (1.2) generates an operator

¢ o 0,400l x Doar(G) = Dom(G)
(t, p) = Sip

such that the map t — m o Sip is a weak solution to (1.2) with data p, for all

P € Dy n(G%). Moreover S has the following properties.

1. 8% is a semigroup, i.e. S; = 1d and S; o S; =S} ..
2. The map (t,x)— m; oS¢ p(x) is piecewise constant with discontinuities along
finitely many polygonal lines and with finitely many interaction points.

3. For all p € Dyyu(G°), both maps t+— ||S§p||OO and t— TV(S¢p) are non in-
creasing.

4. Let 5 be any convex entropy for (1.2) with entropy flux q. For any M > 0 there
exists a positive constant C independent from e such that for all p € Doy (G°)
and t € [0, +o0[

(3.7) > (- M, — A) > —C -,

where x = x,(t) is the support of the a-th discontinuity in myoSip; here

7' =n(moSip), ¢ =q(m o Sip).

5. The second and third components of S; are the right t translations:
(S p) = T (ma p) and n3(S; p) = T (n3 p).

We now prove the uniform in ¢ Lipschitz continuous dependence of the ap-
proximate solutions on the initial data and in the boundary condition by means of
the now classical technique based on pseudopolygonals, see [2,4,5,7,8, 9, 10, 11,
12]. The underlying idea is that of shifting the location of each jump in the initial
data and boundary condition at constant rates.

DEFINITION 3.4. — Let a < b. An elementary path in PC is a map

y: Ja,bf — PC

il with
0 = D M @son 24(0) < 24-1(0), 0 € Ja, bl .

a=1

Fix T > 0 and assume that ¥, 9" € PLC do not coincide on [0,T]. The ele-

x,(0) = Ty + 0Z,
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mentary path in PLC joining ¥' and ¥" on [0, T] is the curve

() + TP () — 2 ()11, + 01, 0<0
7O)(t) =
vt + LY () — 2" (1)1, — 01, 0>0,

defined for 0] < ||¥" —¥" || oy where [x], = max {x,0}. If ¥ =¥, the
map y defined by y(0) =¥ for all 0 is also an elementary path in PLC. An
elementary path in Dyy(G°) is a map y:la, bl—Dy1(G°) such that w0y is a
PC-elementary path for 1 =1,2, and a PLC-elementary path for i=3. A
continuous map y:[a, bl—Dyu(G%) is a pseudopolygonal in Doy (G*) if there
exist countably many disjoint open intervals Ji Cla,bl such that
Ja,b[\ Uy Ji s countable and the restriction of y to each Jj. is an elementary
path in Dy p(G°).

Exactly as [2, Proposition 3], any two triples in Dy (G°) can be joined by a
pseudopolygonal contained in Dy 5,(G%). Furthermore, S¢ preserves pseudopoly-
gonals: if y is a pseudopolygonal, then so is S} o , for all ¢ > 0.

Consider a pseudopolygonal y joining two triples in Dy 3(G?). Introduce the
shift speed of the boundary

0 if 0~ (3 09)(0) is constant
K(y) = {

(38) 1 otherwise.

Define the generalized shift speeds

(39) ;o = Max {K7 ’éi,a’} y Mo =K, 77/(1 =K+ Ea

71}6115 Jem+1 ()

where ¢, is the horizontal shift speed of the i-th wave g;, at x, and Ea is the
vertical shift speed of the jump at £, in the boundary condition.
Along a pseudopolygonal, through

ﬁ?(?) = Z |0-i,a|7/i,uWi7a and ﬁ?(?) = Z ”h& - h&*l“ﬁﬁWi,&

1,0 1,0

define the functionals

(3.10) 5,() =1(7) +%,(7)

b
=) = [ 10 a0

b

(3.11) Io1l, = [ (340 + x0) do.

a
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Wi.a Wiﬁ > 1 being weights bounded uniformly in ¢, see (3.15). Call
N
fx(j/) = sup {Zd(y(gj),y(ej_l)):N < N,a = 9() < 01 <...< 0]\7 = b}
j=1

the length of the curve y with respect to the distance d in the metric space X. For
instance, in D, we consider the metric

(3.12) d(p', p") = ||u" —@|[p + B = Wl + [P =¥ |0 -
Referring to the choice (2.5) of the norms, we denote

TV(p‘[O,T]) = TV(?TL) + ||b(770(¥’(0 + ))) — h(O + )” + TV(}L‘[O’T]).

LeEmMA 3.5. — Fix a positive M. Then, there exists a positive constant C such
that for all py, p2 € Doy with n3(p;) having Lipschitz constant L;, for all
pseudopolygonal y:[a,bl— Dy joining p; to ps and for all small ¢ setting
y; = m; 0y, the following estimates hold:

Il = Clp(y

7, < CULG) + L (e) + A+ TV(Py .9 + TV(P2 0.1 0 (75))
Z(0) > C MO+ ()

2 < CUpGy) + L (02 + (TV(pyo 1) + TV(D20 7))o (75))

PROOF. — Let y = 3! @7 & ... be a pseudopolygonal, where y* =y, k € N,
are elementary paths. Then

(pGH = sup Z!Iu uq1]|(0) — 6;-

= sup { g3, aéza gjl)}
1,0

) = s Sl a0

leo(5) < sup {Zx(yk)(ej - ejl)},
7
%i,a

By B9), [¢ia| < iy < [&ia] + 1), and |,

<, < ( + ;c(y)). Therefore,
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by (3.12),

b
ED(V) < f <Z(|O—i,aéi,a| + ”ha - ha71||

1,0

&

) +K<y>>de < Clhl,

b
||V||a < C (ng(yl) + ng(Vz) +f (1 + Z ‘Ji,a‘ + ||ha - hal”>}€(y)d0>

< (60 + G + (14 TV 1) + TV(B2o11) ) o0 ).

The last two inequalities can be proved similarly. O

It immediately follows that the metric on Dy ;, defined by
d;(py, p2) = inf {lI7ll.: » pseudopolygonal joining p; to p,}

is equivalent to the distance (3.12), see also [2, 4, 5, 6, 10].
Due to the possible “movement” of the boundary, below it is necessary to
consider one more type of interaction, namely the points where

(IV) the boundary stops shifting, i.e. where x passes from 1 to 0.

The following interaction estimates

@: D af,| < (1 +EY D 1, ) > i
(3.13) a>0 K#i |a>0 |/ [a>0
AD:  ofy| < Kllhy —h|

hold for a suitable positive constant K > 1. The former estimate comes from [5,
Formula (5.7)], while the latter holds because o} is Lipschitz.

PROPOSITION 3.6. — Consider a point P, = (t., z,) of interaction. Let u(t, x) be
the approximate solution to (1.2) defined for t < t. by extending backward the
shocks and for t > t, by solving the approximate Riemann problem. Then

2
®: 3 |otat, S(HKZ )Z
a>0 ki

D Tha Tiallia
a>0 a>0
(3.14) _ _
+K Z Tia Z Z ’O-k,aﬂk,a
a k#i a>0
(D) : aiolio| < Kijgllhy — h-|| -
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Proor. - We consider the various cases separately.

@O If ;77 = 7 P , then (3.14) follows from [5, Formula (5.8)]. If ;71 = K we
assume 77; , = K, since in the case Nig > K the right hand side in (3.14) (I) becomes
greater. Now (8.14) (I) follows from [5, Formula (5.8)] setting for all ¢, a,f
which implies & = 1.

1,0

(III) In this case, am = 0 for any a > 0. By (3.13) and (3.9)

oivits| < Kl —hojmax{|¢f|}
< Klh, —h_| (K+ &, ||inf A1 (w) — inf Apq () >
uel ueld
< Kijglhy —h-|. u

Recall that 7 and « have bounded support, hence there exists a time 7% such
that no interaction takes place for ¢ > 7% see [22].

Following [5], assign weight 1 at all waves in «(7%, -). Next consider a point P,
of interaction and suppose that the weights W of the waves exiting the in-
teraction are already assigned. The incoming waves are weighted as follows. If
no i-wave exits the interaction, each i-wave that enters the interaction is as-
signed weight W, = 1. In the other cases let

< +KY

k#1

(3.15)
+K Z(

k#1
(II1) Wiz = KWj,.

(L) wg,

1,0

§ :Tka

a>0

) max Wi

E :Tka

a>0

max Wi >

In case (I1), W{ , = 1 because no wave exits the interaction, and, in case (IV), it is
not necessary to define weights because there is no interaction.

PROPOSITION 3.7. — Fix an elementary path y. Let an interaction take place
at P.. Let Y,(t) = Y,(S; o), where Y, is defined in (3.10), and x(t) = x(S} o y), K
being defined in (3.8). Then i any of the cases (I), (1I), (111)

PRrOOF. — Since « can only decreases passing from 1 to 0, it is sufficient to show
that 4Y, < 0in all cases.
(I) Inthiscase4 )7; = 0 and « remains constant. Moreover A1, < 0. Indeed,
as proved in [5, Paragraph 6] and [10, Proposition 3.6], by (I) in (3.15), it holds
that, with obvious notation, 3, o 7 W, < 3=, lo; ni,[W:,

1,0 —
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(IT) As before, AY,, = 0 and x remains constant. Furthermore AY,, <0.
(III) In this case 4Y,; < 0 because for (3.14) (III) and (3.15) (III) we have

aioio| Wi < Kiiallhy — h- Wiy = gllhs — b [|[Wig . O

As a consequence of Proposition 3.7, the length of S¢ o y computed as in (3.11)
is non increasing as a function of time.

3.2 — The Source Term.

We approximate g as

keZ ™ \ (=1)e

ke
(316) ga(tv €, u) = Z% ( f g(ta éa u)dé> 'X](kfl)s,ke](x)

and consider the approximate problem

ou = ¢gt,xu) tx) € 2
(3.17) w0,2) = u(x) x < Pt
b(u(t,P(t) = I () t >t

where (4%, h%,¥°) are as in the previous paragraph. In [9, Lemma 4.3] the fol-
lowing lemma is proved.

LEMMA 3.8. — Let g be as in (G). Then ¢° satisfies (G) with (G3) modified as
SJollows: if Lk € 7 and I <k, for all x; € lle, (I + 1)¢] and x2 € Jke, (k + 1)e] we
have

(3.18) |g°@, 2, 1) — g°(t, a1, w)| < Bu([le, (k + 1)e]).

The following lemma can be proved as [12, Lemma 3.7].

LeMMA 3.9. - The differential equation (3.17) generates the map

X I x Dy — L'nBVRU

3.19 .
(3.19) twt) , P +— .p

1 the sense that for all (u’,h*,V*) € Dy, the map t+— 2 s hé SUS) 18 the so-
lutton to 3.17). Forall R > 0 and T > t,, there exist a posztwe le Lloc([to’ ~+o0l[)
and constants C, M > 0, both independent from g, such that for all t € [t,, T1 and
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p = @, h,¥) € Dy, with TV(py, ) < R,

(3.20) ’ Efo,tl’HLoc <l ||gg]| e + sup oy, g€ 0% |10
(3.21) spt (ngt p) C spt(a) U (spt(h) N [to, t])
(3.22) TV(%’;,#’) <" (14 Ct—t) - TV(pyg, )

+e7 9L, mu(R) - (¢ —t,) .
Finally, there exists an e-grid G such that

(323)  (u,h,¥) € Dy, m(G) = (Eil,?t(a, h¥), Ti,h, thtoa”) €D, (&)

Above, spt(u) denotes the support of the function .

3.3 — Operator Splitting.

An approximate solution to (1.1) is constructed through the following
operator splitting scheme. Fix positive ¢ M and an e—grid G°. Let
p = @,h, V) € Dyy(G). Let I >k be in N and for ¢, € [ke, (k+ 1)¢[ define re-
cursively

St p if t € [ty, (k+ e[,

(3.24) Fp— (EZ.t(SLtUp),T t_toh,Tt_tov/) if t = (k + 1)e,

-1
A < 9 lFfe,(i+l)8> Ffm(kﬂ)eu if t € [le, [+ Del.
1=K+

Concerning the grid, refine it recursively. Indeed start with an initial datum
D € D(G°) assigned at time t,. For t € [t,, (k + 1)el, Ffo‘t p attains values in the
same grid G°. At time (k + 1)e we apply the o.d.e. solver ZZN(,C 1), and at the same
time pass to another ¢—grid G5 = &, according to (3.23).

Recursively, if F; ; p attains values in G, then F} ; p is valued in the same
grld for all te[le (0 + Dyel. Applying 27, .1, we pass to another e—grid

i1l = G See [9, Paragraph 4].

LeEmMA 3.10. — Let T > t,. The operator F*: T x D; —Dy, is well defined and
can be written as Fy (u,h,¥) = (u*(t), T1-1,h, Tt1,¥). Moreover, the total
number of discontinuities is finite on any strip [t,, T]1 x R.
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PrOOF. — For (3.24) to be well defined, it is necessary to check that all com-
positions are possible: by Lemma 3.9, if p € Dy, then Sip is in D;, as well as
e+ P- The use of a discrete grid at each convective step ensures that the
number of interactions is finite over all [0, T'], see [9, Lemma 4.4]. |

LEMMA 3.11. - For all R > 0 and T > t,, there exist positive le Ll([to, T1)
and a constant C, both independent from e such that for t elt,,T] and
for p =, h,¥) €Dy, with ||k||~+ |ull~ <R, the function w defined by
(w(t), Ti—t,h, T1-4,¥) = Fi ,p satisfies

(3.25) @)l <€l - ([lllge + )
(3.26) TV (u(t)) <e®) - (1+Ct ~1,)) - TV (py, 1)

+ e . 9L, - w(R) - (t —t,).

PRrOOF. — The first estimate follows from Proposition 3.1 and (3.20). Similarly,
to prove (3.26) we use Proposition 3.1 and (3.22). O

In particular, the previous lemma provides an upper bound of the total var-
iation of the approximate solution uniform in &. By Helly Compactness Theorem,
the above lemmas yield an existence result to (1.1). We now proceed towards an
estimate of the Lipschitz constant for / uniform in e.

LEMMA 8.12. — Fixe M >0, N € N and T =t, + Ne. Let pq, ps tn Dy, y(G°)
with max {TV( Py, s TV( p2‘[tU’T])} < R and a pseudopolygonal y joining p,
to po. Then, for all t € [t,,T], there exist weights uniformly bounded from
above by a quantity dependent from M, T but not ¢ such that fort € [t,, T]

|

Thanks to the construction above, this proof is entirely similar to that
of [9, Lemma 4.7].

X ¢ 5 _ i t 5 _
on-t oy L < e.rtql(f)df . Hy”(o , He (Fz,,t o y) < e.rtql(r)dr S EZ(y).

PROOF OF THEOREM 2.6. — Let ¢, = 27 for v € N. For any data construct a
sequence of approximate solutions by means of (3.24). A standard argument,
see [6, 7,11, 13], shows that this is a Cauchy sequence in L' and that it converges
to a weak entropic solution of (1.1), proving points 1., 2. and 3.

Consider now point 4., with p = (@, h,¥), p' = @', k', %) and t = ¢':

[ (t) — ' @)1l
<d(Fy,p,Fi,1p")
<C lim d, (Fi,p,.Fi,p))

v—+00
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.
< Cel!@% lim d, (p,, p)
v——+00 v

< Celul % d(p, p)

. fti(r)dr . , ,
<C-(1+2)ew (Ja—ally + ¥ =¥l + b= W)

The case t # t' follows by standard argumets, see for instance [2, 7, 12].
Finally, point 5. follows from Lemma 3.11. O
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