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Asymptotics for Eigenvalues of a Non-Linear Integral System

D. E. EDMUNDS - J. LANG

Sunto. — Sia I = [a,b] un sottinsieme di R. Siano 1 < q,p < oo, e siano u e v funzioni
positive, con u € Ly(I) e v € LyI). Sia T : L,(I) — Ly(I) un operatore di Hardy de-
finito nel modo sequente:

(TNH@) = v() f Fudt, x € I.

Dimostreremo che il comportamento asintotico degli autovalori A nel sistema in-
tegrale non lineare

9@) = (Tf)(x) (f@)g) = MT*(gp))(@)
(dove, per esempio, ty = |t 7lsgn t)), ¢ dato da

1/r
lim n4,(T) = ¢, ( f (uv)"dt) , quando 1 < q < p < oo,
N—00
T

1/7
lim n/,,(T) = ¢, ( f (uv)rdt) . quando 1 < p < q < .
n—oo
I

Quir=1/p' +1/p, cpq & una costante esplicita che dipende solo da p e g, Jn(T) =
max (spn(T,p, @), 4n(T) = min (sp, (T, p,q)), dove spu(T, p, q) rappresenta l'insieme di
tutti gli autovalori J che corrispondono alle autofunzioni g con n zeri.

Abstract. — Let I =[a,b] C R, let 1 < q,p < oo, let u and v be positive functions with
u € Ly(I), v € LyI) and let T : L,(I) — Lqy(I) be the Hardy-type operator given by

()@ = o@) [ SOuiL, xe1.

We show that the asymptotic behavior of the eigenvalues A of the non-linear integral
system

9(@) = (Tf)(x) F@)g) = AT (gep))(x)
(where, for example, ty) = |t “Lsgn (b)) is given by

1/r
lim 1, (T) = Cpg (f(uv)’dt) L for 1< q<p< oo,
n—oo
T
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1/r
lim nl,(T) = Cpg (f(uv)"dt) L for 1<p<q<oo.
n—oo B
7

Here v =1/p' +1/p, ¢4 is an explicit constant depending only on p and g,
In(T) = max (sp,, (T, p,q)), An(T) = min (sp,(T,p,q)) where sp,(T,p,q) stands for the
set of all eigenvalues A corresponding to eigenfunctions g with n zeros.

1. — Introduction and preliminaries

Through this paper we shall assume I = [a, b], where —o0 < @ < b < 00, and
let p,q € (1,00), (@) := |oc|p*1 sgn (x),x€ Rand 1/p'=1-1/p.

Let % and v be positive functions on I, with u € Ly (), v € Ly().

Define the Hardy-type operator T : L,(I) — Ly(I) by

(TF)@) = v(@) f Fu®dt, v el.

Such maps have been intensively studied: see [4, Chapter 2].

Since |I| =b—a < oo, u € Ly(I) and v € Ly(I) then T is compact, see [5,
chapter 2].

As more detailed information about the native of the compactness of a map is
provided by its approximation, Kolmogorov and Bernstein numbers, much at-
tention has been paid to the asymptotic behavior of these numbers for the map T'.
The analysis is decidedly easier when p = ¢, and an account of the situation in
this case is given in [5]. For the case p # q we refer to [6], [7] in which a key role is
played by the non-linear integral system:

(1.1) g(x) = (Tf) (@)
and
(1.2) (f@)) = AT (g)(@),

where g, is thebfunction with value (g(x))) at  and 7™ is the map defined by
(T @) = ulx) [ v @)dy.
X

The non-linear system (1.1) and (1.2) gives us the following non-linear
equation:

(1.3) (f@)py = AT ((Tf ) ) ().
This is equivalent to its dual equation:

(14) (s@)g) = 2" TAT" ) ) (@)
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And we have this relation: For given f and 1 satisfying (1.3) we have s = (Tf),
and A" = Ay satisfying (1.4), and for given s and A" satisfying (1.4) we have
f=T*s)y) and 1 = )j@ satisfying (1.3).

By a spectral triple will be meant a triple (g,f, 4) satisfying (1.1) and (1.2),
where || f]|,= 1; (g, ) will be called a spectral pair; the function g corresponding
to Ais called a spectral function and the number 7 occurring in a spectral pair will
be called a spectral number.

For the system (1.1) and (1.2) we denote by SP(T, p, ¢) the set of all spectral
triples; sp(T', p, q) will stand for the set of all spectral numbers A from SP(T', p, q).

It can be seen that this non-linear system is related to the isoperimetric
problem of determining
(1.5) sup |lgll,,

g€T(B)
where B := {f € Ly() : || f|,<1}.

Moreover, this problem can be seen as a natural generalization of the
p, ¢q—Laplacian differential equation. For if « and v are identically equal to 1 on 7,
then (1.1) and (1.2) can be transformed into the p,q—Laplacian differential
equation:

(1.6) — (W)= 2w)g,

with the boundary condition

(1.7) w(a) = 0.

If g.f and /4 satisfy (1.1) and (1.2) then, the integrals being over I,

J v@ttdz = [ ggde = [ 15@N9) g

= [f@T (rgde = 27 [ f@X )

_ f |f@)Pde.

From this it follows that A~ = lgll2/11.f1; and then for (g1,/4) € SP(T,p, q) we
have 7,7 = [|ga],.-

Given any continuous function f on I we denote by Z(f) the number of distinct
zeros of f on I and by P(f) the number of sign changes of f on this interval. The
set of all spectral triples (g,f, 1) with Z(g) =n (n € Ny) will be denoted by
SP,(T,p,q), and sp, (T, p, q) will represent the set of all corresponding numbers

1. We set 4, = max sp,(T,p,q) and 4, = min sp,(T, p, q).
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Our main result is that the asymptotic behavior of the 4, can be determined
when 1 < ¢ < p < oo: we show that

1/r
Tim 1)(T) = ¢y, ( i (m))“"dt) :

1

where » = 1/p' + 1/q and ¢, is a constant whose dependence on p and ¢ is given
explicitly. A corresponding result holds for /, when 1 < p < g < co. Moreover,
spu(T, p,p) contains exactly one element, so that in this case 4, = A, = 4, say,
and the asymptotic behavior of the 4, is given by the formula above.

We now give some results to prepare for the major theorems in §2 and §3.

LEMMA 1.1. — Let f # 0 be a function on [a,b] such that Tf(a) = Tf(b) = 0.
Then P(f) > 1.

ProoF. — This follows from the positivity of 7' and Rolle’s theorem. O

LEMMA 1.2, - Let (g;,fi, 4i) € SP(T,p,q), 1 =1,2, 1 < p,q < co. Then for any
e> 0,

(1.8) P(Tf; — eTfy) < P(Tf; — P~ V/@D(j, /3)V VTS,
If the function fi — ¢fs has a multiple zero and
P(Tfl _ 6(p—1)/(q—1)()v2/;tl)q/<tI—1)sz) < o0,

then the inequality (1.8) is strict.

ProoF. - We will use Lemma 1.1 and the fact that sgn(a —0b) =
sgn ((@)(p) - (b)(p))-

P(Tfy — eTfy) < Z(Tfy — eTfy) < P(fy — &f)
< P(A)gy — & ()
(use (1.2) for f; and f3),
< POST*((g)g) — & V22T ((g2) )
< ZOa T ((g1)) — & 22T ((g2)ig))
< P((g1)ig) — &2/ 1)(g2) )
< Plgy — &7 P00y /1) Vge)
< P(Tf; — e®~D/@=D (g, /)Y@ D1p).
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THEOREM 1.8. — Foralln € N, SP,(T,p,q) # 0.

Proor. - This essentially follows ideas from [3] (see also [8]), but we give the
details for the convenience of the reader. For simplicity we suppose that I is the
interval [0, 1]. A key idea in the proof is the introduction of an iterative procedure
used in [3].

Let n € N and define

n+1
On = {Z = (Zl, ...7277,4,1) S Rn+1 : Z |z1| = 1}

i=1

and

J-1 J
Jo(x,2) = sgn(z;) for Z |zi] < < Z lzi], j=1,...,m+ 1, with zp = 0.
=0 i—1

With go(x, 2) = Tfy(x, 2) we construct the iterative process
g1, 2) = Tfi(x,2), fir1(@,2) = (@)1 (g1, 2)g)e),
where 4 is a constant so chosen that

| fesll,= 1

and 1/p 4+ 1/p’ = 1. Then, all integrals being over I,

1 :f|fk(x,z)|pdx :ffk(fk)(i))dx :ffk([;“k—lT*((gk‘l)(q))](p/))(”)dx
= f Sl T (g1 die

Y A T e P W e
and also

1gr-1l3 :f|gk71(9€, 2)|"dw :f(gkfl)(q)gk—ldx
= [ (e DTG vde = [ T (e 1)1

= /1;;11]‘ Z1 T ((Gre—1)(g) fio—1d

) 1/p' 1/p
<h <f}()~k—1T*((gk-1)(q))(p')‘p d”) (f|fk-1|pd90>
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1/p'
P dx)

=4 <f|(/lk1T*((gk1)(q))(p/)

1p
Sy < [i f,ﬂdx> Sy

From these inequalities it follows that
-1
gi—1 G, < 2110 < NlgnC, 2,

This shows that the sequences {gx(-,2)} and {).,;1/ q(z)} are monotonic increasing.
Put A(z) = lim Jx(2); then |jgi(-,2)]|,— V).

As the sequence {fi(-,2)} is bounded in L,(I), there is a subsequence
{/:(-,2)} that is weakly convergent, to f(-, 2), say. Since 1" is compact, gi,(-,2) —
Tf(-,2) := g(-,2) and we also have f(-,z) = (A(&)T*(g(-, z))(q))@,). It follows that for
each z € O,, the sequence {g;,(-,2)} converges to a spectral function.

Now set z =(0,0,...,0,1) € O,,. Then fy(-,2) = 1, and as the operators T and
T* are positive, gx(-,z) > 0 for all k, so that ¢g(-,z) > 0. Thus (g9(-,2),f(-,2), A(z)) €
SPy(T,p,q) : SPo(T, p,q) # 0.

Next we show that for all n € N, SP, (T, p, q) # 0. Given n,k € IN, set

B = {2 € 0y : Z(gi(,2) <m — 1}

From the definition of T it follows that g;.(-, z) depends continuously on z; thus £}/
is an open subset of O, and F} :=O,\E} is a closed subset of O,. Let
0<t <..<t, <1and put

Fi(a) = (gxt1, @), ..., gk (tn, @), a € O,

Then F}, is a continuous, odd mapping from O, to R”. By Borsuk’s theorem,
there is a point a;. € O), such that Fy(a;) = 0; thatis, a;, € F}'. From the definition
of g;. and f., 1, together with the positivity of 7' and 7™, we have

Z(gr+1) < P(fiv1) < Z(fr1) < Plgr) < Z(gr),

so that 7} C K} ;, which implies that F! > F! ;. Hence there exists a € Ng>1F7},
and as above we see that g;(-,a) converges, as k — oo, to a spectral function
9(,a) € SP,(T,p,q). Thus SP,(T,p, q) # 0 and the proof is complete. O

We note that the previous theorem is true for much more general integral
operators (i.e. integral operators with totally positive kernel, see [8]).

We now define Kolmogorov widths d,(T) for T as a map from L, () to L)
when 1 < q,p < oo. These numbers are defined by:

d(T) =d, = l)rgﬂf Hfs\llg)él glenxf,,, \Tf = gllg /N1l meEN
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where the infimum is taken over all n-dimensional subspaces X,, of Ly([).
To get an upper estimate for eigenvalues via the Kolmogorov numbers, we
start by recalling the Makovoz lemma (see 3.11 in [3]).

LEmMMA 14. - Let Uy, C{Tf; || fl,; < 1} be a continuous and odd image of
the sphere S" in R" endowed with the l; norm. Then

dn(T) > inf{||x[|, ;@ € Un}.

LemmMmA 1.5. — If n > 1, then d,(T) > 7Y where ) = max{/l S U spi(p,q)}.
i=0

PROOF. — Let us denote 4= max{/l € U spi(p, q)} The iteration process

from the proof of Theorem 1.3 gives us for each k € N and z € O, a function
9x(.,2). By the Makavoz lemma we have

(1.9) du(T) > max min lgxC, 2 1-

Let us suppose that we have

(1.10) min Lim [jgi(., 2)ll,, = max min [lgi(., 2],

Then from (1.9) and (1.10) it follows that

o 51/
du(T) 2 min lim |lg,(.,2)ll, = 27

since llrn gk( 2) € SP(T,p,q). We have to prove (1.10). From the monotonicity of
llgx (., z)quwe have

max m1n||gk( z)H = hm mlank( z)||
keN zeO

From max min < min max it follows that

L= lim min oo 2)l| — max min lloe(.. 2
Jim min [lg.( 2)ll, = max min [lge(., 2|,

< min maXHgk( Ay = mln hm lgeC. 2, =k
2€0, keN

Denote Hy(e) = {z € O, : ||gk(.,z)|\q <h—¢&} where 0 <e<h.
Since the mapping z — g5(.,2) is eontinuous, Hy(¢) is a closed subset of O,
and from the construction of the sequence g, we see that Hy(e) D Hi(e) D ....
Ifyo € ﬂ Hy(e) # O thenh = mln hm lgi(, 2, < hm lgrCyolll, < 7 —eis

a contradlctlon Then there emst ko e N such that Hk(s) 0 for k > ky and
rn(lgn lgsC., z)||q > h —¢for k > ky. Then we have that » = [ and (1.10) is proved. O
zely
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Next we define Bernstein widths which will help us in section 3. The
Bernstein widths b,(T) for T: L,(I) — Lq(I) when 1 < p,q < oo are defined by:

bu(T) := inf ||
D)i=sup dnf T g/ 1 N

n+1

where the supremum is taken over all subspaces X, of T(L,(I)) with dimension
n + 1. Since w and v are positive functions, the Bernstein widths can be ex-

pressed as
n+1
(&)
i= q.l
bu(T) ?{uf acRM {0} [[nHd ’
> i fi
=1 .1

where the supremum is taken over all (n+ 1)-dimensional subspaces

Xn+1 = span {fl: "‘7ﬁl+1} - Lp(l)
Now we use techniques from Theorem 1.3 to obtain an upper estimate for the
Bernstein widths.

LEMMA 1.6. — If n > 1 then b,(T) < 7Y% where /. = min (sp,(p, ).

ProOF. — Suppose there exists a linearly independent system of functions

{fi,-sfus1} on I, such that:
n+1
(30

i=1
n+1
> i fi

i=1 I

min
a€R™\ {0}

ol 5 G,
Let us define the n—dimensional sphere

n+1 n+1
On—{T<Zaifi>: > aifi —1},
i=1 i=1 pl

Let go(.) € O, and define a sequence of functions %;(.), gx(.) = 9x(.,90),k € N,
according to the following rule:

9i(®) = Thy(x), hie1(@) = (AT (gr(2) ) )

where /; > 0 is a constant chosen so that |71, ; = 1.
We denote O,,(k) = {g(.,90) : go(.) € O,}. As in the proof of Theorem 1.3 we
have:

llgx|l, s is a nondecreasing as k " co. For each k € N there exists g; € 0,,(k)
with n zeros inside I; klim 9x(., go) is an eigenfunction and there exists go(.) such
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that klim 91(., 90) is an eigenfunction with » zeros. Moreover /J; is monotonically
—00

decreasing as k " co. _—
Let @€ R""! be such that: go() = (Z [ ﬁ) is a function for which

A . . . . i=1
khm 0x(., go) is an eigenfunction with » zeros.
—00

Then we have the following contradiction:

n+1

. i=1 q. _

n ——— < .

acRM{0} ||l _ < N0l
> @i fi
=1 1
. _ 3-1/
< lim lgiC, go(Dllgs < 477, 0

In the next two sections we obtain an upper estimate for Kolmogorov num-
bers and a lower estimate for Bernstein numbers. We shall need the approx-
imation numbers a,(T) of T, defined by a,,(T") = inf ||T — F'||, where the infimum
is taken over all linear operators /' with rank at most n — 1.

2. —The case g <p

We recall Jensen’s inequality (see, for example [9], p.133) which will be of help
in the next lemma.

THEOREM 2.1. — If F' is a convex function, and h(.) > 01is a function such that
[R@®)dt = 1, then for every non-negative function g,
I

P( [ gt )< [ nor .
7 7
The following lemma give us a lower estimate for eigenvalues.
LEMMA 2.2. — Ifn > 1 then a,(T) < Zﬁl/q, where 7. = max (spn(p, Q).
PrOOF. — For the sake of simplicity we suppose that |I| = 1.
Let (9, f,2) € SP,(T,p,q). Denote by {a;};_, the set of zeros of g (with

ay = a) and by {bi}:‘:ll (with b, ;1 = b) the set of zeros off. Set I; = (b;, b, 1) for
1=1,...,m and Iy = (ap, b1), and define

T f@) =3 200 [ W) f .
=0 a

Then the rank of T, is at most «.
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We have (see [4, Chapter 2]) d,(T) < a,(T) < sup ||Tf — T fl|,-
I71,<1
Let us consider the extremal problem: !

(2.1) sup || Tf = Tufll,-
£, <1

We can see that this problem is equivalent to
(2.2) sup{[|Zf1l, : II/1l, <1, (Tf)a;) =0 for i =0,...,n}

Since T and T, are compact then there is a solution of this problem, that is,
the supremum is attained. Let f be one such solution and denote g = 7. We can
choose f such that g(t)g(t) > 0, for all t € 1. We have 191lg.r > 191,z -

Note that for any f € LP(I) such that Tf(a;) = 0 for every i = 0, ..., n we have
Tf(x) = T"f(x) for each x € I, where

Tf@) = [ Kb fOdt =Y 7,00 [ o st
I =0 a

and

K@, ) ==Y 21, @v@u(t)y g, ) sgn (@ — ;).
=0

Set s(t) = [g(t)|7, where /. = ||| q.1- Then, all integrals being over 7, we have

1/q q 1/q
( f |§(t>|th> =il/q< f s(t) dt)

(use Jensen’s inequality, noting that f s@)dt =1)

_ 1/p
51/ g
< q(fs(t) o
_ p 1/p

9@
P 1/p
)

9@
9@

Y [K(t,7)f(v)dx
= A ‘1<fs(t) 7@(25)
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fK(t, FOf@,

P 1/p
_7-1/q
i ( f o[ =25 ot dt)

(use Jensen’s inequality, noting that

Ktof@ _ oo [ @, )

[7((7 - g()
K,/ |F@) o

7-1/q )T T

<i (f (t)f 0 |70 ddt>

Zo P 1/p
_5-1/q f@ 2, Kt st)
J ( [ ol 7@ [ o dide

_ q 1/p
i 0 o KO e

0 » 1/p
_ Z“"( f % f@ f K(, f)é?(q)(t)dtidf)

(use f K(t, 0§ (0)dtA? = 2T (§g))t) = f(p)(t)>

=)l (f’}%

(use fO)fi() = |FO)

1/p
:2*1/‘] (f’f‘(r) ‘pd‘[> _ i*l/q.

From this it follows that a,(T) < i~V O

1/p
f (f)ﬁm(f)df)

THEOREM 2.3. — If1 < q < p < o, then

: 5 —1/q .
Jggonin = Cpq (f |uw] dt)
1
where r =1/p' +1/g, ;ln = max (sp,(p, Q) and

@)1g" P @ + @M
2B(1/q,1/p")

(2.3) Cpg =

(B denotes the Beta function).
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PRrROOF. — From [7] we have

lim na,(T) = lim nd,(T) = ¢y ( f m;|1/’"dt)
Nn—oo Nn—00
1

and since d,,(T) < a,(T), a,,(T) \, 0 and d,,(T) ~\, 0 then from Lemma 2.2 follows:

.
Cpg (f|uv|l/’"dt) < lim inf nJ, %,
Nn—00
1

and from Lemma 1.5 we have

r
lim sup n/, ' < Cpq (f |7/w|1/’)dt>
N—00 7

which finishes the proof. O

3. — The casep < ¢

) LEMMA 3.1. - Let 1<p<qg<oo and n>1 Then b,(T)> 27V where
A = min (sp,(p, q)).

PrOOF. — We use the construction of Buslaev [2] Take (g, f , ;) from
SP,(T,p,q) and denote by a = xp < 1 < ... < &; < ... < &y < X1 = b the zeros
of g.Set I; = (x;_1,x) for1 <i <m+1,f() :f(.))(,i(.) and g;(.) = g(.)y;,(.). Then
Tfi=g;()for1 <i<m+1.

Define X1 = span{fi, ...fus1}. Since the supports of {f;} and {g;} are dis-
joint, then we have

n+1

n+1
HT<Z “ifi) > 4ifi
> o, % = el %
acR" aeR"
2. difi > aifi
i=1 pl i=1 ol

We shall study the extremal problem of finding

n+1

> igi
i=1

q,
n+1
> aifi

i=1

in
acR™ {0}

I
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It is obvious that the extremal problem has a solution. Denote that solution by
a = (ay, dg, ...). Since p < q, a short computation shows us that a; # 0 for every 1,
moreover we can suppose that the a@; alternate in sign. Label

n+1 q
> Gigi
_ =1 .l .
Tt p >
> i fi
i=1 pl
n+1 _ n+1
then the solution of the extremal problem is given by g = >_ ai9;, f = >_ @i fi
where | f]|, = 1. =1 =1
n+1
Let us take the vector f=(1,—1,...). Define the functions g= > f;¢;,
- n+1 i=1
f=>p;fi- Then
i=1
n+1 q
> Bigi
1, =t q.1
TP b
> Bifi
=1 pI

It is obvious that y < 4, ! Suppose that 7 < 171,
Since @; #0, |f;] =1 and 7 < 2! then 0 <& := min (8;/a;) < 1. From
Lemma 1.2 follows fsise

P(T(f) — & T(f) < P(T(f) — &P D@D/ )V aDpp)),

By repeated use of Lemma 1.2 with the help of ()P V@D < e 1 and
7/471 < 1 we get

P(T(f) — & T(f)) < P(T(f)) = n.

On the other hand we have from Lemma 1.1 and the definition of ¢* that
N B N B n+1 n+1
P(T(f) - & T(f) < P(f —&'f) = P(Zﬂiﬁ —& Zaif@) <n-—1,
i-1 i1
which contradicts 7 < 171 O

THEOREM 3.2. — If 1 < p < q < oo then

1/r
lim nlﬂ_l/q = Cpq (f |u’v|’“dt> ;
n—o0
T

wherer =1/p' +1/q, Jn = min (8pn(p, @) and cpq as in (2.3).
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PRrROOF. — From [6] we have
1/r
Tim b, (T) = ey | [ fuvldt
I

and since b,(T) \, 0 then from Lemma 1.6 it follows that
1/r
Cpq f uwl"dt | < lim inf i, 7.

n—
1

Moreover, from Lemma 3.1 we have

1/r

N—00

lim supn;l,fl/q < Cpq f\m}\ydt
1

which finishes the proof. O

When p = q the following lemma follows from Theorem 2.3 and Theorem 3.2
(we can find this result in a sharper form in [1]).

REMARK 3.3. — When p = ¢ then
1/r
lim n, V7 = c,, f|m;|rdt
1

Nn—00

where r = 1/p' 4+ 1/q, ¢, as in (2.3) and 4, is the single point in sp,(p, ¢).

REFERENCES

[1] C. BENNEWITZ, Approximation numbers = Singular values, Journal of Computa-
tional and Applied Mathematics, to appear.

[2] A.P.BUSLAEV, On Bernstein-Nikol’skii inequalities and widths of Sobolev classes of
functions, Dokl. Akad. Nauk, 323, no. 2 (1992), 202-205.

[3] A.P.BUSLAEV - V. M. TIKHOMIROV, Spectra of nonlinear differential equations and
widths of Sobolev classes. Mat. Sb., 181 (1990), 1587-1606; English transl. in Math.
USSR Sb., 71 (1992), 427-446.

[4] D. E. EDMUNDS - W. D. EVANS, Spectral theory and differential operators, Oxford
University Press, Oxford, 1987.

[6] D. E. Epmunps - W. D. Evans, Hardy operators, function spaces and embeddings,
Springer, Berlin-Heidelberg-New York, 2004.

[6] D. E. EDMUNDS - J. LANG, Bernstein widths of Hardy-type operators in a non-
homogeneous case, J. Math. Analysis and Applications, 325 (2007), 1060-1076.



ASYMPTOTICS FOR EIGENVALUES OF A NON-LINEAR ETC. 119

[71 D. E. EDMUNDS - J. LANG, Approximation numbers and Kolmogorov widths of
Hardy-type operators in a non-homogeneous case, Mathematische Nachrichten,
279, no. 7 (2006), 727-742.

[8] NGUEN, T’EN NAM, The spectrum of nonlinear integral equations and widths of
function classes, Math. Notes, 53, no. 3-4 (1993), 424-429.

[9] A.KUFNER - O. JOHN - S. FUCIK, Function spaces, Noordhoff International Publish-
ing, Leyden, (1977).

D. E. Edmunds: School of Mathematics, Cardiff University,
Senghennydd Road, Cardiff CF24 4YH, UK
e-mail: DavidEEdmunds@aol. com

J. Lang: Department of Mathematics The Ohio State University,
100 Math Tower 231, West 18th Avenue, Columbus, OH 43210-1174, USA
e-mail: lang@math.ohio-state.edu

Received May 7, 2007 and in revised form May 25, 2007






