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L? Maximal Regularity for Second Order
Cauchy Problems is Independent of p

RALPH CHILL - SACHI SRIVASTAVA (*)

Sunto. - St prova che se il problema del secondo ordine i + Bu + Au = f ha regolarita
massimale LP per qualche p € (1,00) allora ha regolarita massimale LP per ogni
p € (1,00).

Abstract. — If the second order problem v + Bu + Au = f has LP maximal regularity for
some p € (1,00), then it has LP-maximal reqularity for every p € (1, 00).

1. — Introduction.

The notion of LP maximal regularity for the abstract linear second order
problem

(1) i+ B+ Au=f on [0,T], (0) = (0) = 0,

was first introduced and studied in [5]. Here A and B are two closed linear op-
erators on a Banach space X, with dense domains D4 and Dg, respectively. We
say that the problem (1) has LP-maximal regularity, if for every f € LP(0,T; X)
there exists a unique (strong) solution

u e MRyp = {v e W2(0,T; X) N LP(0,T;Dy) : i € LP(0, T; Dp)}

of the inhomogeneous problem (1). Strong solution means that %(0) = #(0) = 0
and the differential equation (1) is satisfied almost everywhere. The space MR, ¢
is called maximal regularity space.

The definition of L? maximal regularity is similar to that of L” maximal
regularity for the first order problem # + Au = f, and is closely related to the
abstract notion of maximal regularity studied first by Da Prato and Grisvard [6],

(*) The second named author thanks the Paul Verlaine University of Metz for local
hospitality during her visit to Metz when this work was started.
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and then also by Acquistapace and Terreni [1], Dore and Venni [9], and Labbas
and Terreni [11].

In this note, which may be considered as a sequel to [5], we show that L?
maximal regularity for the second order problem is independent of the choice of
p,1 < p < co. For the examples studied in [5], LP maximal regularity was known
to hold for all p € (1, 00), but at the end of this note we describe another example
for which only L? maximal regularity was known. The fact that LP maximal
regularity is independent of p is well known for the first order problem; see for
example, De Simon [8] in the case of Hilbert spaces, Sobolevskii [12], Cannarsa
and Vespri [4], Hieber [10] in the general case.

2. — Initial value problem.

We first prove that LP-maximal regularity of (1) implies existence and un-
iqueness of strong solutions of the initial value Cauchy problem

2) U+ Bu+Au=00n[0,T], u(0)=ug, %(0) = uy,

if the pair of initial values belongs to the trace space T, associated with X, A and
B, defined as

Tr, = {(u(0),i(0)) : u € MR, }.

Subsequently, two consequences of this result are recalled.

The existence and uniqueness theorem was proven in [5] under the additional
assumption Dy — Dg. We present a proof which does not require this assump-
tion.

THEOREM 2.1. — (Initial value problem) Let p € (1,00). Suppose that (1) has
L? maximal reqularity for some T > 0. Then, for every (uy,u1) € Trp, and every
T > 0, theve extists a unique solution w € MR, v of the initial value problem (2).

PROOF. — Suppose that (1) has LP maximal regularity for 7 > 0. Let
(g, u1) € T'r, be given. By [5, Lemma 6.3 (i), (ii)], for every ¢ € [0, T'],

{(u(®),iut) : w € MRy, 1} = Tr,.

Hence, there exists v € MR,r such that wy=v(0) while u; =»(0). Let
f:=v+Bv+Av € LP(0,T; X). By LP maximal regularity, there exists a solution
w € MR, r of (1) with f as chosen above. Then w(0) = 0 = w(0). Let u :=v —w €
MR, . Clearly u is then a solution of (2) with initial values w(0) = uo and
1(0) = u1. Uniqueness of this solution on [0, 7] follows from linearity and unique
solvability of the problem (1).

This solution of (2) can be extended to a solution on [0,27]. Indeed, by the
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same argument as above, for (u(T),u(T)) € T'r,, there exists a unique solution
z € MR, r of the initial value problem (2) satisfying 2(0) = w(T), 2(0) = u(T).
Then setting u(t) = u(t) if 0 <t < T and equal to z(t — T) if T < t < 2T, we ob-
tain a solution of (2) in MR, or. Iterating this argument we see that the solution »
can be extended or restricted to a solution in MR, 7+ for any 7" > 0.

In order to show uniqueness on [0, 7"] for any 7" > 0, let « and v be two so-
lutions of (2) on [0, 7"]. Extending both solutions, if necessary, we can assume
that 7" = kT for some k € IN. Then it suffices to note that 4 = v on [0,T] by
uniqueness on the intervall [0, T'], and iterate this argument. O

The same arguments as in the proof of [5, Corollary 2.4] can now be used to show
that if the problem (1) has LP maximal regularity for some 7' > 0 then it has L?
maximal regularity for all 7 > 0. This strengthens the earlier result as the as-
sumptionthat D4 — Dgisnolongerrequired. We record this statement formally as

COROLLARY 2.2 [Independence of 7' > 0]. - Let p € (1, 0). Suppose that the
problem (1) has LP maximal regularity on [0, T] for some 0 < T < oo. Then the
problem (1) has LP maximal reqularity on [0, T] for every T, 0 < T < oo.

Recall from [5, Lemma 6.1] that the trace space T, is the product V x V; of
two Banach spaces which continuously embed into X. Hence, Theorem 2.1 im-
plies that for every « € V7 and every T > 0 the initial value problem

(3) W+ Bu+Au=0o0n[0,T], u(0)=0,u0)=u=w,

admits a unique solution u € MR, . Setting S(¢)x := u(?), where u is this solu-
tion of the preceeding problem, we thus obtain a solution family (S(t));>¢ of op-
erators in £(V1, V) which plays the role of a sine family. In a similar way one
could define the cosine family associated with (2), but unlike in [2] (where B = 0),
the sine family is in general not the primitive of the cosine family.

As in [5, Proposition 2.2], one can show that the S(¢) extend to operators in
L(X), and that for every f € LP(0,T; X) the convolution S x f is the unique so-
lution of the inhomogeneous problem (1). Infact, the following is true.

COROLLARY 2.3 [Sine family and inhomogeneous problem]. — Suppose that
1) has LP maximal regularity and define the sine family (S(t)) as above. Then

S e C(Ry; LX) NC*((0,00); L(X; Dy N Dg))
and for every f € LP(0, T; X) the solution u of the inhomogeneous problem (1) is
given by

u®) = S =) ::fS(t — 8)f(s)ds.

Ry
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3. — Regularity of solutions.

The following result exhibits the regularity of the solutions of the initial value
problem (2) by invoking an idea used in the proof of [5, Proposition 2.2].

THEOREM 3.1. — Let p € (1,00) and assume that (1) has LP maximal reg-
ularity. Let (ug,u1) € Trp, T > 0, and let w € Mv, r be the unique solution of the
mitial value problem (2). Then u € C*(0,T);Ds) and u € C*(0,T); Dp).
Moreover, if for k € N one defines

wp @) = tfu® @), telo,T),
then w, € MR, 7.

REMARK 3.2. — The proof below will actually show that the solution extends to
an analytic function in a sector around the positive real axis.

Proor. — By Theorem 2.1 we know that the solution extends to a solution on
R.. We consider the operator

G:(—1,1) x MR, 7 —LP(0,T; X) x Trp,
(2, v) = (0 + A+ DBY + (A + 2P Av, (0(0) — up, 9(0) — uy)).
The operator G is clearly analytic (see [13] for the definition of an analytic

function between two Banach spaces). For A € ( — 1,1) we put w(¢) := u(t + At).
Then u* € MR, 7, u° = u, and G(Z,u*) = 0. Moreover, the partial derivative

oG
%(O,M) MR, —LP0,T; X) x Try,
v (0 + Bv + Av,v(0),1(0))
is boundedly invertible by LP-maximal regularity and Theorem 2.1. Hence, by
the implicit function theorem, [13, Theorem 4.B, p. 150], there exists ¢ > 0, a

neighbourhood U of % in MR, 7, and an analytic function g : ( — ¢,¢) — U such
that

{,v)e(—¢&8 xU:GU,v) =0} ={(4,g91) : L € (—¢ 8}

From this we obtain g(1) = «*, that is, the function A — % is analytic in ( — &, ).
dt
In particular, the derivatives WW‘ o €xist in MR, r for every k € IN. One
h )

easily checks that Wuﬂ ,—o coincides with the function u; defined in the

statement, so that one part of the claim is proved. The regularity of % and « is an
easy consequence of this part. O
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Our next Lemma is of a technical nature. We define, for 0 < 7' < oo, k € Ny,
and 1 < p < oo, the spaces D*?(0, T; X) as
DFP(0,T; X) = {f € WEP(0,T); X) : f; € LP(0,T; X) for every 0 < j <k,
where fi(t) = t/f9t)}.

Equipped with the norm || - ||y, given by
k
1A lpew =D il
=0

these spaces are Banach spaces.

LeEMMA 3.3. — Suppose the problem (1) has LP maximal reqularity for some
p € (1,00). Then for every k € No the map vy, r D"(0,2T; X) — MR, 1 given by
Wir O = tFu® (@), where u is the unique solution of (1) corresponding to f, is
bounded. Moreover, there is a constant Cp > 0 such that ||y 7| < Cy for all
0<T<1

PRrOOF. — In the following, we will write, for convenience y;, 7 =, and only
specify the indices when there is a chance of confusion. Let f € D*?(0,2T; X) and
let # denote the unique solution of (1) for this f. Let MRgﬁT be the subspace of
MR, r given by

MR", = {v € MR, 7 : v(0) = #(0) = 0}.
By considering the C* map
G:(—1,1)x MRS, — LP(0,T; X)

G, v)@®) = ¥(t) + (1 + DBit) + A + DPAv(t) — (A + D*F(A + A)t)

and following the same strategy as in the proof of Theorem 3.1 we get an ¢ > 0,
such that the function 2 — u* is C* from ( — ¢,¢) into MR, 7; u*(t) = u(t + it). In

J
particular, the derivatives ; u*|,_, exist in MR, 7 for every j € {0,1,...,k}.
But ;—u [_o®) = t'u(t). Therefore y maps D*P(0,2T; X) into MR, 7. Recall

here that the operator that maps f € LP(0,T;X) to the unique solution
u € MR, r of problem (1) is bounded. It is straightforward to check then that y is
closed. By the closed graph theorem it follows that y is bounded.

Let E be a bounded operator that maps any f € D*P(0,2; X) to an extension
Ef € D*(0,4; X) in such a way that (Ef)(#) = 0 for t € (3, 4).
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Fora > 0and 7 > 0, let D, : D*P(0, 7; X) — D*?(0,%; X) be the dilation given
by (D)) = f(at). Then, for every t > 0,

1
(4) ”DafHD’fvP(Oi;X) = a HfHDkvP(O,T;X)'
Let 0 < T < 1. Then for any f € D*P(0,2T; X) and t € [0,2] set

DioKEoD t) forte[0,4T]1NI0,2],
(E'Tf)(t):—{;? rf)t) fortel 1110.2]

otherwise.

Then E7 is bounded extension operator from D*?(0, 2T; X) into D*?(0,2; X), and
we have, on using (4),

HETfHDkJ’(O,Z;X) < ||D% o E o Drf|lpraaria
=T||E o Dr fllproga.x)
< TE| 1D f Nl prro 2,2)
= B proo2r.2)-

Hence, for all T' € (0,1],

H ’/’k,TfHMR,,_T < ” Wal(ETf)”zvu«e,g_1

< il 1B S pro 2.2y
< il E S | peoo 272 -

Therefore ||y 7| < Cr := [lwy..1| |E] for al T, 0 < T < 1. O

4. — p independence.

In this section we will establish that if the problem (1) has L? maximal reg-
ularity for some p € (1, 00), then it has L” maximal regularity for all p € (1, c0).
The scheme followed will be similar to that in [10], where the corresponding
result for the first order problem is proven. We will make use of the following
theorem, which is a vector valued version of a result due to Benedek, Calderén
and Panzone [3].

THEOREM 4.1 ([10], Theorem 4.3). — Suppose that T is a bounded operator on
LP(R; X) for some p € (1,00) and is represented by

5) Tf(t) = f K(t — $)f(s)ds
R
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for feL*(R;X) with compact support and té¢supp f, and the kernel
K e L} (R\ {0}, X) satisfies

loc

(6) f |K(t—s)—K@)|dt < C forevery s # 0 and some ¢ > 1.

[t]>cs|

Then T admits a bounded extension to L"(R, X) for every r € (1, 00), that is, there
exists a constant C, such that

I T oy < Ce |l ey -

We now state our main result concerning LP maximal regularity for problem
(1) and the choice of p € (1, ).

THEOREM 4.2. — Suppose that for some p € (1,00) the problem (1) has LP
maximal regularity. Then (1) has LP maximal reqularity for every p € (1, 00).

ProoF. — Fixp € (1, 00). Suppose that problem (1) has LP maximal regularity
and let (S(?)) be the sine family from Corollary 2.3. By LP maximal regularity and
Corollary 2.3, the convolution operator f— S = f is a bounded linear operator
from LP(0,T; X) into MR, 7.

It is enough for our purposes to show that the convolution operator f — S x f
extends to a bounded linear operator from L" to MR, for every r € (1, c0).
Fixxe X and 1 > T > 0. Set f(s) =x, s > 0. Then f € D*»(0,2T, X) for all
k € Ny. Therefore, applying Lemma 3.3 to f and the corresponding unique so-
lution  := S * f of the problem (1), with k& = 2 we have that ¢ — t*u®(t) € MR, r
and
H‘//z,TfHMRM = ||t2u(2)(t)||MR,,_T
< Ce || fllpzoo2r.)
= C @Y ||,

where C; is the constant independent of T obtained in Lemma 3.3. Noting that
t t
u(t) = [ St —s)f(s)ds = [ S(s)xds, we therefore obtain from the above in-
0 0
equality
(7) |EAS@e 0 707 < Co @TY [Je].

Define the operator-valued kernel K as

AS@t) ifte0,T),
0 otherwise.

K@) = {
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Due to the LP maximal regularity of (1), the convolution operator T4 given by
Taf®) = fK (t — s)f(s) extends to a bounded linear operator on L”(0, T'; X). Thus
there is a constant C such that for all f € LP(R, X),

I Tf N < Co L f o) -

We claim that the kernel K further satisfies condition (6) for some ¢ > 1. Indeed,
for T >t>s>0,and x € X, we have, on using (7) and Hélder’s inequality
|IKE — s)e — K@x| = |ASE — s)x — ASt)x||

¢
= f AS(?")QC dr

t—s

13

f r 22 AS(r)e dr

t—s
i a 5
2 dr) ( R G dr)
0
t i
f 2 dr) Co @0 |||

t—s

IN

IN
.S

IN

Therefore, for ¢ > 1, and s > 0 we have

[ 1K~ 5) - Kyt < ¢ [ @i — ¢ -

f>es t>cs
< Cf (2t)%t(%‘2)‘1 —1- 8t71)(172q)
t>cs
< C [ tsit2at

t>cs

1
dt

1 1_
<C'sh f 1$-2qt
T>t>cs

<M,

where C,C’, and M are constants depending only on C’p, q,cand T.

Therefore, from Theorem 4.1 it follows that 74 is a bounded operator from
L"0,T;X) to L"(0,T; X), for every r € (1,00). Thus, for each » € (1,00) there
exists a constant C, such that for all f € L"(0, T; X),

(8) IAS * fll o120 = 1Taf o ra) < éTHfHL’(OT;X)'
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Now define another operator valued kernel K; as follows.

Ki(t) = BS@) ifte (9, T),
0 otherwise.

Let Tz be the operator given by Tgf(t) := Ky = f. Due to LP maximal regularity,
Ty is a bounded operator on L?(0,T; X). Applying Lemma 3.3 to the constant
function f(t) = x,t € (0, T), successively for k = 0,1 and 2 we obtain for u = S x f,

IEBS@ a1 < SO page , + 21ES D] yare , + 2[1(S * Dl ,
< Callfllpes +2C1 )1 fllpns +2Coll £l oo
— CRT) ],

where the constant C is independent of T for 0 < T < 1. Using this inequality
and the same arguments as before, we can show that the kernel K; also satisfies
(6) above. Thus, from Theorem 4.1 it follows that f +— K; * f is a bounded operator
on L"(0,T; X) for every r € (1, 0c0). Therefore, we have for every f € L"(0, T; X),

9) ||BS *fHLr(o.T;X) = HTBfHU'(O,T;X) < C11~Hf||U'(0,T;X)'

Since u := S *f is a solution of the equation i(t) + Bu(t) + Au(t) = f(t) a.e , it
follows that % € L"(0, T; X) and there exists a constant C]. such that |ju||y2, <
C!|Ifl- This statement, together with (8) and (9) implies that the problem (1) has
L" maximal regularity for every » € (1, c0). O

There are, as of now, only a few results that ensure that the problem (1) has
LP maximal regularity for some p € (1, c0). The main ingredient for showing L?
maximal regularity in [5] is a characterization of L” maximal regularity in terms
of Fourier multipliers. In a particular model problem LP maximal regularity was
shown by using the Mikhlin-Weis Fourier multiplier theorem [5, Theorem 4.1].
This then implied L? maximal regularity for every p € (1,00), so that in the
examples considered in [5], LP maximal regularity is independent of p € (1, c0).

However, consider the following variational setting, not covered by the re-
sults in [5]. Let V and H be two separable Hilbert spaces such that ¥V embeds
densely and continuously into H. We identify H with its dual H’ so that H is also
densely and continuously embedded into V.

COROLLARY 4.3. — Let A and B be two linear, maximal monotone, sym-
metric, not necessarily commuting operators from V to V'. Then for every
p € d,00) and every f € LP(0,T; V"), every uy € V and every u; € (V’,V)L/‘p
there exists a unique solution !

w e W20, T; V) n W0, T; V)
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of the problem
(10) W+ Bu+Au=f on[0,T], u(0)=up, u(0) = u;.

In other words, the above problem has LP maximal regularity for every
p € (1, 00).

PrOOF. — By a result of J.-L. Lions [7, Théoreme 1, p. 670] the problem (10)
has L? maximal regularity in V’. By Theorem 4.2, the problem (10) has L?
maximal regularity for every p € (1, c0). Solvability of the initial value problem
follows from Theorem 2.1. The fact that the associated trace space equals
Vx WV, V)]%‘p follows from [5, Lemma 6.2]. O

The fact that in the variational setting above the problem (1) has L?
maximal regularity was proved in [7] by the Faedo-Galerkin method and a
priori estimates. The proof thus heavily depends on the Hilbert space setting
and it does not imply L” maximal regularity for p different from 2. We point
out that the conditions on A and B can be considerably relaxed; for the precise
assumptions, see [7].
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