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Some Results on Stochastic Porous Media Equations

VIOREL BARBU - GIUSEPPE DA PRATO - MICHAEL ROCKNER

Abstract. — Some recent results about nonnegative solutions of stochastic porous media
equations in bounded open subsets of R® are considered. The existence of an invariant
measure is proved.

1. — Introduction.

Let ¢ be a non empty bounded open subset of R® with smooth boundary 97,
of class C? for instance. We are concerned with the following porous media
equation in @ perturbed by noise

dX(t) = ABX @)t + Y opXEdy(8), ¢ >0,
k=1

(1.1) BX®) =0, ond”, t>0

X(0) = z,

under the following assumptions,
HyprOTHESIS 1.1.

@) pr) = ar™ + Ar where m is an odd integer strictly greater than 1 and
a>0,1>0.
(1) oxle) = 1y, xer, k € N, where {w,} s a sequence of positive numbers and
{ey.} is the complete orthonormal system in L?(7) consisting of eigen-
functions of the Dirichlet Laplacian problem in .
(i) {y,} is a sequence of (mutually) independent standard Brownian
motions on a filtered probability space (2,.7 ,{7 t};>¢, P)-

An additional assumption on the sequence {y;.} will be made later.

When the {o;} are independent of x we say that the noise is additive (see the

(*) Conferenza tenuta a Perugia il 19 giugno 2007 da G. Da Prato in occasione del
“Joint Meeting U.M.I. - D.M.V.”.
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paper [6]). It is well known that in this case the positivity of the solution to (1.1)
for & > 0 does not hold. Since we are here interested in finding positive solutions
of (1.1), we will consider the multiplicative noise (ii).

We note that the assumption on f covers many important models of dynamics
of ideal gases in porous media and extends to functions § with polynomial growth
which are coercive, i.e.,

B = ™t az®, 0] < 0507 + 1),

with a; > 0,7 = 1,2, 3 (see [4]).
Other important cases, with more general f have been studied, in [10] and [5].
In this paper we shall give a review of the main results in [4], trying to explain
the main ideas which are involved and avoiding technicalities as much as possi-
ble. In addition we shall discuss invariant measures for equation (1.1).

2. — Notations and setting of the problem.
2.1 — Some functional spaces.

We shall use the following notations.

o L%() is the Hilbert space consisting of all (equivalence classes) of map-
pings x : @@ — R which are measurable and square integrable, endowed
with the scalar product

@,9) = [ @Ou@dc, xy e 13).
Ve
We identify L?(?) with its topological dual.
For p > 2 the space LP(?) is similarly defined. We note the norm in L (?)
o HY(7) (resp. H*(?)) is the space of all mappings x € L*(©?) whose first
(resp. first and second) derivatives in the sense of distributions belong to
L%(?). We set moreover

H(l)(ﬂ) ={xe HY(?): x=0 on Y.

e A is the realization of the Laplace operator with Dirichlet boundary con-
ditions in L2(?),

Ax=">"x, VaxeDU),
=1

D(4) = HX() N H(O).

It is well known that —4 is a self-adjoint, positive and anti-compact op-
erator. So, there exists a complete orthonormal system {e;} in L?(?) of
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eigenfunctions of —4 (*). We denote by {4} the corresponding sequence of
eigenvalues,
Aey, = —}Vkek, ke N.

By the Sobolev embedding theorem (*) it follows that
e, € C(O), YkeN;

however the sequence {e;} is not equibounded in C(?) in general. The
following elementary estimate is useful

‘ek|:>o < CO|€k|H2 < cl\Aek|2 =c1dg, keN,

where ¢ and c; are suitable positive constants.

H~Y() is the topological dual of H} (). It is well known that the Laplace
operator 4 can be extended to an isomorphism of H}(<?) onto H ()
(which we shall still denote by 4).

We denote again by (-, -) the duality between Hi(?) and H ().
H~1() is endowed with the inner product

() | = -4 a,y), x,yecHNO).
For further use we note that there exists a constant ¢ > 0 such that
||y < codilx|_y, VEkeN.

We have in fact

jwer 2, = sup{|(@er, ) : ¢ € HY(), [l < 1}.
Moreover,

|(wer, ) < |l lenglin < 2lal’y ($Verls + lexVel)

< 20y (Verl? 16 + leul?, 161)

< Cley [l exlze + lexlS),

which implies (2.2).

Notice also that

1) t 2 ) t
_ 2 2
E k;ﬂk Of X()epdy,(s) - kEZI:ﬂkE Of X (s)ey|* ds

IN

00 t
&> 6 [ X6 ds.
k=1 0

(*) the system which is considered in Hypothesis 1.1.
() Since @ ¢ R? we have H2(?) c C(©) and H'(©?) C LS(?).
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In order that this quantity is finite (as we shall need later in several computa-
tions) we shall also assume that

HyproTHESIS 2.1. — We have

(2.3) > g =1 < A+ oo
k=1

2.2 — Abstract formulation of the problem.

Let us we write equation (1.1) in an abstract form. For this purpose we in-
troduce the following nonlinear operator in H (7).

{A(x) = —A(p)), e DA),

2.4
®4) D) = {x e HY )N LX) : B) € HY)}.

It happens that the operator A is maximal monotone (see e.g. [2]) and this is the
reason for studying equation (1.1) in the space H~'(?)) which will denote by H in
the following.

Let us write equation (1.1) in the following form.

25) {dXo:) FAXDE =S X Oedy®), >0,
: =1
X(00) = .

We note that, in view of Hypothesis 2.1, the series above is convergent provided
X(t) e HYO).

We are now going to define a concept of solution for (2.5). Since we have no
hope to find a solution X(t) belonging to D(A), we shall give a weak concept of
solution. For this we need some functional spaces.

For any T > 0 we shall denote by L%/(0, T; L*(2, H)) the set of all adapted
processes X(t) such that

T
(2.6) E f f IX(t, &)Pdtdé < + oo
0o

Moreover, by Cw ([0, T1; L*(Q, H)) we denote the subspace of L%,(0, T; L*(2, H))
of all mean square continuous processes.

DEFINITION 2.2. — A solution of (2.5) is an H-valued continuous adapted
process X such that

X e Cw([0, T; L3(Q, H)) N L™ Q2 x (0,T) x )
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and for any j € N

t
XO.0), = @ e~ [ [ HX@ededs
0

2.7) o
+ 3 [ Xer, (o).
k=1 0
Since

X@), )2 = 4;(X(@®),¢j) 1, JEN,

we may equivalently write (2.7) as follows

t
X@®).e)_, + f f BX(sNejdéds = (x,e;)_,
07
t

3w f (X (e, e))_1dy;(s).
k=1

0

2.8)

3. — Existence and uniqueness.

We shall first consider the equation

51 { X () + A W)t = 3w ZWerdy ), >0,
X*(0) =z, =

where Z € Cw([0, T]; L>(2, H)) has been fixed. Then we shall solve (2.5) showing
that the mapping

Cw ([0, T); L@, H)) — Cw((0, T1; L*(Q, H)), Z — X*

has a fixed point.
Also equation (3.1) will be solved in a weak sense, precised by the following
definition.

DEFINITION 3.1. — A solution of (3.1) is an H-valued continuous adapted
process X* such that
X* € Cw(0,TT; LA(Q,H)) N L1 (Q x (0,T) x @)
and for any j € N

t
X'M).e) , + f f B (s)ejdéds = (w, ;)
0

(3.2) t

3w [ (e, ) o).
k=1 0
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3.1 — The solution of (3.1).
Let us introduce the approximating equation,

AX,(8) + A X O)t =Y ZBexdyd), >0,
(3.3) k=1

Xe(o) =,
where A, are the Yosida approximations of the maximal monotone operator 4,
1
A@) == (0~ J@) =AU@), >0, zeH,

and J,(x) = (1 + e4) ().
As is well known (see e.g. [2]), A, is maximal monotone and Lipschitzian on H.
Notice also that

(As), )y = (AJ@),J.(@)_ + (AT @), ¢ — J,(@)_,
= (AJ,@),J®)_; + &A@,
so that
(34) (A, 2) 4 = (AL@, L) 1+ o= L@,

By standard existence theory for stochastic equations in Hilbert spaces, equa-
tion (3.3) has a unique solution X, := I',(Z) € Cw ([0, T]; L*(Q; H)) (see e.g. [7]).

LEMMA 3.2. — Assume that Hypotheses 1.1 and 2.1 are fulfilled. Then for any

x € HY®) and any Z € Cw([0,T); L2(Q, H)) there exists a unique solution
X*:=I'(Z) of 3.1) such that

X" € Cw([0, T1; LA(Q, H)) N L™ (Q x (0, T) x ).

Moreover, there exists a constant C > 0 such that for any Z,Z, € Cw([0,T];
L2(Q, H)) we have

t
(3.5) E|X*(t) - X; (t)?, < CE f \Z(s) — Zy(s)P1ds, Y tel0,T],
0

where X; = I'(Z1).

ProoF. — By It0’s formula we have

t
1
5 BIXOP, + [ (AX6),X,9)_ds
0

t
1 o0
=5 Elafy + > @ f \Z(s)ex 2 ds.
k=1 0
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Now, setting Y, = J.(X;) and taking into account (3.4) and Hypothesis 2.1, we
obtain

t t
1 1
5 EIXOP, +E Of (B, Ys) ds + T Oj 1X,(5) — Yo(s)[,ds

t
1 o0
(36) =3 Blfy+ Y f \Z()ex|? ,ds
k=1 0

t
1
<3 Bl + i E f 1Z(s)ds.
0

From (3.6) it follows that

{X.} is bounded in Cw ([0, T; L3(Q, H)),
{Y.} is bounded in L"™tH(Q x (0, T) x ).

Therefore there exists a sequence ¢ | 0, and a pair of processes (X*, #*) such that
X e L"NQ % (0,T) x ).

and

N e L@ % (0,T) x ©)
such that
kh_)rrolo X, =X weakly in L™(Q x (0,T) x ),
{ ]}LHOIO B, () =n* weakly in L1(Q x (0,T) x ©).

Passing to the limit in equation (3.3) we see that X* fulfills the identity for all
$e LR x(0,T) x )

t

@09 = g [ [ nededs
(3.7) 0

© t
3 e [ Zs)er, §addis).
k=1 0
To conclude the proof of existence it suffices to show that
(3.8) n = pX") ae. in Qx (0,7) x 7.

Indeed, in such a case we may take in (3.7) ¢ = 4e; for j € I\.
To show (3.8) consider the lower semicontinuous convex function on
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L@ x (0,T) x ),
1 F i F
- = m+1 A 2
o@W=— E f f jott, O dtde + 5 f f e, &) dtde.
0 o 0
We claim that

T
(39) ) o) <E [ [oX ~Dhdtde, ¥U € L"@x 0.T) x ).
0 -

It is clear that (3.9) yields (3.8). We tray to deduce (3.9) letting k — oo in the
inequality

T
(310) &(Y,)-dU)<E f f BT, — UDdtde YU € L"NQ % (0,T) x ©).
0

We obtain by the lower semicontinuity of @ and the fact that {#(Y,,)} weakly
converges to 7, that

T T
(3.11) PX) — AU) < liminf B [ [ ppv,aa - [ [quarae
0 @ 0

So, in order to prove (3.9) it remains to show that

T T

(3.12) lim inf £ f f BY,)Y, dtdé < f f nX*dtde.
07

0~

For this we go back to the It6 formula (3.6) from which we deduce that

T
S EKOF, + B [ [ )Y, drz
(3.13) 0

¢
1 o0
<3 Bl + 4 hf Z(s)ew|? 1 ds.
k=1 0
Next we apply It6 formula to (3.6) and find that

T
% EXOP, + 1 [ [ o)X ()atde
(3.14) 0

t
1 oo
< 3 Elee?, + g 1 Ff |Z(s)ex|? ,ds.
k=1 0

Comparing (3.13) and (3.14) yields (3.12). So, existence is proved.
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Now (3.5) follows from It0’s formula and therefore uniqueness follows from
(3.5) and the Gronwall lemma. O

3.2 — Euxistence and uniqueness for (2.8).

THEOREM 3.3. — Assume that Hypotheses 1.1 and 2.1 are fulfilled. Then for
any x € H1(?) there exists a unique solution X of (2.8) such that

X € Cw ([0, T1; LA(Q, H)) N L"™1(Q x (0,T) x ).
Proor. — By (3.5) it follows that
\[(Z) = I'(ZDl ey oz < CTVZ = Ziloyqomiz@.m)
for all Z,Z; € Cw([0,T]; L?(Q, H)). Thus the operator I" is a contraction in

1
Cw(0,T11; L¥(Q, H)), where T = T Therefore there exists a unique solution of

(2.8) inthe interval [0, T ]. In a similar way we can prove existence and uniqueness
of a solution in the interval [T, 27T] and so on. The conclusion follows now in a
finite numbers of steps. O

In fact, one can prove that X has continuous sample paths in H (see [10]).

4. — Regularity.

By Theorem 3.3 it follows that there exists a unique solution
X € Cw([0, T1; LA(Q, H)) N L™ 1 (Q x (0, T) x )

of (2.8) provided x € H~ (7). Our aim is to show that if > 0 (in the sense of

distributions) then X(¢) > 0 for all ¢ € [0, T']. Let us introduce the approximating

equation,

@) dX,(t) + A XW)dt = > X Bedy ), ¢ >0,
. k=1

X,(0) = .

We are going to find a unique solution X, of equation (4.1) in Cw([0,T7;
L2(Q x @) and prove that X, — X in Cyw ([0, T); LA(Q; H)) as ¢ — 0.

It is easier to discuss positivity in the space L?(<) instead of in H~1(¢). For
this we shall prove some regularity results for the solution of equation (4.1),
namely that if x € LP(?) then X,(t) € LP(?) for all t € [0,T] (with estimates
independent of ). These regularity results are also needed in order to prove that
X, — 01in Cw ([0, T1; L*(2; H)).

To solve equation (4.1) in LP(7) we need some additional properties of the
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operators J, in LP(?) which are gathered in Lemma 4.1 below. However, the
proof of this lemma requires that f(r) = ™ + Ar with 4 > 0. So, we will make this
assumption in this section. Finally, in Section 5 we shall show how to remove this
condition and prove the positivity of the solution of (2.8) for all x € H-1(?).

LEMMA4.1. — Forany p > m+1, ¢ > 0 and any x € LP(7) there is a unique
y = J(x) € LP(?) such that

(4.2) Y —edf(y) = x.
Moreover,
(4.3) @, < [x[,, Vp=>2.

Finally, J, is Lipschitz continuous in L*(?).

ProoF. — For existence of y one uses the assumption 4 > 0 which implies that
p~!is Lipschitz continuous. Estimate (4.3) follows multiplying both sides of
equation (4.2) by |x|” ~22 and then integrating on . To prove the last statement
one considers another element x; € LP(?) and the corresponding element y;
such that y; — e4f(y1) = x1. Then one multiplies both sides of the last identity by
py) — f(y1) and integrates on @ () (for details see [4]). O

PROPOSITION 4.2. — Assume that Hypotheses 1.1 and 2.1 are fulfilled and that
4> 0. Then equation (4.1) has a unique solution X, € Cy ([0, T]; L*(2 x ).
Moreover, if x € LP(7), p > m + 1, there exists C > 0 such that

(44) EIX,0P < C(la]).

Finally
limX, =X, in Cw([0, T, LP(Q2 x @),

where X 1s the solution to (2.5).

ProoF. — Let us prove (4.4). We start from the case p = 2. By the 1t6 formula
we have,

i
BIX,0F + 26 [ (4,6), X,(3))ods
0

s t
— e+ ZE f IX,()ex 2ds.
k=1 0

() A similar argument does not work on L?(¢?) for p # 2. So, we are able to show
Lipschitzianity of J, in L?(©) only.
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Since (A.(s), X:(s))2 > 0 we have, recalling (2.1)

t
BIXOF < oy + e [ BIX(9)3ds,
0

where c3 is a suitable constant. So, (4.4) follows for p = 2.
Let now p be arbitrary. Applying (formally) the It6 formula to the function

(@) = [ O de,
14

(4.4) follows. To make rigorous the argument we have to apply the It6 formula to
the function

f ()P
1+ p\%(é)lp
and let p — 0.
Finally, the last statement follows from the monotonicity of f and the LP
estimate for X,, see [4] for details. O

5. — Positivity.

THEOREM b5.1. — Assume that Hypotheses 1.1 and 2.1 are fulfilled. Let
x € LP(?) be nonnegative a.e. on 7 where p > m + 1 is a natural number. Then
the solution X to (2.5) is such that X € L3(0, T; LP(Q; LP(©))) and X > 0 a.e. on
Q x (0,00) X 2.

Proor. — First assume that A > 0. Then in view of Proposition 4.2 to prove
positivity of the solution X of (2.5) it is enough to prove positivity of the solution X,
of (4.1). Let us consider the modified equation

- { Q7,0 + AZE )t = S 2 Derdy®), >0,

k=1
Za(O) =x,

where Z(t) = max{Z/(t),0} which can be solved as equation (4.1). If we show
that Z,(f) > 0 it follows clearly that

X)) =Z,@t) > 0.

To show positivity of Z" we use Itd’s formula for the function (Z;)4. Formally we
obtain

E(Z) <0

(for details see [4]). This implies that Z;(¢) > 0.
Finally, denote by X the solution of (2.5) for a fixed 4 > 0. Then it is easy,
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using the monotonicity of 5, to show that there exists the limit X of X; as 4 — 0
and to show that X is the solution of (2.5). O

6. — The invariant measure.

We assume here that f(r) = ™.
Let X(t, x) be the solution of (2.5) for x € H. Define the transition semigroup

Pip(x) = Elp(X(¢,2))], t=0,¢ € ByH),

where B(H) is the space of all real Borel functions on H. It is easy to check that
P, is Feller, that is Pyp € Cy(H) for all ¢ € Cy(H), where C,(H) is the space of all
real continuous and bounded functions on H.

Foranyt > 0and « € H we denote by m;(x, -) the law of X (¢, x), so that we have

(6.1) Pip(ar) = f o(m(x,dy), ¢ € By(H).
H

We recall that a Borel probability measure v on H is said to be invariant for
the transition semigroup P; if

f Prody = f odv, ¥ g € Cy(H).
H H

It is clear that dy is an invariant measure for P;. For this it is convenient to
consider a more general problem

dX(t) + AX®)dt = i XOerdy, () +g, >0,

(6.2) S

X(0) =,

where g € L?(?) is a constant exterior force. We notice that all results estab-
lished for problem (2.5) extend trivially to problem (6.2).

THEOREM 6.1. — There exists an invariant measure for P;.

Proor. — Let x € H and let X(¢, x) be the solution of (2.5). From It6’s formula
we have
¢
1
5 EIXOP, +E f X ()" L ds
0

t
1 o0
(6.3) = Bl + Y [ X (el ds
k=1 0

t
1
<3 Bl + KIHf X (), ds.
0
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It follows that

m+1

t t
(6.4) E f X (s)["™ L ds g% Elof, + K E f X(9)2,ds.
0 0

By the Sobolev embedding theorem we have
HY(®) c L),
the inclusion being compact. Therefore, the dual inclusion,

Lm+1((3”) C Hfl(éa%

holds and it is compact.
Consequently, there exists a positive constant x2 such that

(65) ‘90|_1 < K2|x‘m+l7

and from (6.4) we obtain
t 1 t
(6.6) B[ IX@l s <5 Blaf s + kGt [ X6, 1ds.
0 0

Now let x3 be a positive constant such that
1 m—+1
K1Gr? < g ", VreR.

Then by (6.6) we deduce that

6.7)

m+1

¢

1 ,

t Ef ‘X(S)‘MHdS < E|9€|2—1 + 2K1K%, Vi>1.
0

Set now
1 t
L —tofns(x, yds, t> 0.

We claim that the family of probability measures {z},.; on H is tight. Then
the Krylov-Bogoliubov theorem will yields the existence of an invariant mea-
sure for P;. To prove the claim consider for any R > 0 the ball By in L™*1(?)
of center 0 and radius R, which is compact in H by the compactness of the
embedding of L™*1(?) into H~1(¢7). Then, denoting by Bg, the complement of
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Bpr in H, we write

t t
1 1
¢y — c i
w(BR) = ; fns(ﬂc,BR)ds =7 ffns(x, dy)ds

0 0 B,

- t Rm+1 ff|?/|m+%ns(x,dy)d8

Recalling (6.1) we deduce that

¢ t
WBy) <3 s | Pulaliids = 7 o [ XG0l has.
0 0
Finally, we deduce from (6.7) that
WBY) < —— Rm“ (Bl | + 2m53).
Since R is arbitrary, this implies the claim. The proof is complete. O

REMARK 6.2. — We do not know whether the invariant measure is unique or
not. In the case of additive noise this was proved in [6].

REMARK 6.3. — A different proof of existence of invariant measure, based on
dissipativity of the equation, was given in [9].
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