BOLLETTINO
UNIONE MATEMATICA ITALIANA

LUIGI AMBROSIO

Gradient Flows in Metric Spaces and in the
Spaces of Probability Measures, and
Applications to Fokker-Planck Equations
with Respect to Log-Concave Measures

Bollettino dell’Unione Matematica Italiana, Serie 9, Vol. 1
(2008), n.1, p. 223-240.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2008_9_1_1_223_0>

L’utilizzo e la stampa di questo documento digitale é consentito liberamente
per motivi di ricerca e studio. Non é consentito I'utilizzo dello stesso per mo-
tivi commerciali. Tutte le copie di questo documento devono riportare questo
avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=BUMI_2008_9_1_1_223_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana,
2008.



Bollettino U. M. 1.
(9) I (2008), 223-240

Gradient Flows in Metric Spaces and in the Spaces of
Probability Measures, and Applications to Fokker-Planck
Equations with Respect to Log-Concave Measures (*)

Luict AMBROSIO

Abstract. — A survey on the main results of the theory of gradient flows in metric spaces
and i the Wasserstein space of probability measures obtained in [3] and [4] is
presented.

1. — Introduction and motivations.

In this paper I will make a short survey on the main results of the theory of
gradient flows in metric spaces and in the Wasserstein space of probability
measures obtained in [3], see also [4]. In the final part of the paper I will focus
mainly on the applications to Fokker-Planck equations and Markov semigroupus
in infinite-dimensional spaces, along the lines of [5]. The content of this paper
reflects, with some additional comments and outlines of proofs, the talk delivered
at the joint UMI-DMV meeting in Perugia, and it is by no means a systematic
exposition: we refer to the above-mentioned references and to the bibliographies
therein for more accurate informations on this wide subject.

I will start by describing informally some motivations of our work. Let us
consider the Fokker-Planck equation (also called forward Kolmogorov equation)
in (0,4 o0o) x R"™:

CR= Mt V-GV, f0) =

Here the initial condition z is attained in a weak sense, and we are particularly
interested to the case when j is a nonnegative measure.

If Vis convex, C!! and [exp (— V)dx = 1, thenf; — y := exp (— V).~ weakly
in R", as t — oo. The It6 formula (see for instance [37]) provides the link of FP
equations with solutions to the stochastic differential equation

(SDE) dX, = —VV(Xy) dt + V2edW,, X0)=x

(*) Conferenza tenuta a Perugia il 22 giugno 2007 in occasione del “Joint Meeting
U.M.I. - D.M.V.".
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when i = J,: indeed, f; is the density of the law of X;(x) (i.e. the expectation of the
random variable ¢(X;(x)) is equal to f ¢f: dy for all bounded Borel functions ¢).

The SDE can classically be viewed as a stochastic perturbation of an ODE
whose behaviour is very simple to describe, under (uniform) convexity as-
sumptions.

Our main goals are:

e extend this picture to general convex V’s (with no growth condition or
regularity assumption on V);

e extend these results to infinite-dimensional state spaces H;

e show that these extensions are unique, and jointly continuous with respect
to V, finite-dimensional approximations and convergence of the initial conditions.

Problems with constraints and (SDE) with reflection.

For instance, if we consider V e CV1(K), with V = + oo out of K, the (SDE)
becomes (from now on I shall assume that ¢ = 1)

dX; = —VV(X,) dt + V2dW; + ng(Xy) dL;, Xo(@) = ,

where L; is reflection process occurring on the boundary of K [11]. If V has an
intermediate behaviour (regular up to the boundary in some parts, and going to + oo
on other parts), the precise description of the SDE becomes more complex, while we
will see that the problem can be dealt with in a unified way at the PDE level.

Stochastic partial differential equations.

On the other hand, since several evolution PDE’s can be viewed as infinite-
dimensional ODE’s, allowing for an infinite-dimensional state space in the (SDE)
leads to stochastic partial differential equations, a subject on which a large lit-
erature is available, see for instance [14], [15] and the references therein.

Gibbs measures.

Measures of the form Z ! exp (— V)u, typically with V convex and y product
measure, even on an infinite-dimensional state spaces E arise quite often in
Statistical Mechanics (for instance £ = ]I{%d).

Our methods stem from a variational formulation of the FP equation first
introduced, for the heat equation (corresponding to the “degenerate” case
V = 0), by Jordan-Kinderlehrer-Otto in [25] (in [30] adopted a similar viewpoint
to study the large time asymptotics of the porous medium equation). This point of
view has been systematically explored, for some classes of linear and nonlinear
equations in the book [3]. This point of view leads, for instance, to an intrinsic and
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essentially geometric description of the evolution problem, which formally corre-
sponds to a gradient flow in the space of probability measures. Although this ap-
proach relies very much on the one hand on convexity (it allows only for controlled
perturbations of this condition) and on the other hand on the additive structure of
the noise, in this context it produces quite strong and general results.

2. — Background on optimal transportation.

In this section I will describe some essential features of the theory of optimal
transportation. Besides [3], a good introduction to this topic is [39].

The problem, raised by Monge in 1781, can be informally described as follows:
given X, Y ¢ R", we have two distributions of mass p(x) in X and p'(y) in Y
satisfying the mass balance condition

[r@rde = [ papdy
X Y

and we want to move p into p’ in such a way that the work done is minimal.
The admissible movements are descrived by a transport map T : X — Y such
that

f @) de = f Jdy  for all E C Y Borel.
T-Y(E) E

Since work = massxdisplacement, we have to minimize
&(T) = f T() — 2|p(e) deo
X

among all admissible transport maps 7'

Despite its very classical and “natural” structure, for a long time this varia-
tional problem has not been considered so much, in contrast with the variational
problems, for instance, raised by Mechanics: for instance the problem of mini-
mizing an action functional

1
Aw) = f L(t, x(®), i(®)) dt.
0

As a matter of fact, even some basic issues, as the analogue in this context of the
Euler-Lagrange equations

9 L0, 2),30) = Lu(t,200,500)

were not understood, until much more recent times.
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Indeed, the problem could be attacked successfully only with the modern
tools of Measure Theory and Functional Analysis, with the seminal work of
Kantorovich, in 1940. In even more recent times (last 20 years) many more
connections are emerging between this theory and many other fields: Shape
Optimization, Geometric and Functional inequalities, Nonlinear diffusion,
Partial Differential Equations, Riemannian Geometry. Here I will mainly focus
on the relations between optimal transportation and PDE’s.

2.1 — A modern formulation of the optimal transport problem.

We consider:

e a probability measure u in X;

e a probability measure v in Y;

e afunctionc: X x Y — [0, +o0].
Then, we minimize the energy

&(T) = f e, T(@)) (@)
X

among all maps 7' satisfying
w(TYE)=v(E) VECY.

In short, from now on we will denote by 7'4 the push forward operator induced by
T, mapping measures in X to measures in Y, and write Txx = v. An even more
general formulation, allowing transport plans instead of transport maps, was
considered by Kantorovich, and is very popular and studied in Probability: find a
law in X x Y whose marginals are u and v, and such that the expectation of c is
minimal. Equivalently, we say that 7 € 22(X x Y) is a transport plan between
w and v if its first and second marginals are x and v respectively (.e.
WA) = nlA x Y) and v(B) = n(X x B) whenever A and B are Borel). Then, we
consider the problem

2.1) inf{ f cn : n plan between u and v}.

XxY
Even though the theory of optimal transportation becomes in many respects
simpler and more flexible, working at the level of plans, it turns out that some
applications of the theory really depend on the existence of optimal transport
maps; for this reason we review some basie results in this direction.

2.2 — Cost=distance?.

In this case the optimal transport problem has a unique solution, at least
when the initial measure is absolutely continuous with respect to Lebesgue
measure, and the optimal transport map exhibits a remarkable structure.
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THEOREM 2.1 (Brenier, Knott—Smith, ’80). — Assume that X =Y = R",
cle,y) = % e — y|2, and u < £". Then there exists a unique optimal transport
map. Furthermore, this map s the gradient of a convex function.

The classical proofs of this fact use the differentiability of the cost function.
Another even more remarkable fact is that the theory extends to manifolds,
where the distance fails to be differentiable in the large:

THEOREM 2.2 (McCann, '01). — Assume that X =Y =M compact C3
Riemannian manifold without boundary, c(x,y) = %dﬁ/](x, y), and u < Voly.
Then there exists a unique optimal transport map, representable by

T(x) = exp,(—Vo)  for p-aexe M

for a suitable potential function p. Furthermore, [0,T] > t — exp,(—tVe(x)) is a
minimizing geodesic in M for all T < 1.

This result has been the starting point of the applications of optimal trans-
portation to Riemannian Geometry, which led in particular (in a series of papers
by Lott-Villani and Sturm-Von Renesse) to a weak definition of nonnegative
Ricci curvature based on optimal transportation.

2.3 — The Wasserstein distance.

The infimum in Monge’s problem can be used to define a distance, called Was-
serstein distance, between probability measures in X. In the case cost=distance?,
and for measures u with no atom [] (for general measures Kantorovich’s formulation
(2.1) should be used), we can set

Walu, v) := inf{\l f @2, T(@)) du(e) « Tupt = v}.
X

The “manifold” 2°(X) of probability measures on X becomes in this way a metric
space, which inherits many properties of X (e.g., compact if X is compact, complete if
X is complete, positively curved in the Alexandrov sense if X is positively curved,....).
Moreover, if X is a length space, then #°(X) is a length space as well, and if 7' is an
optimal transport map between x and v, then

ty = Typ  with d(x, Ty(x)) = td(x, T(x)), t € [0,1]

is a constant speed geodesic between u and v. These “nonlinear” interpolations, quite
different from the classical ones

t— 0 —-Du+tv
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were first introduced by McCann in [29]. As a matter of fact, the conventional in-
terpolation above has even an infinite length with respect to W.

3. — Gradient flows and their variational formulation.

On a Riemannian manifold M, the gradient flow of a function ¥ : M — R
starting from x is defined by

¥'(t) = —VF(x(t)
x(0) = Z.
A key property fulfilled by gradient flows is the energy dissipation identity:

d _ 2
G F@(®) = —[VFa®)P.

The Riemannian metric of M is necessary, in the definition of gradient flows,
because of the identification of the differential dF' (a covector) with a vector VF.
It is natural to look, in a nonsmooth setting, to equivalent formulations where the
metric (or, more precisely, the distance) plays a more explicit role. Essentially all
weak definitions fit in one of the these three groups:

¢ (EDI) A definition based on the energy dissipation rate. This appears in the
paper [16] by De Giorgi and collaborators, and in an unpublished work by
Perelman-Petrunin [31], see also [26].

e (EVI) A definition based on a family of Evolution Variational Inequalies;
this is inspired by [6].

e A discrete in time solution, provided by the classical implicit Euler scheme.

In [3] we systematically explore these concepts and use, in particular, the
third one as a tool to prove existence, passing to the limit as the time step goes to
zero either in the (EDI) or in the (EVI) sense.

3.1 — Energy dissipation rate.

De Giorgi’s formulation of the energy dissipation identity is the following:

d 1 1oy |2 1 2
(EDI) %F(x(t)) < — 5O =5 [VE@@)I™

While the plain energy dissipation identity (a single equation) does not encode
the ODE &' = —VF(x) (a system of equations), (EDI) surprisingly does! Indeed

L PGty =~ (@), VFG()

> — O VF@®)]| > f%\m’(tﬂz f%\VF(m(t))F
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and the first inequality holds if and only if —«'(t) and VF(x(t)) are parallel (i.e.
they differ by multiplication of some nonnegative scalar), while the second in-
equality holds if and only if and only if the two vectors have the same modulus.

Furthermore, all terms in (EDI) make sense even for evolution curves x(f) in
a metric space (¥, d), provided we understand |«/(t)| as the metric derivative

d(a(t + h), x(t))

/ FO

and |VF(x(t))| as the descending slope

. [F(u) — F(v)]"
S e T
This formulation is very useful to handle passage to limits, and we will see that
the Euler scheme contains a discrete version of (EDI). Furthermore, if F' is
convex along constant speed geodesics, equality holds in (EDI), the map
t—F(x(t)) is locally absolutely continuous in (0, 4+o00) and the classical energy
dissipation identity can be recovered (see [3, Theorem 2.3.3 and § 2.4]).

3.2 — Evolution Variational Inequalities.

Assume that F' is convex in M = R", and assume for simplicity that F' is
everywhere differentiable: then we have the energy inequality

F@) > Fu®) + (VFu®)),v — u®)) Yo,

and the derivative of distance %W(t) - v|2 = 2(u/(t), u(t) — v), so that we can
write the gradient flow equation as

dl

F(v) > F(u()) — (u'®),v — u®)) = F(u(®)) + 72

As in the case of (EDI), and with an even minor effort, we see that this for-
mulation of the gradient flow can be immediately translated in a general metric
space (&, d): we say that u(t) is an (EVI) of F if, in the dense of distributions in

(0, + 00), we have

lu(t) — "

1d
2 dt
This property is very strong, and it leads quite easily to uniqueness (con-
tractivity), stability both w.r.t. # and F, regularizing effects, that we will mention
more precisely later on. It should not be surprising that existence is much harder
in this formulation, compared with the one based on energy dissipation.

As an illustration of the strength of this definition, we sketch the proof of

(EVD) d*(u(t),v) + Fu®)) < F(v) Vv € E.
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uniqueness of (EVI): given u!, 2 solutions of (EVI), both starting from #, insert
v = u2(t) into

1d » 4 1

5 d d*(w @),v) < F@) — F(u (1))
and v = u!l(¢) into

% % d®(v,u*(t)) < F(v) — Fu?(t))

dt ’ ’

This argument is not completely rigorous, because each of the differential in-
equalities in (EVI) has an exceptional set of times, possibly depending on v;
however, if we understand the derivatives not in the pointwise sense, but in the
distributional one, the gap can be filled (see [3, Lemma 4.3.4] for the precise
argument, inspired by Kruzkhov method of doubling of variables).

Besides the contraction property, solutions to (EVI) satisfy (see [3,
Theorem 4.0.4] and [4]):

REGULARIZATION. — For ¢t > 0 we have
Flutt) < inf{F(v) +Lea, v)}
Vel 2t
and
1
|VF|(u(t))? < inf{|VF(v)|2 + —2d2(a,v)}.
vek t

These properties are important in some applications: for instance in the case that
we will examine later on, when F is the relative entropy functional (with respect
to some reference measure y), and the initial condition is a Dirac mass (thus with
an infinite relative entropy), the conditions above tell us in a quantitative way
how quickly the Dirac mass spreads, and provide upper bounds on the loga-
rithmic gradient of the density with respect to y, for positive times.

MonoToNIcITY. — (EVI) solutions are also solutions in the (EDI) sense, and
have satisfy the typical properties of gradient flows: ¢ — F(u(t)) is nonincreasing
in (0,+00) and its right derivative equals, for all times, —|8F(u(t))|2.
Furthermore, t+— |VF(u(t))|2 is nonincreasing as well. Finally, under uniform
convexity assumptions, these properties can be improved, and lead to ex-
ponential convergence to the unique minimum point ay;y.
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3.3 — Implicit Euler scheme.

It is a classical fact that a discrete solution (in time) to the gradient flow can
be built by the implicit Euler scheme: given a time step t > 0, we define a pie-
cewise constant (in time) solution x.(f) by

2. (t) = wxy, t € (kr,(k+ D1,

where xy = & and () is built by minimizing recursively
y—F@+5 \y w1

In Hilbert spaces, it is clear why this is an approximation of the gradient flow, by
the first discrete Euler equation:
e "l g

So, x, is implicitly defined by this equation, and explicitly by
= (1d +tVF) (g ),

whenever (Id + tVF) is invertible. Under convexity assumptions on F),
(Id + tVF) ! is not only invertible, but also non-expansive, and this easily leads
to error estimates, stability and convergence results as 7 | 0.

3.4 — How (EDI) and (EVI) can be read tn the Euler scheme.

Let us start from (EDI). The first step is to write down a second discrete
Euler equation, that reads in this context as a slope estimate: whenever y
minimizes

1 5
(3.1) 2—F(2) + o> d=(x,z)
we have
(3.2) OF ()| < Y d(”” 28

Indeed, the minimality of y gives

d(y, y)

Fa) - Fa)) < %(d%c,y') — 2@,y < Y (G, + dee,y)

for all ' € E. Dividing by d(y,¥’) and letting " — ¥ gives (3.2). Now, De Giorgi
suggested to look to minimizers y,, o € (0, 7], of

2= FR) + ldz(ac, 2)
20



232 LUIGI AMBROSIO

as a “variational” interpolation between x and y. By looking at the derivative of the
energy F'(y,), one obtains (see [3, Theorem 3.1.4]) the discrete energy identity

Fo)— Fly )_d(x Y) 2fd(y(,,ac)

which, taking (3.2) and the construction of (x;) and «, into account, leads to a
discrete integral version of (EDI):
(k+1)t

2
& (e, 2k + 1)) |OF [*(it-(s)) ds,

272 2

F(a.(kt)) — Fla((k+ D)) > 7
kt

where the interpolant &, is now made using the De Giorgi variational inter-
polation. After that this has been estabilished, routine arguments provide (EDI)
curves in the limit, provided that the slope is lower semicontinuous (see [3,
Chapter 3], where also more general assumptions are considered).

Now, let us look at (EVI). In this case we shall be able to derive an Euler equation
corresponding to a discrete version of (EVI) under the following assumption:

WEAK CONVEXITY. — For all z, xg, x; there exists a continuous curve x; be-
tween xy and x; satisfying:

59 {dz(act,Z) < (1 —t) d?(wp, 2) + td?(wy,2) — t(1 — t)d>(aco, 1)
' Flx) < (1 — OF (o) + tF(ay)

for all ¢ € [0, 1]. Of course this assumption reduces to the usual convexity along
geodesics if we choose as x; the constant speed geodesic between xy and «x;; but,
in order to have the first inequality involving the squared distance, this forces
the space (¥, d) to be NPC (non positively curved) in the sense of Alexandrov.
This would be too restrictive for the applications we have in mind to #;(H), a
space that is actually PC (positively curved) (see the heuristic computation in
[30] and [3, Theorem 7.3.2]). For these reasons we keep more freedom in the
choice of the interpolating curve, and use it to derive the third discrete Euler
equation: whenever ¥ minimizes (3.1), we have

d*(y,v) — d?(x, v)
27

which is obviously a discrete version of (EVI). To prove (3.4), let us apply (3.3)
with 2y = y, ©; = v and z = « to obtain for £ > 0

(34) + Fy) < F(v) Y ek,

L o
Fy) +5-d°(, )

1, 1-t , t o
< F(xy) +2—Td (@, ) < (1 —OF () + tF(v) +2—Td (y,%) +2—Td (x,v)
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Rearranging terms and dividing by ¢ > 0 we pass to the limit as¢ | 0 to obtain (3.4).

The discrete Euler equation (3.4) can be used to show that the family «,
converges as 7 | 0 (no compactness is needed here, besides the one needed to
have existence of the minimizers in the discrete Euler scheme). Denoting by
Sx(t) the discrete semigroup and by S.%(t) the discrete one, we have the uni-
versal estimate [5]

d(Su®), S:u®) < 8/ TF ().

More general error estimates (even when the time mesh is not uniform) are
discussed in [3, Chapter 4], whose proofis inspired by previous work by Baiocchi,
Nochetto, Savaré, Verdi in Banach spaces.

4. — Gradient flows in Wasserstein spaces.

The general framework that we outlined works well for functionals #" in the
space #’2(H) of probability measures with finite second order moments (here H
is an Hilbert space, but also more general state spaces H could be considered, see
in particular [33]), provided we understand properly the concept of convexity.
Let us also recall that convergence in 7% (H) is equivalent to weak convergence,
in the duality with C,(H), plus convergence of the second order moments.

Convexity along Wasserstein geodesics, the so-called McCann displacement
convexity

t— F((A -0+t T))xw convex in [0,1], T optimal

is sufficient to obtain existence in the (EDI) sense. Furthermore, these solutions
can be proved to coincide with (EVI) solutions, and are therefore unique (see
[Theorem 11.1. and Theorem 11.1.4]ags)

On the other hand, as we saw in Section 3.4, a stronger (or, rather, different)
convexity condition is needed to obtain also convergence, with error estimates, of
the implicit Euler scheme. In this case, the condition is:

STRONG DISPLACEMENT CONVEXITY. — For all iz, vy, v; there exists a continuous
curve v; between vy and v; satisfying:
(4 1) { WQZ(Vhﬁ) < (1 - t)Wg(VOHH ) + tW;(Vlvla) - t(l - t)WZZ(v07 Vl)
F(y) < 0 =DF (o) +tF(v1)

for all ¢ € [0,1].
Notice that if v; is the constant speed geodesic between vy and v; the opposite
inequality always holds [3, Theorem 7.3.2]

Wi, ) > (1 — OWe(vo, ) + tW5(v1, ) — t(1 — )Wz (v, v1)
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and in general equality fails (this, as we said, is a manifestation of the fact that
Z»(H) is a positively curved metric space). However, luckily enough, there is a
different family of curves on which the first inequality in (4.1) holds: using for
simplicity just transport maps, they are given by

4.2) t (A = T0 +tT1) it

where T;, 1 = 0,1, are the optimal transport maps from x to v;.

The second lucky fact is that the conditions that, typically, guarantee the
convexity of F' along geodesics, guarantee also the convexity of F along this more
general class of curves, whence (4.1) follows. In the next section we shall illus-
trate this phenomenon for a particular class of functionals, the relative entropy
functionals.

We conclude this section by illustrating how, besides the (EDI) and the (EVI)
viewpoints, also the “differential” viewpoint to gradient flows can be recovered in
Wasserstein spaces, making in some sense rigorous the formal Riemannian
calculus developed in [30]. The basic fact proves in Chapter 8 of [3] is that any
Lipschitz (ore, more generally) absolutely continuous curve g, : [0, T — Z%(H)
can be canonically endowed with a “tangent” vector field v; € L?(u;; H); it is
uniquely characterized by the continuity equation

d .
(4.3) 7 + div (vg) = 0

(in the infinite-dimensional case, in the duality with smooth cylindrical functions)
and by the relation with the metric derivative

(44) ||vt||L2(,u,;H) = |,U;| for ;,%l-a.e. te (O,T)
Alternatively, (4.3) and

L2(1y:H)
(4.5) v € {qu : ¢ smooth cylindrical} for #lae. te 0,T).

can be used to characterize the tangent vector field v;. Therefore (4.5) suggests
to define the tangent space to 7%.(H) at u by

L2(:H)
Tan, 7»(H) = {ng : ¢ smooth cylindrical}

with the scalar product induced by the inclusion in L?(u; H). In this sense, 7% (H)
can be considered as an infinite-dimensional Riemannian manifold, and the
“Riemannian” distance induced by this choice of the tangent bundle and the
metric on it is precisely the Wasserstein distance (in a slightly different lan-
guage, this was proved first by Benamou and Brenier in Euclidean spaces).



GRADIENT FLOWS IN METRIC SPACES AND IN THE SPACES ETC. 235

Given this setup, gradient flows can be defined as in the classical situations
by requiring the velocity field to be the gradient of F, or more generally to
belong to the subdifferential of F'. For absolutely continuous measures with
respect to £" (but everything can be extended to infinite dimensions or,
working with plans, to singular measures) the natural definition of sub-
differential in this context is:

OF (1) = {5 € Tan, 75(R") : F(v) > F(u) + f (T, ~1dydu Wve %(H)}.
R™

It turns out that, for convex functionals along geodesics, the viewpoints (EDI),
(EVI) and differential coincide.

5. — Log-concavity and relative entropy.

We consider a probability measure y in H satisfying the log-concavity con-
dition:

In y((l — DA + tB) >tlnyA)+ A — ) InpB) vt € (0,1)

whenever A, B C H are open (this avoids the nontrivial problem of the y-mea-
surability of (1 — {)A + tB). We assume that y is non-degenerate, i.e. that y is not
supported in a proper subspace of H.

The class of log-concave measures includes all Gaussian measures y, and all
multiplicative perturbations y = exp (— V)yg, with V: H — R U {4+ oo} convex
and lower semicontinuous. Moreover, by a classical result due to Borell [8] (see
also [3, Theorem 9.4.10]), in Euclidean spaces R" non-degenerate log-concave
measure are precisely those absolutely continuous with respect to 4", with a
density of the form exp (— V), with V' convex and lower semicontinuous.

Now we can consider the relative entropy functional with respect to y:

fﬂlogpdy if 1= py;
Huly) .= qH

+ 00 otherwise.

It turns out (see [3, Theorem 9.4.11]) that the three conditions:

e y is log-concave;

e H(-|y) is displacement convex in 75(H);

e H(-|y) is convex along the curves (4.2);
are all equivalent. Therefore, for log-concave measures 7, the general theory
that we outlined is fully applicable. Then, the byproducts of the general theory
are:
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e existence, uniqueness, regularizing effects (in particular Dirac masses as
initial data are allowed), with the estimate

. 1
HSoM) < inf {H<py|y>+—W§<py,5x>}<+oo;
pELMH ) 2t

o stability with respect to @ and y (precisely, convergence of j, to i in 7»(H)
and weak convergence of y, to 7, in the duality with C,(H), implies local uniform
convergence in [0, + co) of the semigroups);

Let us now translate these result in the more conventional language of
Dirichlet forms [19], [27]. Although the Wasserstein viewpoint is genuinely
nonlinear, a comparison here is possible because of the special choice
F(1) = H(uly). It is important to mention, however, that different choices of the
nonlinearity p In p are indeed possible within the Wasserstein theory, as in Otto’s
work [30] on the porous medium equation.

5.1 — Wasserstein semigroups and Dirichlet forms.

The following result has been proved in [5].

THEOREM b5.1. — Let y be log-concave and non-degenerate, and consider the
bilinear form

£ (u,v) = f (Vu, Vo) dy  u, v e CHHD.
H

Then &, is closable, its closwre is a Dirichlet form and the associated L? semi-
group P is linked to the Wasserstein semigroup by

Pif) = f fdS5,(t) Vf € Lo(H, ).
H
Moreover P} satisfies the strong Feller property:

P%) : L*(H,y) — Lip,(H) vt > 0.

A key property in the proof of the previous theorem is the closability of the
Dirichlet form. The classical method to prove this property, based on an in-
tegration by parts formula along sufficiently many directions [1], does not seem
to be applicable at this level of generality. So, also the proof of this fact in [5]
invokes some ideas from optimal transport theory: in particular lower semi-
continuity of &,(u,u) (which is known to be equivalent to closability) is proved
passing through the identity

2¢/&u,u) = |OF (u?y)| with FQo) := H(uly),

using the lower semicontinuity of the slope of geodesically convex functionals.
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In the next section we will examine instead the link with the theory of Markov
processes.

5.2 — Wasserstein semigroups and Markov processes.

THEOREM 5.2 [5]. — Underthe previous assumptions on y, there exists a unique
Markov family P2, x € suppy, of probability measures in C (]0, +oo; H ) such
that

(i) ELfXe(x)] = Plf(x) forallt > 0, f € L™(H, p);
(i) EI[X; —xf*1—0ast | 0.
Moreover, (x,y)—P, enjoys the following stability property: if
(@) Xyp € Supp Py, [Ty — x| — 0, x € suppy;
(b) y, — yweakly in H;
then

(X(@), h) under T%L”' — (X@), h) under P’ weakly in C((5,T])

forall 0 <0 <T < 400, h € H.

The proof uses the Ma-Roeckner theory [27], which allows to “lift” the L2
semigroup of a sufficiently regular Dirichlet form to a Markov process and, for
the tightness, the Lyons-Zheng decomposition.

We conclude this survey with a sketch of the proof of stability. Stability of
Markov processes depends in essence on the stability of the transition prob-
abilities, i.e. §'d,(t). So, essentially we need stability of the Wasserstein semi-
group. The uniform error estimates for the Euler scheme allow a reduction to the
stability of the discrete (in time) Wasserstein semigroup S’9,(?).

By induction, we are led to the following statement: if 1, — 1 in Wasserstein
distance, and v,, minimize

1
o — H(aly,) + Ewg(a, 1),
then v, — v in Wasserstein distance, with v minimizer of
1
o H(aly) + EWS(“’ 10).

De Giorgi designed in the 70 (see [13]) a theory to allow these passages to limits,
the so-called I'-convergence. It turns out that H( - |y,) converge to H(- |y) pre-
cisely in the sense of I'-convergence, see [3, Lemma 10.3.16 and Lemma 10.3.17]
or [5] for a precise statement.

Finally, I will brief mention some work in progress by Fang and A.-Savaré-
Zambotti on the Ornstein-Uhlenbck process in Wiener spaces. At the level of the
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SDE, for y = N (0, Q), it corresponds to replace
dX; = —Q7'X,dt + dW; with dY, = —Ydt + /QdAW,.

At the Wasserstein level, it corresponds to replace the standard quadratic cost
function by the Feyel-Ustiinel [18] one:

lo —yl* if @ —y e H;
c(x,y) = ]
+ 00 otherwise,

where (H, || - ||) is the Cameron-Martin space of y.
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