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On the Regularity of p-Harmonic Functions
in the Heisenberg Group

GIUSEPPE MINGIONE - ANNA ZATORSKA-GOLDSTEIN - XIAO ZHONG

Sunto. — Descriviamo alcuni recenti risultati ottenuti in [29], dove st dimostrano teoremi
di regolarita per soluzioni di equazioni sub-ellittiche in forma di divergenza oriz-
zontale, nel gruppo di Heisenberg. I risultati coprono il caso di operatori a crescita p,
come il p-Laplaciano nel gruppo di Heisenberg, e sono ottenuti sotto lipotesi adi-
mensionale p € [2,4).

Abstract. — We describe some recent results obtained in [29], where we prove regularity
theorems for sub-elliptic equations in (horizontal) divergence form defined in the
Heisenberg group, and exhibiting polynomial growth of order p. The main result tells
that when p € [2,4) solutions to possibly degenerate equations are locally Lipschitz
continuous with respect to the intrinsic distance. In particular, such result applies to
p-harmonic functions in the Heisenberg group. Explicit estimates are obtained, and
eventually applied to obtain the suitable Calderon-Zygmund theory for the associated
non-homogeneous problems.

1. — Introduction.

In this note we shall describe the results obtained in [29], concerning the local
regularity of solutions to non-linear sub-elliptic equations in the Heisenberg
group of the type

2n
(1.1) divg a(Xu) =Y Xa{Xu) =0.

i=1

The assumptions we shall consider are the natural ones for elliptic equations in
divergence form with p-growth, initially considered by Ladyzhenskaya &
Ural’'tseva in the Euclidean setting [24]. The equation (1.1) is therefore defined in
a bounded, open sub-domain @ of the Heisenberg group H" = R¥"*1 » > 1,
while the vector field a = (a;): R*" — R*" is assumed to be of class C! and sa-
tisfying the following growth and ellipticity conditions:

(1.2) IDa()| (12 + 21 + |a@)| < LG2 + D)7,
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and

b2 2n
(1.3) (i + 127 AP < Dyai@)iidy,

ig=1

for every z,/ € R*, where 0 <v<1<L, u€[0,1], p>2. The parameter u
clearly serves to describe the possible degeneration, with respect to the hor-
izontal gradient Xu, of the considered operator; therefore we shall refer to the
case u = 0 as the degenerate one. In the last case the relevant model example
covered here involves the familiar horizontal p-Laplacean operator on the left-
hand side:

(14) divy (|3€u|”‘23€u) -0.

The last equation, whose solutions are indeed called p-harmonic functions (in the
Heisenberg group), has been intensively studied in the last years, especially in
its original Euclidean version, and plays an important role in the modern
Geometric Function Theory.

The notation we are using here is the standard one: we are denoting points
& € H" = R¥*" by mean of the usual exponential coordinates @ = (21, ..., €ap, t);
for i € {1,...,n}, the horizontal vector fields are defined by

(15) Xi = Xl(x) = 8907 _ o 875, X;’H—i = 1L+i(90) = 896114, +§lata

2
while the remaining vertical vector field is 7' = T'(x) = J, which can be realized
as a commutator, that is T = [X;, X; ] for every ¢ € {1,...,n}; we also denote

the horizontal gradient by Xu = (Xju, Xou, . ..,Xz,u). The natural functional
ambient for the problem (1.1) under the assumptions (1.2)-(1.3) is of course the
horizontal Sobolev space HW'P(Q), which consists of those LP-functions whose
distributional horizontal gradient is LP-integrable. Therefore, the solutions u
considered here are initially assumed to belong to L”(2) and to satisfy

(1.6) Xu € LP(Q, R™) |

while no additional regularity is assumed about T; as we shall see in a few lines,

this lack of initial vertical integrability is a major source of problems when

dealing with regularity of solutions. We recall that if ' = (F;) : @ — R*"is an L!-

vector field in the following we shall denote the horizontal divergence operator
2n

by divyg F' = Y X;F;, which is obviously defined in the distributional sense. Such
i=1

operator obviously serves to define weak solutions of equation (1.1), which are in

fact defined in the usual distributional way. We refer to [29] for more on the

notation used here and more references and results on the Heisenberg groups

H", n e N.
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Finally, let us mention that applications of our results to the Calculus of
Variations in the Heisenberg group are immediate. In fact, via the use of the
related associated Euler-Lagrange equations we can assert regularity results for
local minima of variational integrals of the type:

vaf(%v)doc ,
Q

where of course v € HW'P(Q), under suitable convexity and regularity as-
sumptions of the energy density f: R*" — R. Essentially, we require that the
vector field 9f satisfies the conditions (1.2)-(1.3) when considering a( - ) = 9f(-).
In particular, the results presented in the following section apply to local minima
of the functional

v»—>f (1 + |%v\2)p/2 d, uel0,1].
o

2. — Gradient regularity.

The study of regularity properties of weak solutions to equations as in (1.1)
has a rather long and distinguished history. The first results are in the classical
paper of Hérmander [19], which is concerned with the linear case, i.e. a(z) = z;
further linear results are for instance in [18, 17, 22]. The first non-linear paper
dealing with gradient regularity is due to Capogna [5], and concerns the case
p = 2, so that equations as those in (1.4) are not covered by his theory for p # 2.
Indeed, the case p > 2 is another story, and presents remarkable, additional
difficulties; Holder continuity of % has been obtained in [6, 25], while when
considering the gradient of solutions only partial regularity results are available,
that is, the regularity of the gradient outside a closed, negligible subset of the
domain Q; this fact has first been established by Capogna & Garofalo in [7], see
also [16] for another proof. Up to now, the everywhere continuity of Du has been
established only assuming that p is not “too far from 2”, that is under an as-
sumption of the type

(21) 2§p<2+0n

where o0, > 0 denotes a rather awkward, and only in principle explicitly com-
putable quantity, such that o,, \, 0 when n " co. Clearly, an unpleasant feature
of an assumption such as (2.1) is that for a fixed p in the range [2,4) only low
dimensional Heisenberg groups can be dealt with.

Let us summarize the situation; Domokos [11], extending earlier, pioneering
results of Marchi [28], showed that Tu € L (Q) if p < 4, which proved to be an

loc
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up-to-now unavoidable upper bound on p, coming in a particularly natural way
from the analysis of (1.1). Proving that Tu € Lﬁc({)) is of course the first fun-
damental step towards the regularization of solutions u to (1.1), since for them
the initial regularity information is just (1.6). As for the higher regularity of Du
or Xu, a few Holder regularity results are available in [8, 12, 13, 26]; all such
papers feature a condition like (2.1). In particular, Hélder continuity of the
gradient is proved in the degenerate case in [12], for a not explicitly computed
quantity o,, while in [26], for the non-degenerate case 1 > 0, the authors find a
bound of the type 0, ~ 1/n, and only the lower dimensional cases [H! and 1% can
be treated when considering the full range p € [2,4).

The first novelty of our paper [29] is that, for the first time, it is possible to
obtain dimension-free pointwise regularity results for gradients of solutions,
therefore completely avoiding the use of any dimensional assumptions of the
type (2.1). Second, up to a certain extent, we are treating the degenerate case
1 = 0, thereby covering the sub-elliptic p-Laplacean equation (1.4).

2.1 — The degenerate case 1t = 0.
The main result in the degenerate case is the following:

THEOREM 2.1. — Let u € HW'P(Q) be a weak solution to the equation (1.1)
under the assumptions (1.2)-(1.3) with u = 0, where 2 < p < 4. Then

22)  Xue LS(Q,R™), and  Tuc Ll (Q)  forevery q<oo.

loc

Moreover there exists a constant ¢, depending on n,p,L/v, but otherwise in-
dependent of the solution u, and of the vector field a( - ), such that the following
mequality holds for any CC-ball B C Q:

1/p
2.3) sup | Xu| < c< ]f |aeu|"dx) .
Br

B2

Finally, for every q < oo there exists a constant ¢ depending only on n,p, L /v, q
such that

g 1/p
2.4) (fqux) <%(Bf|3€u|”dx) .

Bge

See also Corollaries 2.1 and 2.2 below. We remark that, for a fixed p in the
considered range, the previous theorem applies to equations as (1.1), considered in
Heisenberg groups of arbitrary dimension 7; this cannot be obtained in previous
papers such as [12, 26]. We also observe that, here as in the following, the balls
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considered are those generated by the intrinsic distance d..(-, ), that is the intrinsic
Carnot-Caratheodory metric generated by the horizontal vector fields Xu.

2.2 — Non-degenerate equations.

When considering the non-degenerate case i > 0, better results can be ob-
tained. In this situation the basic model example is given by the non-degenerate
sub-elliptic p-Laplacean equation, that is

g 22
2.5) divy ((ﬂ2 +|Xuf) xu): 0 1£>0.
In fact, the classical Euclidean Holder continuity of the gradient is retrieved.

THEOREM 2.2. — Let u € HW'P(Q) be a weak solution to the equation (1.1)
under the assumptions (1.2)-(1.3) with 2 < p < 4 and p > 0. Then the Euclidean
gradient Du is locally Holder continuous in Q.

Related local estimates are of course available in this case too. We have also
an a-priori L> local estimates for Tu, but this degenerates when u approaches
zero; this fact prevents us to prove higher regularity results in the degenerate
case.

THEOREM 2.3. — Let u € HWYP(Q) be a weak solution to the equation (1.1)
under the assumptions (1.2)-(1.3) with 2 < p < 4 and p > 0. Then there exists a
constant ¢, depending on n,p and L/v, but otherwise independent of 1, of the
solution u, and of the vector field a( - ), such that the following inequalities hold
for any CC-ball B C

1/p

(2.6) sup |Xu| <c¢ ][(,u + |Xu|)? dx ,

Brj2 B

R
and
w ,%*Q(Z;Z)
(2.7) sup |Tu| < e J((u + |Xu|) de
Bgz B

Finally, for every 1< q < oo there exists a constant ¢ depending only on

n,p,L/v, q such that
1/p
Xul)” dx) :

Vg
2.8) (Jf|Tu|‘1dx) g%(}f(m

Br/»




248 GIUSEPPE MINGIONE - ANNA ZATORSKA-GOLDSTEIN - XIAO ZHONG

In the specific situation of the equation (2.5), where the considered vector
field a(z) = (12 + |z|2)p_52z is smooth, the previous theorem allows to prove the
arbitrary smoothness of solutions via standard boot-strap methods; see for in-
stance [5, 26].

2.3 — Horizontal Lipschitz continuity.

In both the degenerate and the non-degenerate case the boundedness of the
horizontal gradient naturally yields a-priori Lipschitz bounds

COROLLARY 2.1. — Let u € HW'P(Q) be a weak solution to the equation (1.1)
under the assumptions (1.2)-1.3) with 2 < p < 4 and u € [0,1]. Then u is locally
Lipschitz continuous in Q with respect to the CC-metric in IH". Moreover there
exists a constant ¢, depending only on n,p, L /v, but otherwise independent of 1,
of the solution u, and of the vector field a( - ), such that

1/p
(2.9) [u(a) — u(y)| < c( f (1 + | Xu))P dx) dec(2,y) ,

Br

holds whenever Br C Q, and x,y € Bgys.

Another consequence of Theorem 2.1 and of the standard, Euclidean Sobolev-
Morrey embedding theorem, is now the following:

COROLLARY 2.2. — Let u € HW'P(Q) be a weak solution to the equation (1.1)
under the assumptions (1.2)-1.3) with 2 < p < 4 and u € [0,1]. Then u € C{)O’g(Q)
for every a < 1.

We finally mention that the previous theorems are stated for 2 < p < 4 for
completeness, since in the automatically non-degenerate case p = 2 they are
essentially due to Capogna [5].

3. — The Calderon-Zygmund theory.

As we shall see in a few lines, estimates of the type (2.3) open the way to a non-
linear version of estimates of Calderén-Zygmund type in the Heisenberg group,
up to now developed only in the case of linear sub-elliptic equations [3]. Here we
shall deal with non-linear sub-elliptic equations.

Let us recall that in the Euclidean setting the validity of a non-linear
Calderéon-Zygmund theory is a classical achievement dating back to T. Iwaniec
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[20], who dealt with the scalar case; later on extensions to systems of p-Laplacean
type have been obtained by DiBenedetto & Manfredi in [10], see also [1]. The
equations considered in [20, 10] are modeled by the non-homogeneous p-
Laplacean equation, that is

(3.1) div (|DulP~2Du) = div (|F|P~2F)

considered in open subsets of R". The results obtained basically assert that
F e Lfoc implies Du € Lfoc for every q > p - see also [21] for some results when
q < p. Observe that when p = 2 this is essentially the outcome of the classical
Calderon-Zygmund theory developed in the fifties.

More recently, very general Calderén-Zygmund type estimates valid for
solutions to general non-linear elliptic systems have been proposed in [1, 23],
following and extending the techniques from [4]. The main point in the last two
papers is the possibility of getting integrability results for solutions to non-
homogeneous equations once certain reverse Holder type inequalities have been
established for solutions to homogeneous ones. Now, observe that the estimates
found in (2.3)-(2.6) imply the validity of every type of reverse Holder type in-
equalities for solutions to homogenous sub-elliptic equations. This fact allows us
to extend the techniques used in [23]. We shall in fact take [23] as a starting point,
and via the combined use of suitable maximal operators, of estimates (2.3)-(2.6),
and of a-priori higher integrability results in the style of Gehring’s lemma, we
shall obtain a far-reaching generalization of both the non-linear results valid in
the Euclidean setting, and of the linear results known in the sub-elliptic one. Due
to the techniques adopted is not a surprise that at the end all the integrability
results obtained will come along with explicit reverse type inequalities asserted
in the corresponding integrability spaces.

Specifically, in [29] the equations we are considering are the natural hor-
izontal version of (3.1), involving possibly discontinuous coefficients of VMO type,
that is

(3.2) divy [b@)a(Xu)] = divy (F]P2F),
with
(3.3) b(-) € VMOe(@) and v <b@ <L .

The space VMO,.(£2) is the natural sub-elliptic version of the usual Euclidean
VMO-space of John and Nirenberg: CC-balls are used in the definition instead of
the usual Euclidean ones; see [29] for more. The prototype of (3.2) is clearly the
non-homogeneous p-Laplacean equation with VMO-coefficients, that is

(3.4) divyy (b@)|XulP2Xu) = divy (|F|P2F) |

where the coefficient function b( - ) satisfies (3.3), and F € LP(Q, R*"). The main
result is the following:



250 GIUSEPPE MINGIONE - ANNA ZATORSKA-GOLDSTEIN - XIAO ZHONG

THEOREM 3.1. — Let u € HW'P(Q) be a weak solution to the equation (3.2)
under the assumptions (1.2)-(1.3) with 2 < p < 4, and (3.3). Then

Fell

7., R implies that Xu e LI (Q,R™),

loc

whenever p < q < co. Moreover there exists a constant ¢, depending only on
n,p,L/v,q and the function b(-), such that the following reverse-Hilder type
mequality holds for any CC-ball Bg € :

1/q 1/p 1/q
(3.5) ( ]f|36u|qdac) <c( Jf(ﬂ+|36u|)i’dx) +c( )[|F|qdac) .
Br

Br/» Bp

Let us just recall that in the Euclidean case there is a wide literature on
Calderon-Zygmund type estimates for linear problems with VMO-coefficients
starting from the Euclidean work of Chiarenza & Frasca & Longo [9]. In the sub-
elliptic setting, the theory is confined to the linear case [3], where equations in-
volving general Hormander vector fields are considered. We also remark that the
integrability results obtained in [29] are new already in the case b(x) = 1 - that is,
when no coefficients are actually involved. Moreover, the result of Theorem 3.1
extends to a family of more general equations with continuous coefficients, and to
equations with discontinuous BMO coefficients satisfying a small BMO-seminorm
condition; the corresponding statements are again presented in [29].

4. — The technical approach - novelties.

The approach developed in [29] strongly differs from those proposed in
earlier papers on the subject. Hormander’s original strategy [19], and sub-
sequent linear works [17, 18], prescribe to first obtain a certain maximal reg-
ularity for the vertical gradient Tw, and then, using such an additional in-
formation, obtaining regularity results for the horizontal part Xu. Such an ap-
proach also works for non-linear problems when p = 2, as shown in [5], but does
not seem to yield results when p # 2 and the equation becomes in a certain sense
heavily non-linear. In [29] we instead introduce a double-bootstrap method: we
shall obtain regularity for 7w using the one obtained for Xu, and vice-versa.
More precisely we shall prove that

(4.1) Tu € L =Xu € LY* and Xu € LI =Tu € L{*"

loc loc loc loc
where {p;} and {q;} are two sequences diverging to infinity; in some sense we

repeat Hérmander’s original strategy breaking it in a countable number of steps.
As a first consequence we obtain that

(4.2) Xu,Tu € L] for every ¢ < oo.

loc
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The use of such a mixed iteration is a direct consequence of the non-linearity of
the problem (1.1), since, after a preliminary differentiation of the equation, Tu
cannot be realized as a solution of a linear equation with bounded coefficients,
and a deeper interaction between the horizontal and the vertical parts of the
gradient must be exploited. The implementation of (4.1) requires a rather deli-
cate interaction between: suitable Caccioppoli type estimates - also called energy
estimates - for the horizontal and vertical gradients; interpolation inequalities of
Gagliardo-Nirenberg type in the Heisenberg group; integration-by-parts
methods; a certain kind of non-standard energy estimates of mixed type. More
precisely, we shall replace the usual Moser’s iteration by a different kind of
iteration where, at each step, the gain in the integrability exponent is not
achieved by Sobolev inequality, but, rather, by an interpolation estimate of
Gagliardo-Nirenberg type via an integration-by-parts procedure.

Once the integrability information in (4.2) is gained, a suitable variant of the
standard Moser’s iteration technique will lead to X« € L. Finally, in the non-

loc®

degenerate case > 0 this will lead to Tw € Ly, via the results in [26], and
eventually to the local Holder continuity of the Euclidean gradient, which is a
standard implication after the work in [5, 26].

An important background of our technique is the observation of the natural
analogy between sub-elliptic equations of the type (1.1), and the more classical
Euclidean non-uniformly elliptic equations, or “equations with non-standard
growth conditions”, or with “(p, ¢)-growth conditions”, as very often called in
the setting of the Calculus of Variations [2, 14, 15, 27]. Problems with non-
standard growth indeed involve equations featuring ellipticity properties
which appear to be weaker in certain special spatial directions: this im-
mediately reminds of the situation of horizontal quasi-linear equations in the
Heisenberg group as (1.1), where the vertical derivative Tw does not appear
directly in the operator. It rather appears only in an intrinsic way, via the
horizontal vector fields X« and after commutation, and therefore the vertical
direction is clearly playing a very special role. Such a lack of “vertical ellip-
ticity” is in fact the basic source of problems in the theory of elliptic equations
in the Heisenberg group.
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