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On the Qualitative Behavior of the
Solutions to the 2-D Navier-Stokes Equation (*).

M. PULVIRENTI

Abstract. — This talk, based on a research in collaboration with E. Caglioti and F.
Rousset, deals with a modified version of the two-dimensional Navier-Stokes
equation wich preserves energy and momentum of inertia. Such a new equation is
motivated by the occurrence of different dissipation time scales. It is also related to
the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to un-
derstand intermediate asymptotics.

1. — Introduction.

Let us consider the Navier-Stokes equation in the plane for the vorticity
w = w(x,t):
(1.1) O +u - Vo(x,t) = vdw(x, ).

Here x € R?, t € R* and u = u(x,t) € R? is the velocity field defined as:

(1.2) u=Vty, y=-4"o.
Explicitely:
(13) w=K+o K@) =Viw=—L%
. - ) - g - o ‘90|27
where
(1.4) @)= —L1o ||
. g\x) = or g

is the fundamental solution for the Poisson equation in the plane. Finally v > 0 is
the viscosity coefficient.

The time asymptotics for the Navier-Stokes evolution is trivial, namely v — 0
when ¢t — oo in all LP norms with p > 1. On the other hand the occurrence of

(*) Conferenza tenuta a Perugia il 20 giugno 2007 da M. Pulvirenti in occasione del
“Joint Meeting U.M.I. - D.M.V.”.
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coherent structures an a suitable time scales suggests to look for an intermediate
asymptotics.

An attempt to understand those typical profiles has been given in terms of the
Statistical Mechanics of the vortex system, which is an Hamiltonian finite di-
mensional version of the Euler flow (see e.g. [MP]).

Let us remind the Euler equation. It is as the Navier-Stokes equation for
v=0:

(1.5) O +u - Volx,t) =0.
It has many invariants:
1

(1.6) E(w) = 5 f wad, (energy)
(1.7 M(w) = f xad, (center of vorticity)

1 9 . .
(1.8) I(w) = 5 f (x — M) wdx, (momentum of inertia)
(1.9) Fy(w) = f H(w)dex (Casimirs).

From now on we set v=11in eq.n (1.1) and M = 0 costantly in time for both
equations (1.1) and (1.5). We also restrict our analysis to vorticity profiles which
are also probability density i.e. w > 0 and [w = 1.

Following the Statistical Mechanical prescriptions, we select a special class of
stationary solutions to the Euler equation, characterized as the solutions of the
following nonlinear elliptic problem:

by/+a“.—2
e 2
1.1 = Ay =

(1.10) w 7 7
where

(1.11) 7= [ewes

is a normalization. Here a and b are suitable parameters.

For fixed values of a < 0 and b in a suitable range, eq.n (1.10), called Mean
Field Equation, has been obtained as the Mean-Field limit of the Gibbs measures
of the point vortex system (see [O], [LP] and [MJ]). For a mathematical study see
[CLMP1], [CLMP2], [K], [KL] and the Appendix of [CPR 1].

Solutions to eq.n (1.10) are good candidates to explain the coherent structures
observed in the Navier-Stokes evolution and they should be explained in terms of
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that flow rather than in terms of statistical mechanical principles. A naive at-
tempt is to look at the dissipation rates of the invariants (1.6), (1.8) and (1.9) for
the Navier-Stokes evolution. They are:

(1.12) jo —fwz,
(1.13) I(w) =2,
(1.14) Fy=- f &'Vl

The idea is that 7F¢, for a convex ¢, may be much larger than — and I in
many situations.

This would suggest to consider, in the first approximation, £ and I as con-
stants, by looking at a master equation which modifies the Navier-Stokes
equation leaving constant both energy and moment of inertia, but retaining all
the other features of the Navier-Stokes dynamics. Unfortunately such a proce-
dure is ambiguous as we shall see in a moment. For instance let us consider the
heat equation:

(1.15) 0w = Aw,

with the aim of leaving invariant the moment of inertia /. One way is to consider
simply

(1.16) Ohw = 05 yo.

However eq.n (1.16) is not so good because it has too many invariants and
does not select a unique invariant state. On the other hand the theory of gradient
flows produces other more interesting equations. Indeed the heat equation can
be written in the form

(1.17) Ow = —VIF = div [g(a))vg}

1
where F' is of the form (1.9) and g = g(w) = m is a suitable weight function.
w

Such a formulation is connected with the metric on the space of the absolutely
continuous probability measures with respect to which the gradient V¥ is com-
puted. See [V] and [AGS] for details.

If we want to constrain eq.n (1.17) to have a constant I, we just project it on
the manifold /=const. Since

. X
VQI =div (m)
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we readly arrive to

(1.18) O = div {ch +a <¢/,( ))]

where a is a multiplicator choosen in such a way that I is mantained constant.
This implies

(1.19) a= 2

f ¢"(w)

The asymptotic state for the nonlinear evolution (1.18) is expected to be the
minimizer of F' at I constant. Of course such a state depends crucially of /' which
is arbitrary at this level.

A special choice is when ¢(r) = rlog r, namely F' is the Entropy functional. In
this case a = %is constant (I is the moment of inertia of the initial condition) and
the resulting equation is

(1.20) Oy = div [Va) + %(xw)} .

We also note that eq.n (1.20) can be recovered by the classical change of
variables:

x

Jiti

rescalig suitably w. The above change of variables is suggested by the fact that
the exact solution

xXr —

t—log(1+1),

1 2
w(x,t) = me IoET)
is made constant.

We finally remark that the above choice of the Entropy functional, for which
g(w) = w, induces as metric function the Wasserstein distance among the
probability measures. The corresponding gradient is denoted as V¢ = VW,

Coming back to the Navier-Stokes equation, following [V] we write eq.n (1.1)
(forv=1) as

(1.21) o =JVVE - VWS
= —div {a)VL gE] + div [a)V gS}

where S(w) = [wlog w is the Entropy functional. Moreover the antigradient is
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defined as

JVI = —div {g(a))vL i} )
ow

We note that, if we want that the (conservative) Euler part is an antigradient
of the Energy functional, necessarily g(w) = w and hence the Entropy functional
is authomatically selected if we want to express the conservative and dissipative
part of the equation in terms of the same metrie.

Starting from eq.n (1.21), in order that the functional £ and I are separately
invariant, we project the dissipation part on the manifold £ = const and I =
const. This is equivalent to write

(1.22) Oy = —div [wVL %} + div {wV(

o5 ol o8
ow ow ow )|’

determining the multipliers a and b to guarantee the constance of £ and 1.
We arrive to:

(1.23) Ow+u - Vo = diviVo — boVy — aw)

2
= div {wv (logw — by — aéﬂ,

where
2l [ a? +2V 2[o|Vyf +V [a?
(1.24) b . = 7
21 [ w|Vy|? — V2 2I [ w|Vy|? — V2
and
1
(1.25) Vv :fa)m -Vy :fdxfdyw(m)a)(y)x Vol —y) = s

Eq.n (1.23) has been introduced in [CPR 1].
Let us now argue on the asymptotic behavior of eq.n (1.23). The invariant
states satisfy

22
div {wv <logw — by — ag)} =0.

Therefore

eb(//+a%

(1.26) w=—7
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where

(1.27) Z = f oo

is a normalization.

Recalling that w = —4y, we realize that eq.n (1.26) is a nonlinear elliptic
equation which is, however, intractable at this stage, if @ and b are functionals of
the solution itself (see eq.n (1.24). Fortunately the parameters a and b are un-
iquely determined by the values of the energy and momentum of inertia as we
shall see in a moment.

We first note that, for fixed values of a and b, eq.n (1.26) is the same as eq.n
(1.10) introduced above. Here we summarize the main mathematical results
concerning this equation. Before doing this we first introduce a useful functional,
the free-energy, defined as

(1.28) F (o) = S(w) — bE(®) — al(w)
for a given pair @ <0 and b > 0. F ) is defined on the space I" of all the

probability densities on R? with finite entropy, energy and moment of inertia.
We define

(1.29) F,a) = (irg_F(b,a)(w).
Moreover, for £ € R and I > 0 let us introduce

(1.30) I'gp={welEw =E I(w) =1}

and set

(1.31) SE,I = weiggn S(w).

The above variational problems are related to the solutions of the Mean-Field
equation (1.26).

THEOREM 1. — Fora < 0and 0 < b < 8
i) There exists a unique, radially symmetric minimizer w € I of the
problem (1.29). o = w4 ts the unique radially symmetric solution to eq.n (1.26).
ii) When b — 8n, w converges (weakly) to a J at the origin.
iii) F(b, a) s a concave smooth function and

or or
i H(wpa), i — E(wg.0)

iv) For E € R and I > 0 define
S*(I,E) = sup (F(b,a) + bE + al)
a,b
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and denote by b(I, E) and a(l, E) the unique maximizers. Then S, E) = S*(I, K)
and hence S is a smooth convex function.
v) The variational problem (1.31) has a unique minimizer w(l, E) and

o, E) = owi g p)-

Note that when b < 0 the theory is easier. Indeed the functional F; o)(e) is
convex so the minimazion problem is standard and eq.n (1.16) has a unique
(radial) solution [GL] .

Note also that eq.n (1.26) has a natural statistical mechanical interpretation,
being its solutions, Gibbs states with a self-consistent interaction. Therefore —b
is an inverse temperature. Hence b > 0 implies negative temperature states, as
predicted by Onsager [O] in terms of point vortex theory.

Now we want to study the solutions to the initial value problem associated to
eq.n (1.23). The first difficulty one faces in dealing with this equation is the fact
that the denominator entering in the definition of @ and b

(1.32) D= 21fw|w|2 V2

can vanish. We first remark that, by the Chauchy-Schwarz inequality
2
(1.33) VE= (fwx : w) < 21fw|w|2

and hence D is positive if inequality (1.33) holds strictly. Moreover b > 0 if

[a? > 4%[1 and @ < 0if 2 [0|Vy[* > 1/4x [ 0?.

Note that D vanishes when & and Vy are collinear in L?(cwdx) and this hap-
pens for the one-dimensional family of circular vortex patches:

1
(1.34) W= p3XBOR)

where ypq ) is the characteristic function of B(0, R), the disk of center 0 and
radius R. Then:

1)
27R?
and the right hand side of eq.n (1.23) does not make sense.

To avoid this difficulty we studied in [CPR 1] the simpler problem of the
Navier-Stokes equation constrained to the single manifold £ + I =const. In this
framework we proved the existence and uniqueness of smooth solutions for small
initial data or data close enough to the equilibrium. However the techniques
developed in [CPR1] allows us to prove the existence of solutions of the original
problem (1.23) in the vicinity of the equilibria, characterized by the solutions of

(1.35) oVy = —
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the Mean-Field equation (1.26). In this way we avoid the solution to be close to
the singular set (1.31).

The main feature of eq.n (1.23) is the decreasing of the entropy functional.
Infact:

dS(w) _ dS(w) de'(w) 3 adl(w)
e dt dt dt

oS oE ol .. oS ol oE
:.I‘(%—b%— (l@)dl\’l}l)v<%— (l%— b%>:|

oS ol  OE\|? a2\ [°

The decreasing of the entropy will play a crucial role in the proof of the ex-
istence of the solutions and in the control of the asymptotic behavior.

The mathematical study of eq.n (1.23) starts with the study of the existence
problem briefly discussed in the next section.

We discuss only the more interesting (both from a physical and technical
point of view) negative temperature case. The positive temperature case follows
easily from the same arguments.

(1.36)

2. — Construction of the solutions and asymptotics.

To approach the initial value problem to eq.n (1.23), we limit ourselves to
initial data close enough to a radial solution of (1.26).
Let us introduce the manifold of probability densities

2.1) ME D) ={w|Ew)=E,I(w) =1}
and fix the (radial) solution to eq.n (1.26) in M(E, I), denoted, in the sequel by

wyr. Then we have:

THEOREM 2 ((CPR 1], [CPR2]). — Let wy € LP, for somep > 2, be a probability
distribution in M(E,I). Then there exists 0 = dwyr) depending on wyr, such
that, if

(2.2) S(wp) — S(wyr) <9,

there exists a unique classical solution to eq.n (1.13), with initial datum wy, for
which

(2.3) stuop lo®]], < Clwy).
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Moreover
(24) tlim (/)(t) = WMF
in L.

The proof of Th.m 2 is based on the following steps.

Step 1. For all ¢ > 0 there exists 0 > 0 such that, if ® € M(&,I) and

(2.5) S(w) — S(wyr) <6,
then
(2.6) o — womr||: < e

Step 2. If w € LP with p sufficiently large, then
(2.7) b(@) — bloyr)| + |a(@) — aloyr)| < Cllo — oy,
for some a < 1.

Step 3. For any smooth solution [0,7) — w(f) to (1.23), as far as
b)) + |a(w(@))| < C then

(2.8) sup [|w®)|z, < Cla),
t>0

where C(wy) depends on wy , but not on 7'.

Step 4. We conclude the existence part in the following way. Let [0, T) — w(t)
be a local solution up to the time 7' for which, for ¢ < T

(2.9) b)) < 2b(our);  |a(w®)| < 2lalour)).

Note that (2.9) holds initially because we assume wy close to wyr in the sense of
the entropies and hence in the L! sense (Step 1). Suppose that at time 7' (2.9) is
violated. By the decreasing of the entropy we have that (Step 1) ||wo — wur||
remains small. Step 3 guarantees that |b(w) — b(wyr)| + |a(w) — alwyr)| is also
small. Hence (2.9) cannot be violated and T = + co.

Step 1 is based on the Csiszar-Kullback inequality. Step 2 follows from ex-
plicit computations. Step 3 is obtained by a direct bound on the time derivative of
the L? norm of the solution and the GNS inequality, in the same spirit of [JL] and
[BDP] for the Keller-Segel model. (See [CPR1] for details).

The asymptotic behavior follows by some regularity estimates, yielding L!
compacteness, the entropy identity (1.36) and the uniqueness of the free-energy
minimizer.

For details and other connected results [CPR 1] and [CPR 2].
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