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Bollettino U. M. 1.
(9) V (2012), 243-262

On some Variational Inequalities in Unbounded Domains

MicHEL CHIPOT - KAREN YERESSIAN

Dedicated to the Memory of Professor Enrico Magenes

Abstract. — We study the variational formulation of the obstacle problem in unbounded
domains when the force term might grow at infinity. We derive the appropriate
variational formulation and prove existence and uniqueness of solution. We also
show the rate of growth at infinity of the solution in terms of the growth rates of the
obstacle and the force, and prove the exponential convergence of the solutions in
approximating bounded domains to the solution in the unbounded domain.

1. — Introduction

Let us consider 2 c R? as in the figure 1, that is to say
(1.1) QCRx(—a,a), a>0.
Let us denote by ¢ a function defined on 2 and such that
e HY(Q), p <0 on 9Q
(02 denotes the boundary of Q). If
(1.2) feH Q)

it is well known (see [KS], [C1], [R]) that there exists a unique solution u to the
variational inequality

uekK={vecH\(Q) |v>gpae in Q},
(13) waV(v—u)dacz(f,v—u), Yo e K.
Q

I
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However in the case where Q is unbounded there are many simple dis-
tributions (functions) f for which (1.2) is not satisfied and for which the varia-
tional inequality (1.3) does not make sense. This is one goal of this note to bridge
this gap. To see that (1.3) fails for many functions or distributions suppose that
for some 0 <b<a one has

Rx(=b,b)CQ
and consider a function f € L?*(— a, @) such that
f#Z0on (—0b,b).

Then there exists y € D(— b, b) such that
b
[ raptende #o.
—b

Let us introduce p, a function of x; only defined as follows
p,(1) = min (e, dist(xy, R\(— & — &' e +¢&7h)),

the graph of p, being depicted in the figure 2.

—e—1 -1 0 : Lie

Fig. 2. — p,.

Then it is easy to see that when ¢ — 0
v, = p(e)y(z) — 0 in Hi(Q).

This is indeed an easy consequence of

flv’l];;|2d90 :f{WZ(WZ)(ax1p1:)2 + Pz(xl)(a%z'//)z}dx
Q Q

lve Lig
<2 _1[ {WZ(xZ)dxzdﬁcl + 1.[ -{J\Ez(awglﬂ(mz))zdxzdxl

b b
=26 [ Y2 (e2)daz + 26+ &) [ @uyen)Pdas.
—b -b
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However
1+é b 1+}
f Soedw = f f Sy (w2)p,(01)dwrdwg = f S (e)y(w)d s f pe(w1)day
— l —e —b -1l_¢

— 2+ f F@w(@e)das A 0
b

this shows that f ¢ H~1(Q). This simple computation provides a lot of distribu-
tions f for which the variational inequality (1.3) does not make sense.

Under appropriate conditions, we prove existence and uniqueness of a solu-
tion to problems in unbounded domain as the limit of solutions in bounded do-
mains. To carry this out, we use estimates in bounded domains which were
considered to determine the asymptotic behavior of elliptic equations and var-
iational inequalities in [C0], [CY] and [Y]. For the open set Q C R" we will set

Wy (Q) = Wh(Q) N H(€Q).

The rest of this paper is divided as follows. In the next section we treat an
example in two dimensions to enlight the features of our method. We give next
some generalizations.

2. — A Simple Case

We suppose here that Q2 is an unbounded open set satisfying (1.1). For ¢ > 0
we denote by €, the open set defined by

Q=((-60x(—a,a))NQ
We set
v, ={ve H'@) | v=00n 02 no0}.

It is well established (see [DL], [C2]) that V, is a Hilbert space when equipped
with the norm

1) [oly, = IVllz0, = ( i |w<ac>|2dx)
Q

(| lz,0 denotes the usual L*(0)-norm).
We denote by V; the strong dual of V;, equipped with the usual dual norm,
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We denote by ¢ a function defined on 2 such that
9 € H,.(Q), p <0 on dQ.

Then for f € V; there exists a unique u, solution to

w € Ky = {v €Vi | v@) > o) ae. in Q},

2.2
22) fVug~V(v—u4)dm2 (f v —up), Yve Ky,
Q

(see [KS], [C2], [LS]).
We would like now to prove the following:

THEOREM 1. — Suppose thatf € V; and if p* = max (p, 0) denotes the positive
part of ¢

(2.3) 0 Ty, 1

for some y > 0. Then there exists a unique u., solution to
Uoo € Koo = {v € H,,(Q), v =0 on 92, v(x) > ¢p(x) a.e. v € Q},

[ Vs V(@ — wptade = (£, - wphy,,
24) (@
Yo € Koo, Y2 > 0¥p € Wy™(—£,0), p >0,

Vttos |50, = O,

moreover one has

(2.5) IV @ = o)., = Oe™)

2
for some positive p.

P

T in (2.4) one can always assume that

REMARK 1. — Replacing possibly p by

(2.6) 0<p<l.
In the case when f € H~1(Q) the solution of (2.4) coincides with the solution of the
natural variational inequality

Uoo € KL = {v € Hy(Q) | v(@) > p(@) ae. v e .Q},

2.7
@7 fVuoo-V(v—uoo)dac2<f,v—uoc>7 Yo e K.
2
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Indeed if u., is solution to (2.7) then one can for w € K, consider as test
funetion in (2.7)

V= Uso + (W — Us)p(ity)

with p € Wé’o"( — £, 0) satisfying (2.6) to get that u., satisfies (2.4) and the claim
follows by uniqueness of the solution to (2.4).
One can also recover (2.7) from (2.4) by considering in (2.4) p = p,, defined
by
pp(@1) = min (1, dist(xy, R\(— (n + 1),n + 1))

then p, is piecewise linear and
p,(@) =1 on (—mn,n), p,(®) =0 outside (— (n+1),n + 1).

Now noting that (v —us)p, — v — Uy in HY(Q) for v,u. € Hy(Q) we
recover (2.7).

PrROOF OF THEOREM 1. — STEP 1. Estimate of %, — %y, when 0 < r < 1.
For ¢; < ¢ —1 consider

plaey) = min (1, dist(er, R\(— (&1 + 1), £1 + 1))

then we have

ug — (Ug — er)p € Ky

and thus from (2.2)

2.8) [ vV e —weopde > —(f, ue = ).
Q
Similarly

Uiy + U — Upir)p € Kyr

and thus (since p vanishes outside of Q)

(2.9) [ Ve V@ =) > (fue = ).
2
Adding (2.8) and (2.9) leads to

f V(g — wpgy) - V(g — Uppp)p)dac <0

Q1
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which can also be written

(2.10) f IV (g — wp ) Ppdae < f Oy (g — Wpi)p (1) (g — g )dic
Q1 Quy 1\ 2y

< 10—l — sl
Q0 +1\ 2y

< [t~ Ve + f (e — e Vo

Dy, Dy,

by the Young inequality and for D, = Q;,11\Q2y,, ¢ > 0 will be fixed later.
Using the Poincaré inequality in the xo-direction one has

2 2
f (uy — gy )ode < (%) f (D, (g — Ugr))de

0 0

and it follows from (2.10)

e 1 (20)\°
J 190~ wsfde <5 [ @i fdn s g (%) [ @i

Q0 f G

2
Choosing ¢ = ;a we get
a
f V(e — )P < - f V(e — wpr) P
2 Dy,

which leads to

a
f V(e — werr)Pda < Tta f Ve — wpr)Pdee

Qq Q1

1 I/
Starting from ¢, = 5 we iterate this formula {5] times, to get

6]
f\V(u; W+r)\ de < < > f |V (u, — u/+y)| dx
7'[

+[[]

qﬂ denotes the integer part of ;) Since
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we obtain
T+ QN i@ 2
(2.11) f|V(u5 u/+y)| de < ( ) gIn (5 )f|V(u4 — Upi)| da
a

) —«éf|v(w gy Pda with oc':%hl(

2

B (7Z+(l

7I+CL>
o .

a

STEP 2. Estimate of u,.
Taking v = ¢ as test function in (2.2), by the Young inequality we get

f|Vu/;|2dac ngug -Votde + |<f, 0" —uM
, o)
<Vl o [IV0 a0, + 1f 1y {

& 1 2 1 2 & 2
é”VWHz e %HV(f”z,m +£|f v +§{||VW+||2,Q, + ||VW||2,Q4}

Vo log, + IIVurllag,}

&

1 1
2 2 2 2 2
<5lIVudlog +5-IV0 2, + 5 fTv: + &{lIVe 20, + [IVeellz0,}

1 2 1 e
— (o5 )Vl + (a4 5. )90 g, + 5111

From here by choosing ¢ small enough we deduce

2 2 2
IVuellz.0, < C(IIV0" |50, + 1f1v;)

DO |

which leads (see (2.3)) to
(2.12) HVWHz@ = 0W).

STEP 3. u, is a Cauchy sequence.
Combining (2.11) and (2.12) we get for £ > 1

a+ .
[ 1900 e < ( a”) {fmm de +f|wm| dx}e o

Qﬁ Qé

2

2y 2y ,—o'l l+r z 2y ,—o'l 29\ g2y ,—o'l —al
SC{F+U+nT1e™ < Ol 1+ —; Fre™"t <C{1+ 27} % e " < Ce
for any o <o’ with C = C(a, ).
This can be written as
(2.13) [ — weirly, < Ce ¥
2
. o 1 a+n
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From (2.13) we then deduce for any ¢ that

214)  Jug — upsly, < e —weraly, + [wea — upsely, + -+ [ — werly,
2 2 2 2

< Ce P 4 Ce MV | 4 Ce P < 22

STEP 4. Passage to the limit.

Let ¢y < g Choose p € W&""o(— £y, £p), 0 < p < 1, then for any v € K, we have

we+ @ —upp € Ky
and by (2.2) we get
(2.15) f Vaug - V(@ — udp)dee > (f, @ — udp), Yo € Kuo.
ng

We have clearly (v — uy)p € Vi, and by (2.14) there exists u., € H 1(!240) such
that

e — oo in HY(Qy,)

when ¢ — oco. Passing to the limit in (2.15) we get

[Vt - V(@ = wdprr > (f, 0~ usdp), W0 € K
2,

Moreover, it is clear that u., = 0 on 92, u., > ¢ a.e. in Q and we have obtained
the two first lines of (2.4).

STEP 5. Estimate of ||V |l o, and proof of (2.5).
By (2.14) written for 2¢ we have

|tar — ugesily, < C'e "

Letting ¢ — oo it comes

U2 — Uooly, < Cle™2"

and thus (2.5) holds. Moreover
luscly, < C'e " + |ugly, < Cle " + |ugly, < Cle "+ C@eY = 0W)
(by (2.12), (2.1)).

STEP 6. Uniqueness of 4.

This is the only point remaining to prove. Let u , %, be two solutions to (2.4).
In the inequalities satisfied by u.., .., by taking respectively v = u._, u we
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obtain for p € W(l)"’o( —/,¢) such that p > 0

[ Vo Vi, — upde = (£, 6l up),

2

f Vi, - V(o — ul)p)de > (f, (oo — ul.)p).

Q0

Adding we get

fV(u;o — o) - V(UL — Uoo)p)da <0, Vp € Wy™(—£,0), p > 0.
Q

Considering again the function p introduced in the step 1 of this proof and
proceeding as in (2.10)-(2.11) we obtain

-I‘|V(uf>C — uw)|2dac < Ce’”f V(oo — u;o)|2dac < Qe "
Qﬁ Q(’

for some constants C. The equality u., = u._ follows by letting ¢ — oco. This
completes the proof of the theorem. O

REMARK 2. — Without imposing some growth condition on .., uniqueness
might fail. Indeed, take for instance

f=0,9=0

then %, = 0 is clearly solution to (2.4).
Now if

Q=R x(—a,a)
the function
u = ei™ cos (i xg)
o 2a

is also solution since this is a nonnegative harmonic function in the strip
R x (— a,a) vanishing on the lateral boundary (compare with [CM]).

3. — Some Generalization

We are going to consider a special class of domains in R”. For that, for x ¢ R”"
we split the coordinates into two parts i.e. we set

r = X1,X5)
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where X; = (%1, ...,%,) denotes the p first coordinates and Xp = (Xp41,...,%y)
the n — p last ones. If w is a bounded open subset of R"™” we consider a
domain Q such that

QCR xw
and we denote for £ > 0 by €, the set
Q= (By0,) xw)NQ
here B,(0,¢) denotes the euclidean ball with center at 0 and radius ¢. In the
framework of section 2, p=n—p=1, w = (— a,a).

We denote by A = A(x) an x n matrix satisfying for some positive constants
A and 4

(3.1) A@) - (> AP ae xe@ Ve R,
(3.2) |JA@),| < A)l] a.e.x e,V eR"
As in section 2 we define V; by
V= {q; c H\(Q) ‘ v =0 on 9 mag}

and we assume this Hilbert space is normed by

1
oy, = 10l = ([ 170as).
Q

As before also let

(3.3) 9 € H,(Q), p<0ondQ.

For f € V/ we denote by u, the solution to
U € Ky = {v eV, ] v(@) > p(x) a.e. in QZ},

3.4
34) fA(ac)Vug -V —upde > (f,v—us), Yve Ky,
Q,

((,) denotes the V;, V; duality). Then we have:

THEOREM 2. — We suppose that

(3.5) o v, 1f

v: — 0(6(%)
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when ¢ — oo. Then there exists dy such that for J <d, the problem

loc

Uoo € Koo = {v €H,(Q) | v=00n0Q, v(x) > p(x) ae. xe .Q},
[A@ Vs - V(@ = wdpide > (£, ulp), Yo € Kuc,
o

VL > 0, ¥p € Wy (B,(0,0), p >0,
IVtteclz g, = O™)

possesses a unique solution. Moreover there exists a f > 0 such that

(3.7) [V ty — o), = OCe)
2
when £ — oo.

PrOOF. — One can develop the same arguments as in the proof of theorem 1,
however we will proceed differently.

STEP 1. Estimate of uy — uy.,, when 0 < < 1.

We use here another technique. Set
(38) p(%) _ (efoc|X1| _ efot[)Jr

where o is a positive constant that we will fix later on, |X;| denotes the euclidean
norm of Xj, recall that x = (X7, X5). Then it is clear that

ug — Uy — Ug)p € Ky

and by (3.4) we get

(3.9) fA(%)VW V(= (g — werr)p)dae > (f, — (g — weir)p).
Q

Similarly
Upyr + (U — Upir)p € Kpyr

and since p vanishes out of Q, we get from (3.4) where /¢ is replaced by ¢ + »

(3.10) [A@Vurr Vi —wrpde > (i — i),
Q

Adding (3.9) and (3.10) leads to

(3.11) [Aa@vau —uen) - Vi — ez < 0
Q



254 MICHEL CHIPOT - KAREN YERESSIAN

which can be written as

[a@vu —u - Vo —ue) pa

B <~ [(A@V 1) - D) atr — s )
Q

We remark that

X
Vp = ( —ae™Xl —1,0>
g ( 1Xa|

where the 0 above is the 0 in R"? and thus we derive using (3.1), (3.2)

(3.12) /lf |V (u, — ug+7.)|2pdx < Afoc\V(ug — Upir)| e — um»\e‘“'xl'dac
.Q[ .Q[

1
<z

<5 ocAf{|V(u4 — up)® +F oy — ug+,»|2}e‘°“xl‘dac.

2

Using the Poincaré inequality one has for almost any X; € B,(0,¢)

[ =g, lax, < &) [ 193,00 —up)Pelax,

w

where Vy, = 0y,,,,- .-, 0, and cy(w) is the Poincaré constant in the section .
Integrating in X; leads to

2 o _
f(w — ey lde < c?,(w)f |V, (e — wgir) e dae
& 2

< C?)(w)f IV — gy Pe Xl de.
Q

Going back to (3.12) and using (3.8) we get

1
2[ 19t =) Ple = e < oAl + o) [ 19t — e e ¥l da
Q Q
which can be written as
1
{z -5+ cg(w))} f [V (g — ) Pe Xl dae < 2o f |V (g — wpsr) P,
Q Q
One choose then o such that

(3.13) % A1+ c5(w)) <A
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to get
f V(g — upir)PeXilde < Ce™ f V(e — gy )| dee
Q( Qé

where we have set

C= 4

, 1 '
A=A+ (w))
Integrating only on 2 in the left hand side we obtain easily

et f V(g — wpsy)Pdac < Ce™ f V(g — wsy)Pdac
Qﬁ Ql/

which is

(3.14) f V(g — g Pl < Ce ¥ f IV (g — g P

Q Q

(S

for any « satisfying (3.13).

255

StEP 2. Estimate of #,. Due to (3.3) we notice that ¢ € K, and by (3.4) we

have

f A@Vue - Vgt —udde > (f, 0" — ).
1o}

It follows then using the Young inequality

/lf |V’I/L[|2d9(f SfA(.%‘)V’M( - Vud
I} 2

< AVudllo 0 [IVO llag, + 1flv: {lIVucllag, + IVO o0, }
/18 2 A 4112 1 2
< ?HVWHM)[ +%||V(P 5.0, +2_8|f|v;

€ 2
+5{IVella o + 1V9 lls0,}

2

Ae 2 A 4112 1
< SNVl + 5 190" g, + 5/,

2 2
20, T Vo™ ”2,.(2(}

+8{HV’LL(/|

Ag 2 A 2 1 2
- (8 +?> IVael|3 0, + (s +2—8) Vo™ Iz, + 5,11y,
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and thus for small enough ¢ by (3.5) we obtain

(3.15) IVulzo < C{IIVO I3, + If

2 20
V;} < Ce**.
STEP 3. u, is a Cauchy sequence.

The proof goes like in theorem 1. Indeed combining (3.14) and (3.15) one gets

f V(g — wger)Pde < Ce™ % f Vg — uir)Pdac
Qg Q/

_u 2 2
< 2Ce 2 {||Vaurllz 0, + IVeirlzg,., }
<900 % [P 4 207}
< 20{1 + ¥ < Clg 2

for some positive f provided ¢ is chosen such that

o
o< 1
Then one shows as in the proof of theorem 1 that for ¢ > 0 we have
(3.16) |y — ?/L/g+t|V[ < Ce ™.
2

STEP 4. Passage to the limit.

This is almost identical as in the proof of the theorem 1.

STEP 5. Estimate of [uo|y,-
From (3.16) we get by letting { — oo

Uy — Uooly, < Ce P (.e. (3.7))
2

which implies changing g into ¢

(3.17) ltscly, < Ce " + [ugly, < Ce' by (3.15).

This is not yet the last row of (3.6) and we need to improve the estimate. For
that we take in (3.6) v = ¢ and p the function of X; defined by

pX1) = min(1, dist(X;, RP\B,(0, £ + 1))).
Note that one has
(3.18) 0<p<1,p=1onB,0,0), p=0 outside B,(0,¢+ 1),
(3.19) IV p(X)| < 1.
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We obtain

[A@Vu. V@t —uopda = (f.67 —up).
Qi1

This can be written as

f (A@@) Vo - Voo ) pdac < — f (A@@) Vs - Vp)usde
Q[+1 Ql"+l

+ [ A@Vus - Vot)dz — (£, (0" — 10p).
Qrn

We denote by D, the set defined as Dy = Q/,1\Q,. We then derive from above
(note (3.1), (3.2), (3.18), (3.19))

(3.20) ;f Vo] pdac<Af|Vuoo\|uoo|doc+Af|VuDo||go+|dx

Q41

A [ [Vl Vo |pd + 10, 0" —ws)p)]

Qi
We then estimate each term on the right hand side of this inequality.
By the Young and Poincaré inequalities we get
(3:21) A[ [V il < 5 f|wm| dz + 5 f|um| dw
D,

A
<Za+e (w))Df|woo| da.

Again by the Young and Poincaré inequalities

Af|Vux\|go+|dm<— f|woo| dz + 2 f(w) de

Dy Dy

<= f|Vuoo| dx—i——c (a))f|Vgo+\ dx
Dz

<2 f\vw dx+—c (w)f|w+| de.

Qi1

For the third term by the Young inequality it comes

AZ
Af\VMOOHV(pﬂpdxgef\Vuoo|2pdac+4—8 [ vy Paa.
Q1 Qo Qe
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Finally for the last term one has

(322) [(f,(0" —up) < |fly: (V9" = us)pllz .,

& 2
< % |f|V;+1 + 5 V(g™ — uoo)p)HZ‘QHl
and
(3.23) f V(g™ — un)p)dee
Qpn
<4 [{1pVe P + 107 Vol + | pVuacl + VP o

Qi1

=4[ {1pVo P+ |pTus }dx+4f (10" Vol + s VP
Q1

<4 [ {1V P +|Vuad p}dac+4f{\(p o+ func [P} e
Q1

<4f{|w+| + [V [Pp} das + 4¢3 (w)f{|w+| + Voo Yl
Q1

< 4] Vo [2pdic + 4c2(w)f Voo [2die + 4(1 + ¢ (w))f Vo [Pdu
Ql+1 Q[+1

now by (3.22) and (3.23) we have

1
(324) 1(£.00" —wp)| <5 |F + 2 [ [Vuspde
Q41

4 2ec (w)f|Vuoc| de + 261+ ¢ (w))f Vo' Pde.

Qi1

Collecting the estimates (3.20)-(3.24) it comes

A A
(325) 2 f Vo [2pde < {§(1+c§,(w))+§+zscg(w>} f Vo [Pdee
D,

Qi1

+3£f|Vuoc|pdx+{ 2() + +28(1+c(w))}f|V¢+dac+ i

Qi1 Qi1

hence by (3.5)

/If |Vatoo|*pdic < 33[ [V atoo | pdic + C(e)f|Vuoo| da + C(e)e® D,

Qi1 Qe
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A .
Choosing 3¢ = 5 We arrive to

f Vo [Zpdie < C1e24D 4 f Voo [Pdee

Q41

for some constants C; and Cs. From this we derive

(3.26) f|woo| dw < C1e# ) + G [ [V P sz|va| d

Qi1

<:>f|Vuoo| die < Coe? D 4 yf |Vt |Pdic
Qi

where Cy = C [ C
and o. 2 2

We iterate the inequality (3.26) [¢] times to get

an dy*

<1. Note that Cy and y are independent of ¢

fquoo‘zdm < Coe®D 4 Cye? D +yf IVuOO\Zdac}

Q Qi9
< Coe? D14 5e® 1 (e 4+ () 40 [T P
QH[Z]
and if we choose )
1
ye® <1 <= 6<-1In ()
2 Y
then
1
Lot 6% + (o) 4o )T <1t pe? + (o) 4 = 1
— 'y 0

so since ¢ — 1 <[/] < ¢ we have
1
f|w®\ do < Cpern 141 7 f|woo| dz.
1— e
Q Q0

This implies by (3.17)

Cpe? _
f|vum| dm< yez 20 | O 80t

Now if we also choose

8 — In (1) <20 — 5<11n <1>
Y 6 y
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we obtain

f|Vuoo|2dx < Ce®*

Q

i.e. the last line of (3.6).

STEP 6. Uniqueness of the solution to (3.6).

Let p be the function defined by (3.8), .., %/, two solutions to (3.6).
Taking v = %/ in (3.6) and v = u. in (3.6) written for u/_ one gets

f A@) Vit - V(U — us)p)dc > (f, (ul, — tso)p)
Q

and

f A@)\Vu, - V(oo —uIp)da > ( f, (oo — Ul )p).
Q

Adding these two inequalities it comes

fA(ac)V(uDO — ) V(o — ul)p)de <0
Q

and then arguing as after (3.11) with w,, ., replaced respectively by u.., u._ we
arrive to (see (3.14))

[V — P < Ce# [ [V — ) Pde
.Q£ Q[

for o satisfying (3.13). It follows that

ol

f|V(uQO - u’oc)|2dx < 2067{ f|Vuoo|2dac +f |Vuoo|2dm} < 4Ce %>
Q Q Q

L
2

and the uniqueness follows by choosing 26 < % since the right hand side above
converges towards 0.
This completes the proof of the theorem. O

REMARK 3. — One can consider general force terms
feD(Q) suchthat V¢ >0, f e H(Q)
and define the localized forces f; € V; by
(o) = (f:Ce)
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where
{(Xy) = min(l, dist(X7, RP\B,(0, 6)))

then one may show that |f; e < Clf g1,
Now if we consider u, solution to

Uy € Ky = {v eV, ‘ v(x) > p(x) a.e. in Q(},

fA(ac)Vug -V —upde > (fr,v —up), Yo € Ky
2

the theorem 2 will hold assuming the growth condition
\fla1) = 0(e*).

4. — Concluding remarks

1. First it is clear that the existence and uniqueness result can be carried out
for nonlinear monotone operators of the type

—div(A(x, Vu))

under suitable assumptions.

2. It is particularly clear in section 2 one does not need Q to be bounded in one
direction but to be able to apply the Poincaré inequality in one direction, i.e. the
result applies for domains (in R?) of the type depicted in figure 3.

T9

bounded

0 T

Fig. 3. — General domain.



262

MICHEL CHIPOT - KAREN YERESSIAN

3. One can consider more general constraint convex sets as for instance the
ones of the double obstacle problem.
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