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Fractional Interior Differentiability of the Stress Velocities
to Elastic Plastic Problems with Hardening

JENS FREHSE - MARIA SPECOVIUS-NEUGEBAUER

In memoriam Enrico Magenes

Abstract. — We consider classical variational inequalities modeling elastic plastic
problems with kinematic and isotropic hardening. It is shown that the stress velo-
cities have fractional derivatives of order 1/2 — 6 in L? in time direction on the whole
existence interval. In space direction an analogous result holds in the interior of the
domain. In the case of kinematic hardening, these results are also true for the strain
velocity.

1. — Introduction

Let 2 c R" be a bounded domain with Lipschitz boundary Q. The domain Q
represents a solid body which undergoes an elastic plastic deformation, hence
the case n = 3 is the natural application, however, the study of arbitrary di-
mensions 7 > 2 gives additional mathematical insight. Our aim is to prove a new
regularity result for a classical variational inequality which models elastic plastic
deformation with isotropic and kinematic hardening.

Let us first fix some general notation. For n x n-matrices 7, q, the scalar
product o : 7, Euclidean norm |g|, the trace tro and the deviator op are
given by:

n

1/2 tro

0:T= g O it Tikes |a\:(0':a)/7 tra:E Giis 00:6—71[,
ij=1 i

where I is the unit matrix. By Rg‘yﬁ‘, we denote the set of all symmetric n x n
matrices T € R™",

Under the influence of a volume force with density f(¢,«) and an external
loading p = p(t, x) there appear stresses a(t, ) € ngxmn, where x € Q or x € 912.
The parameter ¢ € [0, 7] is a so called loading parameter, but with some abuse of
notation is often referred to as ‘time’-variable. Assuming that the body is

clamped in a region I" C 0%, the balance of forces implies

(1.1) —dive=f in Q, v.a=p ondQ\T,
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where v = v(x) is the outer unit normal vector at x € 9Q. For the formulation of
the classical hardening problem we need a set of hardening variables & = &(¢, ),
which is but a scalar function for isotropic hardening, or a symmetric tensor
function -the so-called back stress- in the case of kinematic hardening. In addi-
tion we have a yield condition specified to

(1.2) lop| — & <k (‘isotropic hardening’) or
(1.3) lop — ¢p| < x (kinematic hardening’),

respectively, where x > 0 is a given constant.
In general the yield condition is formulated as

F(g;6) <0

with a convex function ¥, but we confine us to the so called von-Mises-yield-
condition (1.2) or (1.3). The problem is completed with constitutive laws, namely a
stress-strain relation and a hardening law which describes the evolution of &,
they are indicated in the formulae (1.17) and (1.18) below.

The proper mathematical formulation as a variational inequality involves
some well known function spaces: The symbol L%(Q), with 1 < ¢ < oo, denotes
the usual Lebesgue-space, where we do not distinguish between scalar-, vector-,
or tensor-valued functions as long as no confusion arises. In all cases we indicate
the L?(Q)-scalar product with brackets (-, -)o. For 7 > 0 and a given Banach
space X (which is always a function space in the sequel), the symbol L(0, T'; X)
stands for the Bochner space of measurable and ¢g-summable functions defined
on the interval [0, T] with values in X. For X = L9(Q2), we frequently shorten the
notation to LP(L9), if no confusion arises. The space of functions in L?(Q2) with
derivatives up to order m € N is denoted by H"(Q), furthermore

HM@Q = {pc H(@QR") | gl =0}

the boundary condition has to be understood in the sense of traces, of course. The
part I' C 0Q is either void or a relatively open subset.

For convenience, we assume that the volume force density f/ and the external
loading p fulfil the following regularity assumptions:

(1.4) f.f € L0, T:L¥(Q)), f € L0, T;L?),
(1.5) p,p € L=, T; L), p € L0, T; L>(5RQ)),

here the dot indicates the derivative with respect to the ‘time’ variable t.

DEFINITION 1.1 (Admissible stresses and hardening variables). — K(t) is the
set of all pairs (t,n) with the following properties:

(1.6) v € LX(Q; Rg),n € LA(Q,R™)
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where T fulfills the balance of forces in the weak form:

(L.7) (©.V0)o = (f.0)a + [ po do for all p € HY(@).
Q2

In the case of isotropic hardening we have m = 1 and:

(1.8) neLX(QR),  |w|l-n<r,

w the case of kinematic hardening we have m = n(n + 1)/2 O and:
(L9) ne @R, oo —npl <.

We assume that the hardening variables start at zero, that is £(0) = 0, while
for the initial value g of the stresses and the pair (g9, 0) we require

(1.10) o0 € HX(Q), (09,0) € K(0).

Finally, we need the so called compliance tensor or inverse elasticity tensor
A = (a;), a given symmetric tensor of rank four, and the hardening tensor
H ¢ R™™, We assume that A and H satisfy the usual ellipticity condition

(1.11) 1At > colt?, Hp-n>alnf

for all 7 € R§;,, n € R™, respectively, with constants co, ¢; > 0. In order to limit
the technical details we formally consider only the case of constant A and H here,
however, all the results remain true if the entries of A and H are Lipschitz
continuous functions on Q, since this generalization will cause only pollution
terms in the proofs. The tensors A and H have to fulfill the condition (1.11)
uniformly in « in this case. Note that in the case of isotropic harding the term H
is just a scalar function with H(x) > ¢; > 0 uniformly on Q.

With this notation the classical variational inequality for isotropic or, re-
spectively, kinematic hardening is the following

HARDENING PROBLEM. — Let gy be a given initial stress, such that
(09,0) € K(0). Find ¢ € L>(L?), & € L*(L?) such that
(112) e L* L, ¢&eL*I?
(1.13) (o), <®) := (a(t, ), <, ) € K@), t€[0,T]
(1.14)  0(0) =0y, &0)=0
( ) (A6, o—1)+ (Hf,é —n) <0 a.e.in[0,T] for all (z,5) € K(?).

() In order to have a unified notation also in the calculations needed lateron we
identify ¢ with a vector of R"" /2,
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This problem has a unique solution [9]. The inequality (1.15) contains the con-
stitutive law, under additional regularity conditions it is equivalent to an a.e.
point-wise equation provided that the so called safe load condition holds:

DEFINITION 1.2 (Safe load condition). — There exist 6 € L=(L?), & € L>(L?)
with

e LX), & e LMLY), & e L*(L?)
(1.16) (6(0),0) € K(0), &,_, =0

(&(t,., &, ) € K@),
and there exists a 6 > 0 such that

l6p| —E <K —dor|6p — Ep| < Kk — 6, respectively.
By a theorem of Johnson [9] it is known that there exists a displacement
w e L0, T; Hy(Q, R™) with 4 € L0, T; Hy*(Q, R")),
furthermore, there exists a multiplier [3]
A€ L>0,T; LX(Q,R))

such that in the case of isotropic hardening, a.e. in [0, 7] x Q

) {%aﬁy+vu%
0

A+ /:‘LO-D|O-D|71

HE— ),

and in the case of kinematic hardening

2
0 = Hé— iop — éplop — Ep|
The multiplier function ). satisfies 1 > 0 a.e. and

Mop| —xk—& =0

(118) { 5(Vit+ Vi) = Aé+ Mop = Ep)lop — &pl !

in the case of isotropic hardening or
Mop —épl — 1) =0,

respectively, in the case of kinematic hardening. This implies that 4 =0 if
lop| = 0 in the case of isotropic hardening, and 2 = 0if |op — &p| = 0 in the case
of kinematic hardening, so (1.17) und (1.18) can be defined. Vice versa, from (1.17)
and (1.18) one recovers the variational inequality (cf. [3] for a simple proof con-
cerning the construction of 1). Equation (1.17) and (1.18) have the advantage,
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that they are defined point-wise and that the deformation velocity % appears
explicitly.

Concerning interior regularity of the solution (o, £) and the displacements the
following results are known: If f is sufficiently regular, that is

(1.19) f e L*(Hj,),
then in the case of kinematic hardening [13]:

o € L0, T; Hb,), & € L0, T; Hb,), we L0, T; Hy,)

loc loc

In the case of isotropic hardening the L*>(HL )-property is known only for ¢ and
& cf. [13], while the L>(HL )-property for Vu is an interesting open problem. In

[4] it was shown that Vu ng(Lﬁ)c), if n = 3. Up to now there are no regularity
results for ¢, &, besides a result of [5], where the inclusion &, & € L*(L22%) for
small 6 > 0 is proved. For more general models describing elastic-plastic de-
formation with hardening see also [1, 2, 7]. These papers use the so called primal
formulation, i.e the principal unknowns are the displacements rather than the

stresses. Our main result states that in [0, 7] x Qp, Qy CC &, the functions &4, &

1
have fractional derivatives in time and space direction of order 5~ 0,0>0.1In

the kinematic case we obtain this regularity property also for V4, in the isotropic
case we reach only Vu € Li~o (Lgf‘sl), n = 3, for all 01 > 0 (cf. Remark 4.4, [6]).

For the result in time direction, the method of the proof is related to a recent
paper [6] of the authors about the Prandtl-Reuss problem, where fractional

1
differentiability of order 5~ 01 was achieved for the stress velocities. The ideas

of this paper can be adapted to gain a similar result in the setting with hardening,
as it is considered here, however, the method to achieve also the fractional dif-

ferentiability of order 5~ 01 with respect to space direction needs an additional

consideration. This is the purpose of our paper.

A counterexample of D. Knees [10] indicates that our regularity result is
optimal.

2. — The main results

We formulate the main results, starting with the regularity in time: The
stress velocities ¢ and the time derivatives ¢ of the hardening variables ¢ have

fractional derivatives of order 5 in time direction, in a weak sense. This result

holds up to the boundary 02, for arbitrary dimension 7, and both for kinematic
and isotropic hardening. We recall the notation of difference operators: Let e;
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denote the i-th unit vector, for any w = w(t, x), and s > 0 we put
(2.1) Lw@,x) =wd + h,x) —wi,x), Lwl, x)=wl, -+ se)—w,x).

THEOREM 2.1 (Regularity in time). — Let the data f, p and oo fulfill the reg-
wlarity assumptions (1.4), (1.5) and (1.10), assume that the ellipticity condition
(1.11) for the tensors A and H and further the safe load condition (cf. Def. 1.2) are
satisfied. Then for the solution o, ¢ of the hardening problem introduced in
Section 1, there holds the estimate

h

2.2) w2 f

0

~

i J 146 + 1482 ddtas < ¢
Q

OS

uniformly for 0 <h <hy.

REMARK 2.2. — The inequality (2.2) is a weak version of the Nikolskii - space
property
h

sup ] f [|A§&|2+|A§é|ﬂ dedt < C,
0 Q

0<h<hy

S| =

(which we do not prove), see the discgssion in [6]. Theorem 2.1 implies that the
Fourier- coefficients ¢, = ¢y, (x) of & & in time-direction gain the following
summability property (see [6, Lemma A.1] for the details)

Z ml";f |cm(90)|2dy <(Cs forall o>0.
?)

Mm=—0o0

In the case of kinematic hardening, Theorem 2.1 implies the fractional dif-
ferentiability in time for the strain velocities:

THEOREM 2.3. — Assume the requirements of Theorem 2.1 are met and the
pair (o,&) is the solution to the problem with kinematic hardening. Then the
corresponding displacement field u satisfies the estimate

T—h h
2.3) w2 [ [ [14vafacdsat <
0 0 Q

with a constant independent of 0 <h < hy.

Using the result (2.2) for the time we can also prove that the velocities g, Eof

. . .. 1
the stresses and the hardening parameters have fractional derivatives of order 5
in space, here again for isotropic and kinematic hardening.
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THEOREM 2.4 (Local regularity in space). — Assuming the requirements of
Theorem 2.1 (0,&) be again the solution pair of the hardening problems for-
mulated in Section 1. Then the velocities 6, ¢ have local fractional derivatives of
order 1/2 in space direction, in the following sense

T—h

(2.4) sup bl f f|A§La|2+\A§?&|2dmdtgc, i=1,....n
0<h<hy 0 O

for any domain Qo such that Qy C Q and hy < dist(0Q, 0Q).

REMARK 2.5 (Possible generalizations). — Apart from passing to Lipschitz
continuous entries in the tensors A and H - as already mentioned in Section 1 it is
also possible to consider more general flow rules for the hardening variables &. For
example, one my add in (1.17), (1.18) globally Lipschitz continuous functions
g, x,0,&). Terms of this type create pollution terms which can be treated via
Gronwalls inequality. However, we are mostly interested in in the classical case as
in Johnson [8], mainly because they present the essential mathematical difficulties.

3. — Penalty approximation

The hardening problem (1.12) can be approximated in several ways via pen-
alty approximations. In this paper we follow the approach in [3, 4, 5]. We in-
troduce the penalty potentials

; 1
G, (0,0 = i/fl[lapl ~ K+ OF
in the case of isotropic hardening, and
; 1
G0, ) = éﬂ_lﬂ% —&pl — T}

in the case of kinematic hardening, where for any real valued function ¢ the
expression [¢], = max(¢,0) is the positive part, and g > 0 a small parameter.
Then we obtain

) 0
G3(0,8) i= = G22(0,9) = i Wow| — e+ O oplop|

) o .
G50,9) = 5261, 0 =~ Mow| ~ e+ ).,
and in particular the (point-wise) relation

(3.1) GEo| = |G-

1u
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For kinematic hardening we have
G50, = G0, = Mo — Epl — Kl lo — Epllop — Epl”
G (0,8 = —u|op — Ep| — k1 (op — Epllop — Ep| 7Y,

GO =5

that is
(32) Gkin — Gkin

1p 2u

Note that for [op| =0 or |op — ¢p| = 0, the terms G, can be continuously ex-
tended by 0; for Glzs;j this follows from & > 0.

Due to our conventions in notation, the mathematical formulations of the
penalty problem in the kinematic and the isotropic look the same, thus in the
following we simply write Gj, instead of G} or GT9, if the arguments run par-
allel. We formulate the penalty approximation of the hardening problem:

DEFINITION 3.1 (Penalty problem). — Find 6,,¢, € L*(0, T; LA(Q)) such that
Ou, é,, € L>(0, T; L3(Q)), the pairs (04, &, fulfill the initial condition (1.14) and
the balance of forces (1.7) in the weak form for almost every t, further

(33) (Ad/l + Gl,u(o-,u; é‘u)a T).Q = 0
forall t € LX(Q, Rigm) which satisfy (v, Vo) = 0 for all ¢ € HL(Q; R™),
(34) Hé,u + G2,u(o-,ua f,u) =0

By the L?-Helmholtz decomposition theorem for symmetric tensors we may
replace (3.3) by the point-wise equation

(3.5) S (V0 + V1) = 46+ Guy(0,0)

with the so called deformation velocity v = @, v € H-(Q, R™).

It is well known (see the discussion and references in [3]) that the penalty
problem has a unique solution (,, &,). Moreover, we have the following estimates
independent of x € (0, 1], provided that the safe load condition holds:

(3.6) loull ey + ol peqey + 1wl @z + il pege < Cs
(8.7) €l ey + Sl zey < €,
39 Vit s <C

The estimates (3.6), (3.7) have been worked out with a related penalty term in [9].
It is a routie matter to adapt this proof to our case. An alternative reference is
[12]. By an argument of Johnson [9] (‘Johnson’s trick’), involving the relations
(3.1) and (3.2), one has (3.8). Compared to the Prandtl-Reuss law, which corre-
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sponds to ¢ = 0, where only an L>(L')-estimate is available, the estimate (3.8)
makes the analysis much easier and gives better regularity results.

By monotonicity methods we have the convergence (see, e.g. [12]) g, — g,
&, — & strongly in LA(L?) while Vi, — Vi, as 4 — 0. Here (5, ¢) is the solution
of the original hardening problem. In [5, Sec. 3] it was shown that even

(3.9) 6, — 6, & — & strongly in LA(LA),

which implies also V2, — Vi in the kinematic case. For the proof it is essential
to know that (in the case of isotropic hardening)

. . O'D . .
iso iso _
1u A |O-D‘ ) 2u A

weakly in L2, with a function 1 € L>®(L?) enjoying the properties
2>0, A=0 if |op| — &<k

This result was proved in [3], the case of kinematic hardening runs in a com-
pletely analogous way. Using the multiplier 4, the constitutive equation can be
written in the form (1.17).

Furthermore, there are local uniform estimates

(3.10) ”va/l”L‘x(L?(.Qo)) + ||Vfu||Lx(L2(QO)) <Cq), £ CCQ,

cf. [13, 12]. In addition, in the case of kinematic hardening, one has u, € L°°(H120C)
and

(811) ||u’u||Log(H2(Qﬂ)) < C_QO, .Q() CcC .Q, u— 0.

It is an interesting open problem to obtain (3.11) also in the case of isotropic
hardening. In [4], the authors were only able to prove Vu € LW(LIBOC), n =3, in
the latter case. Finally, it is known [5] that

(3.12) G € LX(LP), & e (P, Vive L),

for some small 6 > 0.

4. — The regularity in time
4.1 — Auxiliary estimates
The proofs of the regularity results involve various auxiliary results for the

penalty terms. We start with the proof that for almost every ¢, the penalty po-
tential tends to 0 in L(Q), as u — 0.
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LEMMA 4.1. — Let a,, &, be the solution of the penalty problem 3.1, where
the data f, p and oy fulfill the reqularity assumptions (1.4), (1.5) and (1.10).
Then

T
[ [ Guoutt.0.ct.andwdt — 0 as u—o,
0 Q

wm particular there exists a sequence u,, — 0 such that ©)

fG (0, (8, %), éﬂn(t, x)de — 0 asn — oo fora.e. te[0,T].
Q

ProoF. — We only give the details in the case of kinematic hardening, the
isotropic case can be done in an analogous way. Using the pair (5, — 7,&, — ) as
test functions in the relations (3.3) and (3.4) of the penalty problem and observing
(3.2), we obtain

T
0= f (Aby, 04 — 0)g + (HE, &, — Eg dt
0

OuD — é,uD

T
+ffﬂ_l[|0uD =&l — Kl z (oup—0p—Eup + Ep) duedt =: Ty + Zs.
) lown —Eupl

We have

T
1 0
I, = 5 Of 5 A, — 0),0, — 0)g +f (46,0, — 0)o dt+
T T
10 ;
5 Of S HE — 9.8~ O+ Of (HE &, - Oodt

:% ((A(Uﬂ - 0')7 Ou — O')Q + (H(fﬂ - f)y éﬂ - 5)9)} 7 + 0(1),

because the remaining integrals tend to 0 as 4 — oo due to the weak convergence
of g, £,. Note the first term on the right-hand side is nonnegative thanks to the
positivity condition (1.11). The integrand of Z2 can be treated as follows:

() In the following we omit the explicit mentioning of a subsequence in order to keep
the proofs as simple as possible.
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:u_l[o-/tD - é,uD| - K]+ (|O-/4D - é,uD| M(GD é,D))
lo.n — Sl

> u ow — Ep| — ki (o — Enl — lop — Ep)

Z ,u_l[a',u_D - é,uD| - K]+(|O-/4D - é,uD| - K) - ZGiin Z 0;

the last inequality holds, since |op — &p| < k. Hence we have
T
0< [ [6dvdt < —K + o),

from which the assertion follows. O

Now we establish estimates involving difference quotients. In addition to the
notation (2.1) we use the expressions
1
Tw(t,x) = w, x), E’fw(t, x) = wt + h,x), th(t x) = —Ahw(t x), hence
Aw(t,x) = (B — Dw(t, x) = hDaw(t, ).
The uniform L>*(H"')- and H'(L?)-estimates (3.6)-(3.8) imply certain estimates of

the penalty term, which we want to fix. Recall that G, is either Gﬁ“ or G}i"

LEMMA 4.2. — Assume the hypotheses of Lemma 4.1, then

T—h
= | DlG(0160.Dl0,) o+ DGyl 6. D1,) 01 <
0

uniformly for 0 <h <hy, 0<pu< .

ProoF. — During this proof, we drop the index x and simply write o, & and u.
We apply the operation D to (3.5) and (3.4) and use D}'c and D/'¢, respectively, as
a test function. Then we obtain

~

—h T—

%(DQIG,AD;L) O (Dhe, HD}E),, dt+ Py = f D'V, D), dt

1
2 815(
0

OS

(4.1) )

I
o\»ﬁ

T—h
(DIVi, Dl (o — ) dt+ [ (DIVi,D}o),dt = Ty + s,
0

where ¢ is defined in the definition 1.2 of the safe load condition. Since
u € L*(HX(Q)) we have Dli(t) € H-(Q) for almost every ¢, hence the first in-
tegrand vanishes for almost every ¢ € [0,T — k], since both ¢ and ¢ fulfill the
balance of forces (1.7). We can transform the term Z, with the help of (1.7), too,
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then we integrate by parts with respect to ¢ and obtain

T—h T—h
(D}, Dif)pat+ [ [ Dl Dlp dodt
0 0Q
h
T—h
(Diu, Dif) , dt + (D, DIY), ‘
h
f D}u - Dl'py do dt + f Dl - Dl'pg do’
1219}

|
gl

After a possible redefinition on a set of measure zero (in time) we have for all
te[0,T — Rl

h .
|1 Dy u(t)HLZ(Q) < ||u||L°°(0,T;L2(Q)) <C

due to (3.6). To estimate the boundary integrals we need the trace theorem [11]
in addition:

h . .
1Dy u(t)”LZ({)Q) < H“HLx(o,T;LZ(ag)) < ||V“||Lo~(o,T;L2(.Q)> <C

due to (3.8). Using the assumptions on the data we see that all terms in 7,4 are
bounded, thus (4.1) leads to

1 1
Po+= ((Dha ADq),, +§(D?§,HD§”6)_Q)L:T_h

IN

1/, 1
C+3 ((Dg 0.AD}s), +5 (DI¢, HD?&)Q> L:o

IA

C(1+h1ff|d|z+|&l2dxdt> <C
0 Q

again since ¢ and f are bounded in L>(L?). This finishes the proof of
Lemma 4.2. O

The following lemma serves as an auxiliary tool to control the quantity

h T—h
lim 72 Of ! (46,0 A6,)0 + (&, HE o dt ds,

which is needed in the proof of Theorem 2.1 to estimate the fractional derivative
of ¢ and & in time direction. The proof as well as the arguments for lemma 4.3
below run analogously to the proof of a corresponding result concerning the
Prandtl-Reuss law [6].
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LeEMMA 4.3. — Let { = {(x) be a Lipschitz continuous function depending
only on the space variables, denote G;,(t,x) = Gj(o,(t,x), &, (t,x)), then

h to—h
Tott) = timswp [ [ @Gy, 46,00 + CGa Do dtds < 0
0 4

#—=0

a.e. with respect to ty,ta € [0, T], such that 0 < t; <te —h < T — h. In particular
this holds true for { = 1.

Proor. — We split

h ta—h

(4.2) T := f f (PG £6,)  + (BGiy, £E,) , b ds

0 t

h tz—h h tz—/

[ | @6u B g+ (6B ) gatas— [ [ thZ%Gﬂdacdtds
Q

0 tl 0 tl

to—h
t

ta
1

:I5+fth2Gﬂdx
0 Q

The last term tends to zero as ¢ — 0 due to Lemma 4.1, a.e. for ¢1,t2 € [0,T],
h

—h
ds = Ts+h [ Gy do
Q

to —h>t. For the first term we use the identities [ Ejd,ds= 4'c,
no 0
Of E3&,ds = A)¢,, hence

to—h

L= [ @Gudioe+GundEodt.
t
Due to the convexity of G, we have

(4.3) G : A0, + Ga 'A%u < 4G,

and hence
o—h

I < tf_ [ed6,dvat
tt Q

For fixed & > 0, the latter term tends to 0 a.e. with respect to t1,t2 € [0, T], as
1 — 0, here we used Lemma 4.1 again. This proves Lemma 4.3. O
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4.2 — Proof of Theorem 2.1

Our approach here is very similar to the arguments used in [6]. Due to the
strong convergence (3.9) of ¢, and &,, we have for any fixed A:

~

h —h

/

In order to control the term on the right-hand side we choose [ 4¢,ds and
0

~

—h
f 2+ |48, do dt ds.
Q

h
f|Ata| + 43¢ dwdtds = lim f
0

Q

o\
OS

h/ .

f A4i¢,ds as test-functions in (3.5) and (3.4), then using the notation
0
T oy = Tout1, t2) from (4.2) (here with { = 1), we obtain

tg —h h tz*h h

[ [@ongop0asat + [ [ @#,a8)0dsdt + Ty,
t 0 1 0

4.
(45) t-h &

- f f(vuml’f%)gdsdt: T
0

Next we recall an elementary identity, which holds for () € R:yxr:f, and any
symmetric tensor A,

1 1
(4.6) At Mt = — EAA?‘L' s AT+ iAf(Ar i 7),

if  and A are scalar functions, this is even simpler. Relation (4.6) turns (4.5)
into

to—h R
Lowt) = [ [ @Aso, g000+ HAE, £E)0dsdt
tl 0
to—h R
= [ [ [ 4@, 00+ £, E)dudsdt +2Ty,—2T =R,
t 0 Q

Since £ defines a lower semi—contingous functional with respect to the L2(L?)-
norm, the weak convergence of (6, ¢,) implies

L5, &) < lim inf £(5, &),
Iu—>

note, that here even the limit exists since we have the strong convergence (3.9).
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Due to the positivity conditions for A and H (and Fubini’s theorem) we get

h ta—h

(4.7) lim f f f (6, + 14, dodtds < Colim £66,.6,),

1—0

hence the assertion (2.2) is true, if we show

(4.8) limsup R, < Ch?.

1—0

To estimate the first summand of R, we put
ot) = f Aby 6, + HE, : &y da
Q

and use the following argument

h te—h+s h ti+s

(4.9) UfAs(p(t)dsdt]—U f o(t) dt ds ff (p(t)dtds’<2||(p||Lx

to—h

due to the bounds (3.6) for ||g, ;2 and (3.7) for ||&,[|,« . Note that the
constant here is also independent from ¢; and ¢;. Using the safe load from
Definition 1.2 we rewrite the term Z (cf. (4.5)):

—h h -k h

I= f fVu,,,A(o,,—a)) dsdtJrf f (Vity, £6) , ds dt

- Of tf_ (Vi, £5) , dt ds,

since div(g, — &) = 0 (and by using Fubini’s theorem). Unlike in the proof for the
Prandtl Reuss case we may already use the bound ||Vit,| ;<2 < Cr, together
with the assumption (1.16) for ¢ this implies

h T-h
21 <[ [ IVl 10558 2 d ds
(4.10) vo

< Vit gezzy B f f 161120 dt ds < CCTIR
0 0

where C(T) is independent of i < yy and h <7, and of ¢; and 3, of course. From
Lemma 4.3 we get then (4.8) for almost all ¢; and ¢, where C is independent of 7
and {1, to. Since the integrals in (4.7) depend continuously on ¢; and ¢z, we can pass
to the limit ¢; — 0, and ¢t — T, which finishes the proof. O
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4.3 — Proof of Theorem 2.3

Using the penalty equations (3.5) and (3.4) together with (3.2), we obtain in
the case of kinematic hardening

1 .
5 (ot + (Vu,)") = A6, + HE,.

Hence Theorem 2.3 follows from Theorem 2.1 and Korn’s inequality. O

5. — The regularity in space direction
5.1 — Auxiliary inequalities for the penalty terms

In the next lemma we derive a local bound for the spatial difference
quotients of the penalty term similar to Lemma 4.2. Since we prove only
local regularity in space direction we fix a localization function { with
compact support in Q such that V{ is Lipschitz continuous. We use dif-
ference and shift operators similar as in Section 4. Let ¢; be the j-th unit-
vector in R”, and % > 0. Apart from the notation A? introduced in (2.1) we
use also

1

h _ , n_Lom
Ejw(t,x) = w(t,x + hep), Dj = EA-?"

LEMMA 5.1. — Let (g, &) be the solution to the penalty problem introduced in
Section 3, then the following estimate holds

T
= f (D} G101, £, DY) o + (D) G0, €, CPD}E) o dE < C
0

uniformly for 0 <u <y and 0<h<hy, where ho <dist (supp {, 09).

PrOOF. — This proof contains also the arguments for the H}, -regularity of .
Just like in the proof of Lemma 4.2 we drop the index u here. We apply the op-
eration Dh to (3.5), (3.4), and then, similar as in the proof of Lemma 4.2, test the
first relation with ¢ Dha and the second with C2Dh€, then for any T, < T we have

Ty 1

1 0 0 .

(1) 5 [ 2 Dlo,CAD}o) + 0 (D, CHD! g dt + 7= [ DIV, EDlo)adr
0 0

We integrate by parts in the right-hand side and use —dive =f, which
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leads to
Ty T T
(52) [ W1V, EDlogdt=— [(Dlit, PPgdt—2 [ (Db, (VDko) dt=: Ty + T,
0 0 0

Since we have the uniform bound (3.8) for ||Vat|| .« 2@uppcy 8 # — 0, we obtain
also ||D]hu|| Leeuppey < € uniformly in 0 <<y, 0<h <ho. Therefore the term
7, turns out to be bounded due to the regularity assumptions for f. Using this
argument once more, Hlder’s and Young’s inequalities imply

T
(5.3) ol < Co(1+ [ [ Do dodr).
0 Q

Now we evaluate the left-hand side of (5.1). Since £(0) = 0, we have

T
/
=5 (D)oA. D] 0)a + D). CHD}Og)| |~ D}o"A.0°D}e"e

0
(Do, *AD!'0)o + T & CHD O dt

DO| —

2

— Q’)|Q3

The convexity of the penalty potential implies P; > 0, hence the bounds for 7; and
(5.3) for 7o together with the positivity of A and H lead to the inequality

| ED}o? dw < D)o, CAD] )|+ D}ECHD}O| | +2P;
Q

Ty
<C<1 + [ 1Dtooctdn+ [ [ 52|D]ha|2dacdt>.
Q 0 Q

Since gy € H (), now Gronwall’s inequality implies that |Z»| is bounded in-
dependent of y, but this implies also the desired bound for P;. O

We also need a result corresponding to Lemma 4.3 for difference quotients of
g, in space direction. We recall that
(E’;Eﬁb — Dw(t,x) = wt + s, + he;) — w(t, x).

LEMMA 5.2. — Fix ho > 0 such that supp E'C C Q for any h with 0 < h < h.
Then there exists a constant C > 0, independent of h, t1, and ts such that

b te—h
lim sup [ [ [[6w: ®E: D, + Go: @i~ D] dudrds < Cn?,
=20 4 e

for almost every ti,ts such that 0 <t; <to —h < T —h.
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Proor. — We set

h to—h
Tu=Tytt=[ [ [ (G B3B! — Diy + Goy: (BIEY — D&, dudtds

0 1 Q

_ 71 2
and decompose T, = T;, — T;, where

T}, = fh 7h f [Glﬂ CEE"G, + Gy :E;?E'?fﬂ} Cdedtds,
0 t Q
T?ﬂ :f 7}Lf<Glﬂ : é-,u + GZ,u : éﬂ>C2 dxdtds
0 t1 Q
= f 7h I %Gﬂcz dedtds = h [ G, de ZH
0 L @ o) !

Lemma 4.1 implies

(5.4) lirr(l) T?ﬂ = 0 a.e. with respect to 1,13,
=

such that 0 <t; <ta —h <T — h. To analyze 7 %ﬂ we perform the integration
with respect to s, then we add and subtract the terms Gy, : 6, and Gz, : £, in
order to achieve an additional splitting:

to—h
Th= [ [[Gy: BB, —Elo)) + Gy (BIELE, — B dudt
th Q
ta—h
- f f [Gry : (B'E'6, — 6,) + Goy s (BIE'E, — )] dadt
th Q

tz*h
—h [ [[Gy: Doy + Go: DI )P dudt = Tl + T

i iyt
t Q

We first will get rid of 7° 11/11) and rewrite

tg*h
T =—n [ [[E!Gy: Dlo, + BlGa,DIe, ) dedt +
hh Q
to—h
+12 [ [[DIGy: Dioy + DiGyDLE, ) dev

h Q
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Since the last integral is bounded according to Lemma 5.1 we conclude

tth
T <Cw—n [ [[BlGy: Do, + E'GyDiE,) dudt

Lo
Now we exploit the convexity of G, again, which leads to

_(E?Glﬂ : D?Uﬂ "‘E?GZ/ID%#) < ht (Gﬂ - E?G/l) = D?Gﬂ
This implies
ta—h
Th<en-n [ [DlG P,

t Q

here the last summand tends to zero as u — 0 due to Lemma 4.1. Thus we arrive
at
(5.5) lim sup Tllfj < Ch?

{00

la,

A similar argument works for 77 :

From the convexity of G, we get

Q—h
(5.6) o< [ [IBEG, -Gt dvdt.
hoQ
while the right-hand side term tends to zero as 1 — 0, & fixed, a.e. with respect to

t1,te, again ~due to Lemma 4.1. Collecting (5.4), (6.5), (5.6), we arrive at
lim 7, < Ch* a.e. which is the statement of Lemma 5.2. O

HU—00

5.2 — Testing the strain velocity

We have to prepare one additional auxiliary estimate for the regularity result
in space direction.

LEMMA 5.3. — Let { be a localization function as in Lemma 5.1, and let hy > 0
be fixed such that ho < dist (supp {, 0Q). Then

h to—h

(5.7) [ [ i, c@E: - o) ,a < cr?
0 t

with h,ty,ts as in Lemma 5.2 and C again independent of these parameters.
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Proor. — We denote
h tz*h
s :f f (Viv, (BE! — Do), dtds = S' + S?,
0
where
h to—h h ta—h
s = [ [ (Vi 2B@! - Do)ydtas= [ [ (Vi PB4, deds,
i 0 i
to—h h ta—h
1

0
#o= [ [ i cm - — [
0

t1 0 t

(Vie, C46), dtds.

STEP 1. — Estimates for |S?|.
To this end, we integrate by parts in the term S!, then use the relation
—dive = f, end up with

b t-h W ta—h
St = —f f (uCZ , EfA?f)thds —f f (uvg{ £6) , dtds =: Sla 4 gib,
0k

0 h
Moving the operator A? from f to u(? yields
b ta—h
st=—[ [ (a, Bf),dids,
0 h
Since
147 G| gy = BID;" (@) | oy < C (el ey + 1V ey o

the uniform estimates (3.6), (3.8) together with the assumption f e L2(L3) (cf.
(1.4)) lead to

h
S < [ Wil 107G ds < Cri?,
0

where Ky is independent of 0 < u < gy, and 0 </ < hy. A similar argument works
for the summand Slb, hence, again with (3.6) and (3.8),

|51 =

h ta—h
[ [ urave, Bio),duds
0 ty

h
< C I [ 18]l 1D GT N g ds < Cp 1.
0
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STEP 2. — Estimates for |S?|.

To show that this quantity is bounded by Ch?Z, it is not enough to use
Vir € L*(L?) together with (2.2), because then we only get the bound C h%/2.
Instead we go back to the solutions of the penalized problem. Unfortunately the
presence of the localization term (? prohibits to argue with the safe load as in
(4.10), nevertheless this inequality gives already the desired estimate in the case
{ = 1. Recall that the system (3.4) and (3.5) leads to

ta— h to—h
f f (Vi , Caii)gdtds= [ [ (A, Eaio) o+ (HE,, P4E,) g ds+
t 0 4
h ta—h
f f (Gl,u ) K:ZA?O.-A)Q + (GZ/l ) ng;éu)_Q dtds =: Sia + TO/H

0 t

(5.9)°

where 7, was defined in (4.2). Using again “the product-rule” (4.6) we obtain

1
20
Si=—3

f,
2

Note that hrr(l) 5% as well as the limits for both summands on the right hand side
1

exist due to (3.9). The limit of the first integral is bounded by C%? due to Theorem
2.1 while for the second integral we get this bound following the same arguments
as in (4.9), hence we have

ta—
[ (@age,, 46,),+ (EHAE,, £2) dtds+
t1

[Ea@s, o+ HE, - &)dndtds.
Q

[
I

h ta—
(5.10) | Of i (A@,g%;@)ﬁ(Hf,gzggg)gdtds(=£%|S§a|g(;hz.

Since the limits of the other two terms in the equation (5.9) exist, we obtain that
even lin%) 7T, exists. In particular, the representation (5.9) for { =1 (compare
L
(4.5)) together with (4.10) then gives
h to—

(5.11) hm’ f f (Gus £6) o + (G, 4:8,) ot ds | < C2

To extend this to the case where ( is a proper localization function we use similar
calculations as in Lemma 4.3, in particular the convexity of G, and Lemma 4.1.
For fixed &, we get
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tgfh
lim [Ty, =lim | [ Gy, Al0,)0 + Gy 48 )adt |
ty

to—h
:lin%’ f f & AGy — Gy Mo+ Gy 4G V|
= t1 Q
tz*h
— lim f f 2 (4G, — Gy : Aoy + Gy s AE) Vdudt
#=0 i Q

tz —h .

<max?lim [ L MG, — Gy : Moy + Gay s ANE) duvdt
u—0 ;

= COlm | thh f Gy Ao+ Gy ) dwdt |
t Q

1—0

h to—h
— C(O)lim ( f f (Gaye, £6,) o + (Goy, £E,) i ds ‘g Cr2,
0 t

1—0

observe, that the third equality and the following inquality are true because
the integrand is non-negative almost everywhere (compare (4.3)), while the
last inequality follows from (5.11). Together with (5.10) this gives the bound
for |S%. a

5.3 — Proof of Theorem 2.4

We use th_e test function ¢ 2(E"‘;’E'ﬁ‘ — )6, in (3.3) and test the relation (3.4) with
§2(E’§E? — I)¢,. We sum the relations and integrate from ¢ = ¢; to ¢ = t2 — h, this
yields

b to—h
[ [ (46,.CEE! - Dé,) o + (HE, CEEL - DE,) dtds+ Tiyltr, 1) =
0 h
5.12
(5.12) b ta—h

f f (Vi CELE! — D)y dtds = Syt 1),
0 t

where 7, is the quantity coming from the penalty term and has the same
meaning as in Lemma 5.2. Similar as in (4.6), for symmetric tensors A (with
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constant entries) and t = (¢, x) we have the relation

, 1 1 ,
(5.13) Atr:(B{E! - Dt = 5 ESE" — (At : 1) — éA(E;EQ? — Dt (E{E" - Dr.

Put

h ta—h
1 ) . ) . .
Rulty,t2) =5 f f f [(E';Ef—])(Aa,, L0, + (BB — D(HE, - £)| P dadtds,
0 it Q

then (5.13) turns (5.12) into

(5.14) L,(t1,t2) ==
h o to—h

[ [ @®E! - D6, CEE! - D)o+ HEE! - DE, CEE! - DEodt ds
0 &

= Ru(t1,b2) + Ti(t1,t2) — Su(ty, t2).

Since we have (*) 6, — 4, éﬂ — &and Vi, — Vi in L2(L?) we obtain for any fixed
h with 0<h < hy:

(5.15) lim £,(t1,t2) = Litr, t2) =
I

h ta—h
2 | @B Do, @B - Do+ HEE! - DE CEE, - Ddgdtds.
0

h ta—h

lim S, b1, t2) = S(h, t2) = [ [ wic@wE! - popdds
p—
0 ty

for all ¢, t2 with 0 <t;<ts —h < T — h. To estimate the term R,(t1,2), we
use the following argument: If o e L>(L'), then for all t;,t; such that
0<t; <to—h<T-—hit follows

ta—

h
f jCz(EfE? — Dodx dt| < Chl|o|| -

1 Q

(5.16)

() Like in the proof of Theorem 2.1, in the first term it suffices to use the weak
convergence and lower semi-continuity.
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Indeed, rewriting the integral we find

ta —h to—

[ Cz(EfEf?—I)wdacdt‘: i
Q

tl tl

h
fC2(Ef —DE"'o + (E" — Dodx dt‘
2

to—h+s to—h to—

S‘ i szE?wd%dt—ffézEﬁ‘wdxdt‘—k I
Q o Q

ti+s t

h
[ @ - Dods dt‘
Q

t1+s to—h-+s

g‘ffézE?wdxdt‘Jr f ngE?wdxdt’+
h Q to—h Q

< Chlloll <y,

ta—h — ’
! bf C(E" — Dwdxdt

here we also used (B — I){| < ch.
Hence, taking also the integration over s into account, it follows

.2 L2
[Ru(ty, t2)| < Chz(”a/t”LOC(LZ) + 1€l T2

where C is independent of u and &. With Lemma 5.2 it follows now for almost all
t1,te, suchthat 0 <t; <to —h < T —h:

L(t1,t2) < limsup T, (ty, t2) + limsup [R,(t1, )] — S, t2) < Ch? — S(ty, ta),
1—0 1—0

where the constant depends neither on % nor on t;,ts. Since £ and S depend
continuously on ¢; and tz, we obtain

(5.17) L£(0,T) < Ch?* +1S(0,T)|.

Due to the positivity assumptions on A and H we have

~

h —h
£0.T)>C f
0

OS

[ (@B - Dof + ;B! - DED P dudtds.
Q
Now we apply the argument
(ESE" — Do = (B3E" — E" + B! — Dé|* > %|A§’d|2 _éMgEgg;F,
sih E2 o a2 L sphzge
(BB = D = 14T — gl 4B

We combine this with (5.17), use the translation invariance of integrals and
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arrive at
[
0
h T-h
< ch? +18(0,T)| + C f f f (L6 + | £EP)E da dt ds.
0 0

Q

~

—h T—h
f (42 + | AEBE dedtds = h f f (A6 + | AEPE da dt
Q 0 Q

o\‘

Finally we multiply this inequality by ~~2, then the assertion follows from
Lemma 5.3 and Theorem 2.1. O
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