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Regulators, L-Functions and Rational Points (*)

MASSIMO BERTOLINI

Abstract. — This article is a revised version of the text of the plenary conference I gave at
the XIX Congress of “Unione Matematica Italiana”, held in Bologna in September
2011. It discusses the arithmetic significance of the values at integers of the complex
and p-adic L-functions associated to Dirichlet characters and to elliptic curves.

Introduction

Values at integer points of L-functions attached to algebraic varieties, and
their relations to arithmetic invariants, have received much attention over the
last decades. Several authors, including Beilinson, Bloch, Deligne, and Kato,
have formulated a comprehensive conjectural theory; see for example [Ki] for an
up-to-date description and bibliography. Moreover, results have been obtained
for the L-functions associated to certain automorphic representations, some of
which are described here.

Recently, fragments of a p-adic analogue of this theory, in which complex L-
functions are replaced by p-adic L-functions, have emerged; e.g., [Co], [MTT],
[So], [Co-dS], [PR2], [Ka], [Br]. Furthermore, the theory of Euler systems [Ko],
[Ru], [Ka], [Colz] has introduced powerful new tools for establishing connections
between values of L-functions and arithmetic invariants.

Our exposition focuses mostly on the case elliptic curves, and provides an
introduction to the ongoing research projects [BD1], [BD2], [BD3]. Modularity
of elliptic curves gives rise to a mature theory of their complex and p-adic L-
functions. Moreover, the Euler system of Heegner points and Kato’s Euler
system of étale regulators of modular units become available in this case, leading
to the best known results on the Birch and Swinnerton-Dyer conjecture.

Along the way, we point out the remarkable parallelism between the setting
of elliptic curves and the setting of Dirichlet L-functions, in which are rooted
many classical questions of number theory.

(*) Conferenza Generale tenuta a Bologna il 15 settembre 2011 in occasione del XIX
Congresso dell’Unione Matematica Italiana.
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1. — Dirichlet L-functions

Let N > 3 be an integer, and let y : (Z/NZ)*—C” be a primitive Dirichlet
character of conductor N. The Dirichlet L-function L(y, s) associated to y (viewed
as a function on Z in the usual way) is defined by the infinite series

1) L(z,8) =Y _ ™.

Assuming that y is different from the trivial character, the series (1) converges to
an analytic function on the complex half plane R(s) > 0. Furthermore, L(y, s) is
represented by the infinite Euler product (taken over the rational primes)

2) Lo =[[a-x@p ™™, Re>1,
p

reflecting the unique factorization principle. It is known that L(y, s) admits an
analytic continuation to the whole complex plane, and satisfies a functional
equation relating L(y, s) to L(7,1 — s), where ¥ = y ! is the complex conjugate
of y.

In the following discussion, assume that the non-trivial character y is even,
i.e., y(— 1) = 1. In this case, the functional equation becomes

() (2n
(3) F(s)cos( )L( 9 =5 (N) L(z,1—9),

N
where I'(s) is the I'-function, and 7(y) denotes the Gauss sum X(k)(’fv, with
{y := /N (See for example Chapter 4 of [Wall.) k=1

Let n > 1 be an integer. If n is even, equations (2) and (3) imply that
L(y,1 — n)is non-zero. On the other hand, L(y, s) has a simple zero at 1 — nif n is
odd (the case n = 1, in which the non-vanishing of L(y, 1) does not follow directly
from (2), is discussed below). For n even, the points s = n,1 — n are critical for
L(y, s) in the sense of Deligne [De]. This phenomenon is reflected in the following
explicit formulae, expressing L(y,1 — n) in terms of certain algebraic numbers
B, called generalized Bernoulli numbers. They are defined by the equation

y()ace’™ > x"
Z eNe _ 1 = ZB"/E
n=0 !
Then, for all n > 1, a direct calculation shows

@ L1 —m= -2

REMARK 1.1. — Formula (4) also holds when y is odd, i.e., y( — 1) = —1. In this
case, the critical points are obtained when 7 is odd.
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We now turn to the description of the non-critical value L(y,1). First, we
observe that L(y, 1) is non-zero. (This fact follows from the presence of a simple
pole at s = 1 in the Dedekind zeta function of a number field, and can be used to
prove Dirichlet’s theorem on primes in arithmetic progressions.) A manipulation
of infinite series establishes the formula

N
5) Lz 1) = —%; 70y log|1 - L.

The expression > 7(k)log|1 — (’fv\ appearing in the right hand side of (5) is an
example of a (complex) requlator. Regulators make their appearance in the de-
scription of values of L-functions at integers, as will be discussed more thor-
oughly in later examples.

The algebraic integers 1 — Cﬁ, are (closely related to) so-called cyclotomic
units in Q({y) ((Wall, Chapters 4 and 8). Cyclotomic units provide an avenue to
establish relations between the values L(y,1) and arithmetic invariants of cy-
clotomic fields, such as their class groups (see for example § 4 of [Ru]).

More generally, we remark that it is possible to describe the non-critical
values L(y,1+ 2k) for k > 1 in terms of cyclotomic elements, constructed by
Beilinson, Bloch and Soulé, arising in the odd K-groups of the ring of integers of
Q). See the discussion in [So].

2. — p-adic Dirichlet L-functions

As in Section 1, assume that y is a non-trivial even character of conductor N.
We now focus on p-adic analogues of the L-functions L(y, s). Let p > 3 be a ra-
tional prime, and let @, be the field of p-adic numbers. The p-adic absolute value
| |, on @, normalised by the condition |pl|, = 73‘1, extends in a unique way to the
algebraic closure @,. The completion C), of @, should be viewed as the p-adic
analogue of the field C of complex numbers.

Fix from now on embeddings of @ into C and C,. They allow to identify an
algebraic number both with a complex number and with an element of C,,. Denote
by Z, the ring of p-adic integers. Every o € Z ; can be written uniquely as

(6) o = w()(x),

where (x) belongs to 1+pZ, and w(x) is a (p—1) —st root of 1 in @,.
Occasionally o — called the Teichmiiller character — will be viewed as a complex
Dirichlet character (Z/pZ)* — C™ via our fixed embeddings.

The p-adic L-function L,(y,s) (see [Wal], [Lal) is the (non-zero) C,-valued
p-adic analytic function on Z, satisfying the interpolation property

Bq "
(7) Lyt 1= n) = —(1 =z "(p)p" ) =2~
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for all integers n > 1. The reader should note the close analogy between equa-
tions (4) and (7), one difference being the presence of the Euler factor
(1 — yoo™(p)p"~!) — the reciprocal of the Euler factor at p in L(yw™,1 — n) —in
the p-adic formula. In particular, when % = 0 (mod p — 1) (hence % is even), (4)
and (7) imply that

®)  Ly(pl-m)=—-1-xpp"™h % =1 = x(Pp" L1, 1 = n).

Equation (8) determines L,(y, s) uniquely, since the set of integers 1 — n with
n = 0(modp — 1) is dense in Z,,.

REMARK 2.1. — It is not known whether L, (y, s) satisfies a functional equation
similar to (3); see the comments in [Wa2].

The value of L,(y,s) at the point s = 1, which lies outside the range of clas-
sical interpolation (7), can be described in terms of a p-adic regulator on cyclo-
tomic units. Thus the situation is analogous to the complex setting desecribed in
equation (5). Let log), : C;—>Cp be the branch of the p-adic logarithm sa-
tisfying log,(p) = 0. Then

N

©) Ly =~ (1-Z2) S8 sty log 1 - .
k=1

It is a deep fact that L,(x,1) is non-zero. It follows from the non-vanishing of
the p-adic regulator for cyclotomic fields. (An open problem — Leopoldt’s
conjecture — states that the p-adic regulator attached to any number field is
non-zero.) For generalizations of equation (9) to other values of L,(y,s) at
integers outside the range of classical interpolation, we refer the reader to
[So] and [Co].

We conclude our brief discussion of the properties of L,(y, s) by recalling its
interpretation in terms of p-adic measures. This language is helpful in relating p-
adic L-functions to objects of arithmetical interest. It is also convenient for
stressing the analogy between the p-adic L-functions attached to Dirichlet
characters and to elliptic curves.

Assume for simplicity that p /N, and write sz,ﬁp for the inverse limit of the
groups (Z/Np"Z)™ of units modulo Np" with respect to the natural projections.
Thus

Z%, = Z/NpZ)* x (1 + pZ,).

A p-adic measure on Zy , is a Cy-valued bounded functional on the space
Cont(Z If,’p, C,) of continuous functions from Z Z>§7,p to C). The Bernoulli numbers
can be used to define a measure up ., depending on the choice of an integer ¢
coprime to Np. One has the following description of L,(y, s) as the p-adic Mellin
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transform of g

(10) Ly(2:5) = == 7@(0) ™" [ 07O .

X
zy,

Generalizing the notation appearing in equation (6) somewhat, here (t) denotes
the projection from Z, , to 1 + pZ,, and yo~!is viewed as a function on Z Npin
the natural way. Moreover, ¢ is chosen so that x(c)<c>1_s # 1. (See [Wal], Chapter
12 and [La], Chapter 4.)

REMARK 2.2. — It follows from (10) that the values L,(y,1 —n), defining
L,(y,s) in equation (7), can be obtained by integrating the continuous characters
te (t)""" against the measure yo '()dup, associated to y. Another way of
characterizing L,(y, s) amounts to setting s = 0 in equation (10), and integrating
characters y of p-power conductor against the same measure. The latter point of
view, based on “twisting” by the finite order characters y, will be adopted in the
definition of the p-adic L-function L, (¥, s) associated to an elliptic curve E. In this
case, there is only one critical point for the complex L-function L(¥, s), that is, the
central critical point s = 1. In order to define L,(¥, s) by p-adic interpolation of
special values of complex L-functions, one resorts to interpolating the values at 1
of the twisted L-functions L(¥, v, s).

REMARK 2.3. — An alternate description of L,(y, s) is obtained by integrating
the characters of infinite order y(t) * (with y as in the previous remark) against
the measure )(w‘l(t)d,um. In view of (9) (suitably generalized), the above de-
seription amounts to the p-adic interpolation of p-adie regulators associated to
cyclotomic units. This point of view ties in with Iwasawa’s theorem, in which
logarithmic derivatives are used to relate the measure up, to the quotient
module of local units by cyclotomic units. Iwasawa’s theorem is a crucial in-
gredient in the proof of the cyclotomic Main Conjecture of Iwasawa theory
explained in [Rul].

3. — L-functions of elliptic curves

Let E be an elliptic curve over @ of conductor N, defined by a minimal
Weierstrass equation (cf. Chapter VIII of [Sil])

(11) ?/2 + oy +ogy = a4 062902 + ok + o, o; €Z.
The complex L-function of £ is defined by the Euler product

(12) L(E, S) = H (1 — app*s + 5[)}01728)71.
p
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Here a, = p —n,, where n, denotes the number of solutions of (11) modulo p,
and d, = 0, resp. 1 if p | N, resp. p /N. The infinite produect (12) converges for
J(s) > 3/2, by the Hasse bound |a,| < 2,/p. Write L(E, s) as a Dirichlet series

L(E,8) =Y an™,
n=1

where the coefficients a,, € Z are given inductively in terms of the a, defined
above. Let H denote the complex upper half plane {z € C: 3(z) > 0}. The
modularity theorem [Wil], [TW], [BCDT] shows that

(13) f@:=) a, ™,  zeH
n=1

is the Fourier expansion of a newform on I'y(N) (the Hecke congruence group
of matrices in SLy(Z) which are upper triangular modulo N). Conversely,
writing z = « + 1y with x,y € R, L(E,s) can be described as the Mellin trans-
form of f(z) as

[o¢]

G [ sy dy.
0

14 L(E,s) = —~
(14) B9 =T
Equation (14) implies that L(¥,s) can be analytically continued to the whole
complex plane, and satisfies a functional equation relating L(¥,s) to L(E,2—s).
More precisely, setting A(E,s) := L(E, s)N*/2(2n) *I'(s), one has

(15) AE,s) =wpAE,2 —3),  wy ==Ll

Note that the sign wg of the functional equation is equal to +1, resp. —1if L(¥, s)
vanishes to even, resp. odd order at s = 1. It turns out that s = 1 — the center of
symmetry for the functional equation — is the only critical point for L(E,s). Let
op = dx/2y + oyx + a3) be the invariant differential associated to (11), and
denote by Ag the lattice of periods attached to wg. Define the real period
Q€ Ry by setting Az NR = ZQ},. Likewise, define the imaginary period
Qp € iR-o by Ap NiR = ZQy. From equation (14), one obtains [Man] the ex-
istence of a rational number Cg satisfying

LE

(16) o

Cg.

Equation (16) should be regarded as the analogue, in the setting of elliptic curves,
of equation (4). More generally, let y be a Dirichlet character, and denote by

L(E,7,8) = auymm™*
n=1
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the L-series of E twisted by y. Then
(17) — 5 =Cgy,

for an algebraic constant Cg,.

Equation (16) shows that Cg is non-zero precisely when L(%, 1) is non-zero. In
this case, the celebrated Birch and Swinnerton-Dyer conjecture (cf. for example
[Wi2] and [Ber] for details and references) relates Cg to the arithmetic invariants
of E, such as the order of its Shafarevich-Tate group. A large part of this pre-
diction has now been settled, thanks to the work of Gross-Zagier [GZ], Kolyvagin
[Ko] and Skinner-Urban [SU].

In general, L(E,s) can vanish at s=1. In this case, the Birch and
Swinnerton-Dyer conjecture states that that the order of vanishing of L(E, s) at
s = 1 — the so-called analytic rank of E — is equal to the rank of the group E(Q)
of rational points of £. Furthermore, it gives an exact formula for the leading
coefficient in the Taylor expansion of L(E,s) at s =1, in terms of arithmetic
invariants of E.

Assume now that the functional equation (15) has sign wg = —1, so that
L(E, s) vanishes to odd order at s = 1. The Gross-Zagier formula [GZ] yields
L'(E 1
(13) S new),
E

where C}, is a non-zero rational constant, P is a so-called Heegner point in E(Q),
and h¢(P) denotes the Néron-Tate height of P. Since the Néron-Tate height
vanishes precisely on torsion points, it follows that L(¥, s) has a simple zero at
s = 1 if and only if P has infinite order.

Combining (18) with the results of Kolyvagin [Ko] yields a large part of the
Birch and Swinnerton-Dyer conjecture for elliptic curves of analytic rank one.

The point P belongs to a system of algebraic points (Heegner points) on E,
whose properties are analogous to those of the system of cyclotomic units (ap-
pearing in equations (5) and (9)). Both systems of elements are related to values
of L-functions, and give rise to Euler systems in the sense of Kolyvagin (loc. cit.).
The theory of Euler systems can be used to prove relations between these ele-
ments and the arithmetic invariants of eyclotomic fields and of elliptic curves.

REMARK 3.1. — The definition of P stems from the theory of complex multi-
plication and the modularity of £. It depends on the choice of an auxiliary ima-
ginary quadratic field K = Q(v/—D). It is more natural to state the Gross-Zagier
formula as the equality

L'(E,1) L, xp, D)

19
o % %

= CIE,D : h’C(P)7
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where Cj; 1, is an explicit non-zero rational constant, and y;, denotes the quadratic
Dirichlet character associated to K. Formula (18) follows from (19) in view of (17).

We now turn to the description of the non-critical value L(E,2). Note that
L(E,2) is always non-zero, since s = 2 lies within the range of convergence of the
infinite product (12).

Let Y = Y1(N) be the open modular curve over @, whose complex points are
identified with the Riemann surface I'1(N)\H. Let X = X;(N) be the complete
curve obtained by compactifying Y;(N) with a finite set of cusps. (See for ex-
ample [GZ] for details on modular curves.)

Let u,v € C(X) be modular units, i.e, rational functions on X /C whose divisor
is concentrated on the set of cusps, and let # denote an anti-holomorphic 1-form
on X. The value of the complex requlator of u,v on 7 is given by

(20) rege{u, v} = [ loglu*dlogo A ».
X(©)

It can be checked that the expression (20) depends only on the class of # in the de
Rham cohomology of X, and defines a map on the second K-group Kqo(C(X))
generated by Steinberg symbols of rational functions (see the discussion in [Co-
dS] and [Bes2]).

One has the following formula of Beilinson [Bei] for L(E,2); see also prior
work of Bloch [BI] in the case of elliptic curves with complex multiplication. In
this note we follow the treatment given in [BD1], where an entirely explicit ex-
pression is obtained.

Let qf}h denote the anti-holomorphic 1-form

2nif (z)dz

[ 1r@)Pdady
X

(21) =

where f(z) is the modular form attached to E. Then

LE,2) LE x1)

22
= %

=Cg, - regc{ux,vx}(;]?h).

Here x is a suitable even Dirichlet character of modulus divisible by N, and u,,, v,
are modular units depending on y, whose precise definition is provided in [BD1].
Furthermore, Cg , is a non-zero explicit algebraic constant. Equation (22) follows
from an application of Rankin’s method.

The article [Bei] also proved in a similar vein more general results describing
the values of L(¥,s) at non critical integers > 2 in terms of the motivic coho-
mology of modular curves.
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REMARK 3.2. — Note the similarity between equations (19) and (22). It
depends on the fact that both equations describe a special value of a Rankin
L-function. The former equation involves the L-function of the convolution of
f with a weight one theta-series attached to K. The latter, the L-function of
the convolution of f with the weight 2 Eisenstein series dlog(v,).

4. — p-adic L-functions of elliptic curves

We begin by reviewing the definition of the Mazur-Swinnerton-Dyer p-adic
L-function attached to £ (see [MSD], [MTT])).

Fix a prime p > 3 of good ordinary reduction for £, i.e., p)( Nay. Leta € Z ;
be the unit root of 2* — a,x + p. The periods of the holomorphic 1-form

wy = 2mif (2)dz

give rise to a p-adic measure yu on Z;, characterized by the following inter-
polation formulae:

(23) f pg =(1 — *l)zL(E D

(24) f Oy = DEEVD @2y — € primitive.

o QW( 1)

Define L,(&, s) to be the p-adic Mellin transform of the measure ug:
(25) Ly(E,5) = [ ()" dup.
Z,

This definition should be compared with equation (10). By combining (23) and
(25), one obtains directly

(26) LyE, 1) =1 - ofl)zLL;D,
‘QE'

which should be viewed as the analogue of equation (8) in the context of elliptic
curves. The p-adic L-function L,(¥, s) satisfies the functional equation

27) Ly(E,s) = wg(N)' °L,(E,2 - 5),

where the sign wgr = +1 is the same as in (15).
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Given a Dirichlet character y, definition (25) can be generalized slightly in
order to define a p-adic L-function L,(E, y, s) associated to E and y interpolating
the special values L(E, yw, 1), with v as above.

REMARK 4.1. — An alternate approach to the definition of the Mazur-
Swinnerton-Dyer p-adic L-function L,(%,s) [Kit] consists in the p-adic inter-
polation of the critical values L(f,,j), 1 <7 < k — 1 associated to the Hida family of
modular forms £ = (f;,) passing through f in weight 2. This yields a two-variable
p-adic L-function L,(f,k,s) — called the Mazur-Kitagawa p-adic L-function —
whose restriction to the line k = 2 coincides with L,(Z, s). (Cf. also Remark 2.2.)

Assume that the sign wg of the functional equation (27) is —1, so that L, (¥, s)
and L(¥,s) vanish to odd order at s = 1. The following p-adic analogue of the
Gross-Zagier formula (18) was established by Perrin-Riou [PR1]. Let £,(P) de-
note the cyclotomic p-adic height of the Heegner point P € E(Q). Then

(28) Ly(E,1) = Cp, - hy(P),

where C}E.’p is a non-zero rational constant, equal to the product of the constant
C}, appearing in equation (18) and of an Euler factor at p.

REMARK 4.2. — 1) It is expected that the cyclotomic p-adic height is always
non-degenerate, and hence that %,(P) is non-zero precisely when P has infinite
order. Assuming this, one deduces by comparing equations (18) and (28) that
L(E, s) has a simple zero at s = 1 if and only if L, (¥, s) has a simple zero at s = 1.

2) Similarly to the complex case, equation (28) is deduced from a p-adic
analogue of equation (19), involving a product of two Mazur-Swinnerton-Dyer p-
adic L-functions. This product is identified with a Rankin p-adic L-function, at-
tached to the convolution of f with a weight one theta-series.

We now turn to the description of the value of L, (¥, s) at the point s = 2, lying
outside the range of classical interpolation for L,(¥, s).

Following [Co-dS] and [Bes2], Coleman’s theory of p-adic integration allows
to define a p-adic counterpart reg, {u, v}(17) € C) of the complex regulator, where
u,v € Cp(X) are modular units, and # is a class in the de Rham cohomology group
Hip(X/C)).

The p-adic analogue of the anti-homomorphic class q?h of equation (21) is de-
fined to be the unique class 7" in the “unit root subspace” of H, 1R (X /C,) satisfying:

1. n}‘f belongs to the f-isotypic part of H(liR(X /Cp),

2. o(p") = oy, where ¢ denotes the Frobenius operator acting on
Hlz(X/Cp), and o € Z, is the p-adic unit appearing in equation (23),

3. 17}“" lifts the image of n?h in H' (X, Oy) (cf. [BD1] for details).
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The following p-adic Beilinson formula, proved in [BD1], is the analogue of
equation (22) in the current context:

(29) Lp(Ea 2) . Lp(EJ(v 1) = CE,x,p : regp{uxa vz}(ﬂ;r)-

Here Cf, p is a non-zero algebraic constant, which differs from Cg, by an Euler
factor at p. The modular units , and v,, depending on the choice of an even
Dirichlet character y, are the same as those appearing in (22). By a slight gen-
eralization of (26), L,(E, 7, 1) is equal to L(E,y,1)/Q}, up to an non-zero alge-
braic constant. The functional equation (27) implies that (29) can also be written
with L,(%,0) replacing L,(%,2). A judicious choice of y ensures the non-van-
ishing of L,(E, z,1). In this case, equation (29) yields that the non-vanishing of
Ly(E,2) is equivalent to the non-vanishing of the p-adic regulator.

A special case of (29) is obtained by Brunault [Br], as a consequence of
Kato’s reciprocity law (see Remark 4.3). Moreover, prior work of Coleman-de
Shalit [Co-dS] focused on the special case of elliptic curves with complex
multiplication. The article [BD1] presents an alternate approach to (29) which
by-passes Kato’s reciprocity law. It is based on the direct evaluation of a
Rankin p-adic L-function associated to the convolution of the Hida family
f = (f,) interpolating f with the Eisenstein series dlog(v,), and on the factor-
ization of this p-adic L-function as a product of two Mazur-Kitagawa p-adic L-
functions. The work [BD2] uses [BD1] in order to obtain a new proof of Kato’s
reciprocity law. It is worth stressing the similarity of this approach with the
description of L,(y, s) in terms of values at points outside the range of classical
interpolation given in Remark 2.3.

Furthermore, [BD1] describes in a similar vein the values L,(¥, n) at integer
points > 2 in terms of the motivic cohomology of the modular curve X. These
values were studied previously by Gealy [Ge], by invoking Kato’s reciprocity law.

REMARK 4.3. — The work of Kato [Ka], [Colz] relates L, (¥, s) to the structure
of the p-primary Selmer group of £ over @, := Q(u,~), viewed as a module over
the Galois group Gal(@Q../Q) = Z ;. Combined with recent work of Skinner-Urban
[SU], it establishes the cyclotomic Main Conjecture of Iwasawa theory for the
elliptic curve E. Let V,(E) denote the p-adic Galois representation of E. Kato’s
approach is based on the study of cohomology classes

(30) 1, (1) € H'(Quc, Vp(EX(D))

arising from étale regulators of modular units attached to characters y of p-power
conductor. The comparison functor between étale and de Rham eohomology re-
lates the restriction at p of the étale regulator to the p-adic regulator [Bes1]. By
Tate twisting the classes (30), one obtains a system of classes

(31) K, € H' Qo V(BD)).
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Kato’s reciprocity law describes L(Z, x, 1) in terms of the singular part of «, at p.
In view of the interpolation formulae (24) and (25), this yields a cohomological
description of L,(¥,s) — a key step towards the proof of the cyclotomic Main
Conjecture for E.

REMARK 4.4. — When y is the trivial character, the class «, of equation (31)
arises from the restriction of a class x in H(@Q, Vy(E)). Assume that L(E,1) = 0.
Kato’s reciprocity law implies that the image «, of x in H' (@, Vp(B)) is crys-
talline, and hence belongs to the “finite subspace” H}(Qp, Vp(&)). Perrin-Riou
[PR2] conjectures that x;, is non-zero if and only if L/(#,1) is non-zero, and
predicts a precise relation between the logarithm of «, and the formal group
logarithm of a global point in E(@). The goal of [BD3] is to obtain a proof of
Perrin-Riou’s conjecture, by combining the approach to Kato’s Euler system
developed in [BD1] and [BD2] with the results of [BDP1] and [DR]. This proof
establishes a p-adic relation between Kato’s Euler system and the Euler system
of Heegner points.
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