I Grandi Matematici Italiani online

GINO FANO

GINO FANO

Sulle forme cubiche dello spazio a cinque dimensioni contenenti rigate razionali del 4° Ordine

Comment. Math. Helv., Vol. 15 (1943), p. 71-80

http://www.bdim.eu/item?id=GM Fano 1943 1>

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Sulle forme cubiche dello spazio a cinque dimensioni contenenti rigate razionali del 4° ordine

Di Gino Fano, Lausanne

1. Mentre una forma cubica dello spazio a quattro dimensioni è — probabilmente — razionale soltanto se ha un punto doppio, è noto che una forma cubica dello spazio a cinque dimensioni (V_4^3 di S_5) può essere razionale anche senza avere punti doppi. È razionale p. es. ogni V_4^3 di S_5 contenente due piani indipendenti, potendosi essa riferire birazionalmente al sistema delle rette incidenti a entrambi questi piani; sistema ∞^4 del 1º ordine, perciò razionale. Però una V_4^3 di S_5 generale non contiene piani; poichè il dover contenere un piano assegnato equivale per essa a 10 condizioni, mentre i piani dello spazio S_5 sono soltanto ∞^9 .

È anzi a ritenere che la V_4^3 generale di S_5 contenga soltanto superficie (varietà a due dimensioni) algebriche di ordine multiplo di 3. Ciò può dimostrarsi infatti molto semplicemente per la V_{4}^{3} generale avente un (solo) punto doppio D (caso limite della precedente); dando all'espressione " V_4^3 generale con un punto doppio" il significato preciso, che il cono Γ_3^6 di rette uscente dal punto doppio D abbia come sezione iperpiana non passante pel vertice una superficie (dipendente da 19 moduli) contenente soltanto curve sue intersezioni complete con forme (o ipersuperficie); perciò di ordini 6 e multipli di 6. La proprietà enunciata sussiste ovviamente per tutte le superficie, anche coni, contenute in Γ_3^6 . D'altra parte la V_4^3 si proietta univocamente dal punto doppio D su uno spazio S_4 ; e ogni sua superficie φ non contenuta nel cono Γ_3^6 si proietta in una superficie φ' di S_4 , ed è perciò intersezione totale o parziale di V_4^3 col cono che da D proietta φ' . La proprietà in parola è pertanto ancora ovvia se φ è intersezione totale di V_4^3 con quest'ultimo cono; mentre se è intersezione parziale, la parte residua può essere soltanto un cono a due dimensioni contenuto in Γ_3^6 , perciò ancora di ordine 6 o multiplo di 6.

2. È pertanto almeno presumibile che una V_4^3 generale di S_5 non contenga superficie del 4º ordine.

Le rigate razionali normali \mathbb{R}^4 dello spazio S_5 1) formano un sistema

¹⁾ Con R^4 , ρ^4 indicheremo rigate razionali normali del 4º ordine; con R^n rigate di ordine n; con F^n , φ^n , ... superficie di ordine n; con M^n varietà a tre dimensioni di ordine n; con C_n^n , γ_n^n , ... curve di ordine n e genere p.

algebrico continuo di dimensione 29 ²). Poichè per ognuna di esse passano ∞^{27} forme cubiche, mentre tali forme in S_5 sono in tutto ∞^{55} , si sarebbe indotti a pensare, in base alla pura enumerazione delle costanti, che una V_4^3 generale debba contenere ∞^1 rigate R^4 . Vedremo invece che una V_4^3 contenente una R^4 ne contiene di conseguenza ∞^2 ; e perciò una V_4^3 generale di S_5 non contiene alcuna R^4 ³).

Analogamente, le superficie φ^5 di S_5 a sezioni ellittiche (superficie di Del Pezzo 4)) formano un sistema ∞^{35} , due generiche fra esse essendo omografiche in un numero finito di modi 5). E benchè per ciascuna di queste superficie passino ∞^{24} forme cubiche, e l'enumerazione delle costanti dia 35+24-55=4, vedremo che una V_4^3 generale non contiene alcuna φ^5 , e se ne contiene una ne contiene ∞^5 .

Le due questioni sono fra loro connesse. Ogni R^4 è infatti direttrice di ∞^3 varietà M^3 , ∞^1 razionali normali di piani, generabili mediante una proiettività fra la R^4 , come ∞^1 razionale di rette, e una sua corda (punteggiata) arbitraria, colla condizione che i due estremi di questa corda corrispondano alle generatrici di R^4 passanti risp. per essi ⁶). E una forma cubica passante per R^4 incontra ulteriormente ciascuna di queste ∞^3 varietà M^3 in una superficie φ^5 . Viceversa, una φ^5 generica (cioè senza punti doppi) contiene 5 fasci di coniche, i cui piani formano altrettante M^3 incontranti ulteriormente ogni V^3 passante per φ^5 secondo una rigata R^4 . Le V^3 contenenti rigate R^4 contengono perciò anche superficie φ^5 , e viceversa. Considerando come omologhe, o "complementari", su una V^3 una R^4 e una φ^5 che ne costituiscano insieme l'intersezione completa con

²) La R^4 più generale ha ∞^1 coniche direttrici irriducibili, e può generarsi con due coniche omografiche in piani non incidenti, dipendenti perciò ciascuna da 9+5=14 parametri; l'omografia tra le due coniche dipende da 3 parametri, ma ciascuna R^4 ammette ∞^2 generazioni così fatte; e 14.2+3-2=29. V. anche Morin, Rend. Semin. Matem. Padova, anno XI (1940), p. 108. Fra le ∞^{29} R^4 di un S_5 sono comprese ∞^{28} con direttrice rettilinea (unica).

³) Poichè in S_5 le corde di una R^4 formano anche un sistema di rette del 1º ordine, è pure razionale ogni V_4^3 di S_5 contenente una R^4 . Ma poichè una V_4^3 generale di S_5 , come è detto sopra, non contiene alcuna R^4 , rimane ancora dubbia la razionalità della V_4^3 generale di S_5 (Morin, l. c.). Fra le ∞^{29} R^4 di un S_5 ve ne sono anche ∞^{28} spezzate in due quadriche di spazi S_3 (distinti) con una generatrice comune; ma nel presente lavoro non s'incontrano R^4 così spezzate, perchè una V_4^3 contenente una coppia di quadriche di questo tipo contiene anche, nei loro S_3 , due piani, e quindi ∞^2 coppie di quadriche, cioè R^4 riducibili, tutte del medesimo tipo.

⁴⁾ Rend. Circolo Matem. Palermo, vol. 1º (1884-87), p. 241.

⁵) Possono infatti riferirsi omograficamente in un numero finito di modi due qualunque delle 5 reti di cubiche sghembe in esse contenute.

⁶) Si hanno così in tutto ∞^5 generazioni, ma solo ∞^3 distinte M^3 , la corda di R^4 potendo essere su M^3 una qualunque delle sue ∞^2 direttrici rettilinee. Fra queste ∞^3 M^3 vi sono gli ∞^2 coni cubici che proiettano R^4 dai suoi singoli punti.

una delle dette M^3 , vediamo che a ogni R^4 corrispondono ∞^3 superficie φ^5 , a ogni φ^5 un numero finito di R^4 . Pertanto se la V_4^3 contiene ∞^k rigate R^4 , conterrà pure ∞^{k+3} superficie φ^5 , e viceversa. E vedremo che è in generale k=2.

Una R^4 e una φ^5 complementari s'incontrano secondo una curva C_2^7 , che su R^4 è l'intersezione con una quadrica passante per una sua generatrice, e su φ^5 l'intersezione con una quadrica passante per una sua cubica sghemba (ed è equivalente altresì alla somma delle sezioni iperpiane e di uno tra i fasci di coniche). Nella consueta rappresentazione piana della φ^5 mediante le cubiche passanti per 4 punti fissi, le cinque C_2^7 segate su essa dalle R^4 complementari contenute in una stessa V_4^3 hanno per immagini quartiche piane con uno (variabile) di quei 4 punti come doppio e passanti semplicemente per gli altri tre, e una quintica avente tutti 4 questi punti come doppi. Le C_2^7 intersezioni di una φ^5 colle sue R^4 complementari hanno pertanto tutte a due a due 10 punti comuni; e questi costituiscono perciò anche un gruppo di punti comune a due R^4 complementari di una stessa φ^5 (anzi, come vedremo, il gruppo totale dei punti comuni a due qualunque delle $\infty^2 R^4$ che costruiremo nella V_4^3).

Analogamente, dalla rappresentazione piana di una R^4 si rileva che su di essa due C_2^7 (in questo caso appartenenti al medesimo sistema lineare) hanno 12 intersezioni. Pertanto due φ^5 complementari di una stessa R^4 hanno a comune 12 punti appartenenti a quest'ultima; ma hanno pure a comune un punto ulteriore fuori della R^4 . Invero le due M^3 contenenti R^4 e rispett. le due φ^5 stanno su una stessa quadrica, e precisamente su un S_1 -cono quadrico, la cui retta asse è corda di R^4 : la terza intersezione di questa retta colla V_4^3 è l'ulteriore punto comune alle due φ^5 7).

3. Una V_4^3 contenente una rigata R^4 è incontrata da una quadrica passante per questa in una M^6 contenente pure la R^4 , e che nel caso più generale è quella da me incontrata recentemente in altro lavoro ⁸). Essa è proiezione della M^{12} di S_8 a curve-sezioni canoniche di genere p=7 con-

⁷) Per una rigata R^4 passano ∞⁵ quadriche, fra le quali ∞⁴ coni. Nel sistema delle prime, considerato come uno spazio S_5 , la varietà μ_4^6 dei coni è composta di una quadrica doppia Ω e di una quadrica semplice Σ . La prima è costituita dagli S_1 -coni quadrici che proiettano R^4 dalle sue corde; i due sistemi ∞³ di piani su Ω sono dati dai coni passanti per le singole M^3 aventi R^4 come direttrice, e da quelli le cui rette assi sono corde di una stessa cubica di R^4 . La quadrica Σ è a sua volta un S_2 -cono quadrico, il cui S_2 -asse è costituito dalle quadriche passanti per la M^3 dei piani delle coniche direttrici di R^4 (se R^4 ha direttrice rettilinea, la M^3 dei piani di questa direttrice e delle singole generatrici). L'intersezione Ω Σ è composta dei coni che proiettano R^4 dalle sue ∞³ tangenti, incluse le generatrici.

⁸⁾ Su alcune varietà algebriche a tre dimensioni..., Comm. Math. Helv., vol. 14 (1941—1942), p. 202.

tenente sole superficie intersezioni complete, da una sua conica γ ; M^{12} rappresentante il sistema lineare somma, su M^6 , delle sezioni iperpiane e della R^4 . La stessa M^6 contiene, oltre R^4 , altre tre rigate, degli ordini 18, 70, 88 9), in generale irriducibili, e perciò nessuna ulteriore R^4 ; e ha 14 punti doppi, appartenenti a R^4 .

Anche l'intersezione di una V_A^3 contenente R^4 col S_1 -cono quadrico che proietta questa da una sua corda generica è una M^6 , più particolare, ma non contenente ulteriori R^4 . Anche questa M^6 è proiezione di una (particolare) M^{12} di S_8 : i due sistemi ∞^1 di spazi S_3 del S_1 -cono quadrico proiettano rispett. le generatrici e un fascio di cubiche di \mathbb{R}^4 , e incontrano M^6 secondo due fasci di superficie cubiche, proiezioni a loro volta di un fascio di F^4 a sezioni ellittiche su M^{12} , e di un fascio di F^8 a sezioni di genere 3 10), queste ultime passanti per la conica γ . Sulla M^{12} , il sistema completo residuo delle F^4 rispetto alle sezioni iperpiane è un sistema ∞^3 omaloidico di F^8 , che conduce a rappresentare M^{12} sullo spazio S_3 mediante le superficie del 4º ordine passanti per una C_7^{8-11}), e la M^6 mediante le stesse superficie passanti in più per una corda k di quest'ultima curva. Questa M^6 ha 15 punti doppi (uno in più della precedente, più generale), dei quali ancora 14 su R^4 , e due di questi più il rimanente sulla retta asse del S_1 -cono quadrico; ai suoi due fasci di superficie cubiche corrispondono in S₃ i piani passanti per k, e le superficie cubiche per la C_2^8 . Le rigate contenute nella M^{6} si determinano facilmente in base alla rappresentazione su S_{3} ; e all'infuori della R^4 iniziale, corrispondente alla retta k, nessuna di esse è del 4º ordine 12).

Fra le ∞^4 corde di una R^4 contenuta in una V_4^3 , ∞^2 stanno pur esse su quest'ultima varietà. La rigata delle corde di R^4 appoggiate a una retta generica g di V_4^3 , avendo g stessa come direttrice semplice e 3 generatrici in ogni S_4 per g (poichè la proiezione di R^4 da g ha una cubica doppia), è anche del 4° ordine; e la sua intersezione con V_4^3 , all'infuori di g e della sestica che si proietta nella cubica doppia, si compone di 5 generatrici. Le ∞^2 corde di R^4 contenute in V_4^3 hanno dunque per luogo una $M^{5\cdot3}$; e per ogni punto P di R^4 passano 3 di queste corde. Esse stanno infatti sul cono cubico che proietta R^4 da P, e quindi sulla (particolare) φ^5 con P doppio, ulteriore intersezione di questo cono con V_4^3 ; e queste rette, per P

⁹⁾ V. la nota 24) del mio lavoro cit.

¹⁰⁾ Rappresentabili sul piano mediante le curve di 4º ordine passanti per 8 punti fissi.

¹¹⁾ Cfr. anche la nota 6) del mio lavoro cit.

¹²) Alla curva C_2^8 , alla rigata delle sue trisecanti, e a quella delle sue corde appoggiate a k corrispondono rigate di ordini 18, 52, 54; altre due rigate di ordini 34, 18 corrispondono alle superficie di S_2 luoghi delle coniche 6-secanti la C_2^8 e appoggiate a k, e 5-secanti la C_2^8 o bisecanti k. La somma degli ordini di tutte le rigate della M^6 è sempre 180 (nota ²⁴) del mio lavoro cit.).

sulla φ^5 , sono appunto 3. La $M^{5\cdot 3}$ ha dunque R^4 come superficie tripla; le generatrici di R^4 costituiscono su di essa un sistema ∞^1 di rette (direttrici), non contenuto nel sistema ∞^2 delle corde di R^4 appartenenti a V_4^3 .

La M⁶ intersezione di una V³ contenente una R⁴ col S₁-cono quadrico che proietta questa da una sua corda r appartenente alla V_{\perp}^{3} contiene una seconda rigata del 4º ordine ϱ^4 ; e si ottengono così su V_4^3 altre ∞^2 rigate razionali del 4° ordine. In questo caso la retta r appartiene alla M° , e ne è anzi retta doppia; e appartiene pure, come retta semplice, ai due fasci di superficie cubiche contenuti in M^6 : superficie che indicheremo rispett. con F^3 e φ^3 , secondo che hanno a comune con R^4 cubiche sghembe o generatrici di questa. Su ciascuna F^3 , essendo ora razionalmente note la retta r e la cubica intersezione con \mathbb{R}^4 (di cui r è corda), sarà pure razionalmente nota l'unica retta s non incidente nè a r nè a questa cubica (cioè l'unica retta di F^3 sghemba con r, e compresa nella sestupla che colle 6 corde della detta cubica forma una bisestupla). Le ∞^1 rette s così ottenute formano una nuova rigata, contenuta in V_4^3 e proiettata da r secondo lo stesso S_1 -cono quadrico, la quale è appunto una ϱ^4 , incontrante le φ^3 secondo cubiche sghembe, e tale che essa e R^4 hanno rispetto ai due fasci di F^3 e φ^3 proprietà invertite. Per accertarlo, non potendo invocare a priori la completa simmetria tra i due fasci di F^3 e φ^3 sulla V_4^3 , basterà la considerazione seguente. Sommando su M^6 la R^4 e il fascio delle F^3 , si ha un sistema $|F^7|$, ∞^3 e omaloidico, proiezione del sistema $|F^8|$ considerato in precedenza su M^{12} 13). Nel caso precedente le F^7 segavano sulle φ^3 sistemi lineari anche ∞^3 di C_1^4 , e il loro sistema non conteneva parzialmente il fascio $|\varphi^3|$. Ora questo sistema di C_1^4 contiene la retta r come parte fissa; e la parte residua, somma di coniche bisecanti la r e di una retta unisecante queste coniche, è una rete, dunque soltanto ∞2, di cubiche sghembe: perciò il sistema $|F^7|$ contiene parzialmente anche il fascio $|\varphi^3|$, che ha come residua la rigata ϱ^4 . Poichè sono ∞^2 le corde di R^4 contenute nella V_4^3 , troviamo ∞^2 rigate ϱ^4 , ovviamente distinte.

Sulla attuale M^6 il sistema $|F^7|$ ha come residuo rispetto alle intersezioni con quadriche un fascio di φ^5 . Facendo spezzare le F^7 in F^3+R^4 oppure in $\varphi^3+\varrho^4$, si vede che queste ∞^1 superficie φ^5 sono complementari di entrambe le rigate R^4 e ϱ^4 ; e queste ultime hanno perciò almeno 10 punti comuni: anzi precisamente 10, perchè se no per esse dovrebbero passare ∞^1 quadriche. Viceversa, due rigate R^4 e ϱ^4 contenute in una V_4^3 e complementari di una stessa φ^5 stanno con questa su un S_1 -cono quadrico, il cui asse appartiene a V_4^3 .

¹³) Su M^{12} le F^8 generiche incontrano la conica γ in un punto; le loro proiezioni da γ sono perciò del 7º ordine.

Il sistema omaloidico $|F^7|$ conduce a rappresentare questa M^6 sullo spazio S_3 in modo che alle sue sezioni iperpiane corrispondono le F^4 passanti per una C_6^7 (intersezione parziale di una quadrica e di una superficie di 4° ordine) e per due sue corde a, b, immagini delle due rigate R^4 e ϱ^4 . In altri termini, la C_7^6 del caso precedente è spezzata ulteriormente nella C_6^7 e una sua corda. I punti della retta r, doppia per M^6 , corrispondono alle generatrici della quadrica di S_3 4-secanti di C_6^7 . Fuori di r, la M^6 ha ancora 10 punti doppi, che sono i soli punti comuni alle rigate R^4 e ϱ^4 , e hanno per immagini le 10 corde di C_6^7 appoggiate in pari tempo ad a, b^{-14}).

Sulla V_4^3 la rigata iniziale R^4 appartiene pur essa al sistema continuo ∞^2 delle ϱ^4 . Invero fra le corde di R^4 contenute nella V_4^3 ve ne sono ∞^1 giacenti nei piani delle coniche direttrici di R^4 (se R^4 ha direttrice rettilinea, nei piani di questa e delle singole generatrici), costituenti una rigata razionale R^5 ; e il cono proiettante R^4 da una qualsiasi di queste corde è un S_2 -cono, avente per asse il piano della conica direttrice considerata (o della direttrice rettilinea e generatrice). Per questo cono coincidono i due sistemi di spazi generatori S_3 , e quindi le due rigate R^4 e ϱ^4 . Il sistema ∞^2 delle ϱ^4 contenute in V_4^3 è in corrispondenza birazionale col sistema delle corde della R^4 iniziale pure giacenti su V_4^3 ; e entro quest'ultimo sistema la R^5 è una ∞^1 eccezionale.

La stessa costruzione che dalla R^4 iniziale su V_4^3 ci ha condotti alle altre ∞^2 può applicarsi a ciascuna di queste ultime; ma così facendo si ritrova sempre lo stesso sistema ∞^2 : cambia soltanto, colla R^4 iniziale, il sistema ∞^2 delle sue corde contenute in V_4^3 . Invero se dalle R^4 già ottenute nascessero sistemi ∞^2 anche solo in parte distinti, questi costituirebbero tuttavia un sistema complessivo anche continuo; come pure continuo sarebbe il sistema complessivo delle φ^5 loro complementari. Ora ogni R^4 incontra ciascuna delle ∞^2 altre rigate da essa ottenute in 10 punti, e d'altra parte incontra una generica M^3 (∞^1 di piani) passante per una di queste ultime in $4 \cdot 3 = 12$ punti; incontra perciò le φ^5 complementari di queste ultime, e non tali per essa, in 2 punti. Possiamo dunque dire che una R^4 e una φ^5 generiche entro V_4^3 (dato ch'esse variano entro sistemi continui) s'incontrano anche in due punti; e, invertendo il ragionamento, che due R^4 della V_4^3 hanno sempre 10 punti comuni. Queste

 $^{^{14}}$) Le due rigate R^4 e ϱ^4 hanno direttrice rettilinea quando le tangenti alla C_6^7 negli estremi della corda corrispondente stanno in un piano. Infatti allora, e solo allora, una F^4 del sistema rappresentativo della M^6 può avere lungo questa intera retta lo stesso piano tangente, e su questa retta 3 punti doppi arbitrari; e la sezione iperpiana corrispondente di M^6 contiene allora 3 generatrici della rigata R^4 o ϱ^4 .

due R^4 stanno perciò sempre su una stessa quadrica; e tutte le R^4 si potranno ottenere da una arbitraria fra esse nel modo indicato ¹⁵).

Le φ^5 contenute nella V_4^3 sono ∞^5 ; ogni R^4 ne ha ∞^3 complementari; due R^4 ne hanno ∞^1 complementari comuni. Due φ^5 hanno sempre (come già detto al nº prec.) 13 punti comuni. — Concludendo, una V_4^3 contenente rigate R^4 e superficie φ^5 contiene di conseguenza ∞^2 R^4 e ∞^5 φ^5 ; e pertanto la V_4^3 generale non contiene superficie di nessuno di questi tipi.

4. Per avere una miglior visione complessiva dei due sistemi delle R^4 e delle φ^5 esistenti sulla V_4^3 considerata, possiamo ricorrere alle due rappresentazioni di questa V_4^3 mediante i sistemi lineari di M^6 segati su essa dalle quadriche passanti per una arbitraria delle sue R^4 o φ^5 .

Le ∞^5 quadriche passanti per una R^4 incontrano una V_4^3 contenente pure questa R^4 in varietà M^6 , generalmente con 14 punti doppi appartenenti a R^4 . Queste M^6 s'incontrano ulteriormente a coppie ¹⁶) secondo superficie F^8 a sezioni di genere 4, che segnano su R^4 curve canoniche C_6^{10} pei 14 punti suddetti, quelle di una stessa M^6 perciò con 10 intersezioni variabili; s'incontrano a tre a tre in curve C_0^6 , e a 4 a 4 in coppie di punti. La V_4^3 risulta così rappresentata su una quadrica Q di S_5 ; ai punti di R^4 corrispondono su Q le ∞^2 rette di un sistema Δ , ricoprente una varietà M^{10} 17); al sistema $\infty^2 \Gamma$ delle corde di R^4 contenute in V_4^3 , punti di una superficie φ^{10} a sezioni di genere 7 18), doppia per M^{10} , e di cui le rette contenute in M^{10} sono trisecanti; alla rigata R^5 delle rette di Γ contenute nei piani delle coniche di R^4 , punti di una conica γ (linea eccezionale) su φ^{10} . Ai 14 punti doppi delle singole M^6 di V_4^3 , sempre appartenenti a R^4 , corrispondono le 14 trisecanti delle curve C_7^{10} , sezioni di φ^{10} , le quali sono appunto rette del sistema \varDelta . I piani dei due sistemi della quadrica Q corrispondono rispett. alle superficie del 3° ordine intersezioni di V_4^3 cogli spazi S_3 delle cubiche di R^{4} 19), e alle φ^5 complementari di R^4 ; essi incontrano la superficie φ^{10} rispett. in 6 e in 4 punti.

¹⁵) Due R^4 contenute in una stessa V_4^3 possono anche avere un minor numero di punti comuni; fra altro, due R^4 con un punto comune stanno sempre su una V_4^3 (Morin, l. c., n^0 6). In tal caso, da ciascuna di esse si potrà ricavare sulla V_4^3 un sistema ∞^2 di rigate R^4 come quello qui costruito.

¹⁶) Cfr. ancora il nº 4 del mio lavoro cit.

¹⁷) Alle generatrici, coniche, cubiche, sezioni iperpiane di \mathbb{R}^4 corrispondono su M^{10} rigate di ordini 3, 4, 7, 10.

 $^{^{18})}$ Queste sezioni sono le C_7^{10} del mio lavoro cit., n. 4, sulle singole quadriche di S_4 , sezioni della Q; e immagini delle rigate R^{18} (l. c.), le cui generatrici sono corde di R^4 .

 $^{^{19})}$ Questi spazi S_3 s'incontrano a due a due in rette, e le superficie del $3^{\rm o}$ ordine perciò in 3 punti; ma due di questi appartengono a R^4 , e sono quindi fondamentali per la rappresentazione.

Alle sezioni iperpiane di V_4^3 , ciascuna contenente 16 rette del sistema Γ , corde della C^4 sezione di R^4 , corrispondono su Q anche varietà M^6 con 16 punti doppi ²⁰), segate dalle forme cubiche passanti per φ^{10} .

Alle M^6 segate su V_4^3 dagli S_1 -coni quadrici che proiettano R^4 dalle sue corde, e in particolare dalle corde contenute in V_4^3 , corrispondono le sezioni di Q coi suoi S_4 tangenti, in particolare cogli spazi tangenti nei punti P di φ^{10} . Alle ∞^2 rigate ϱ^4 di V_4^3 corrispondono pertanto superficie contenute in questi ultimi spazi, cioè nei coni quadrici loro intersezioni con Q, aventi il vertice P di tale cono come doppio, e incontranti i piani dei due sistemi rispett. secondo le coniche passanti per le 5 ulteriori intersezioni con φ^{10} , e secondo quartiche con P doppio e passanti semplicemenet per le 3 intersezioni ulteriori con φ^{10} : superficie perciò del 6° ordine a sezioni di genere 3 21). E i piani di queste quartiche sono immagini delle φ^5 complementari in pari tempo della ϱ^4 considerata e della R^4 iniziale. Quando P sta sulla conica γ , ossia quando ϱ^4 coincide colle R^4 iniziale, questa F^6 è parte di una sezione iperpiana di M^{10} , e la parte residua è costituita dalla rigata di 4° ordine immagine di una delle coniche di R^4 .

Poichè la conica γ è linea eccezionale di φ^{10} , questa superficie è proiezione di una F^{14} di S_8 a sezioni canoniche di genere 8 (sezione generica della Grassmanniana delle rette di S_5) dal piano tangente in un suo punto. Essa è perciò una superficie regolare di generi 1 22); e tali sono anche il sistema ∞^2 (Γ) delle corde di R^4 contenute nella V_4^3 , e il sistema ∞^2 delle rigate ϱ^4 .

 $^{^{20}}$) Proiezioni di una M^{14} di S_9 a curve-sezioni canoniche di genere 8 (sezione della Grassmanniana delle rette di S_5) dallo spazio S_3 tangente ad essa in un punto. I 16 punti doppi sono immagini delle coniche di M^{14} passanti per tale punto.

²¹) Queste F^6 devono pertanto avere a comune a due a due i 10 punti corrispondenti a quelli comuni alle coppie di rigate ϱ^4 . Trattandosi di superficie contenute in spazi S_4 distinti di un S_5 , i punti comuni ad esse devono stare nello spazio S_3 intersezione dei due S_4 , e appartenere alle curve C_3^6 di una stessa quadrica sezioni delle due F^6 . Su questa quadrica di S_3 le due C_3^6 appartengono a sistemi opposti, in quanto ogni generatrice è intersezione di piani di Q di sistemi anche opposti, e perciò è quadrisecante di una delle C_3^6 e bisecante dell'altra. Dalla rappresentazione piana della quadrica si vede allora che le due C_3^6 hanno 20 intersezioni: di queste, 10 appartengono alla superficie φ^{10} , e a ciascuna di esse corrisponde su V_4^3 un'intera retta del sistema Γ ; le altre 10 corrispondono ai punti comuni alle due ϱ^4 . Ciascuna F^6 contiene 10 rette del sistema A, immagini dei punti comuni alla ϱ^4 e alla R^4 iniziale.

²²) Alle rette di V_4^3 non incidenti alla R^4 iniziale corrispondono su Q coniche 5-secanti la superficie φ^{10} . Fra le ∞^2 rigate ϱ^4 costruite, ve ne sono ∞^1 con direttrice rettilinea; e a queste corrispondono su Q superficie F^6 contenenti, oltre al fascio di coniche già considerato (in piani di Q), una conica ulteriore, pure 5-secante φ^{10} (ma non in un piano di Q), direttrice di questo fascio. Quando φ^{10} si consideri come proiezione di una F^{14} di S_8 da un piano tangente, i piani di queste coniche sono tracce di S_5 passanti per il piano tangente e incontranti F^{14} in altri 5 punti (spazi di gruppi di serie lineari g_3^3 su particolari sezioni iperpiane della F^{14}).

- 5. Anche il sistema delle corde di una φ^5 di S_5 è del 1º ordine; e una V_4^3 passante per φ^5 contiene ∞^2 di queste corde. Quest'ultimo sistema (Γ) gode delle seguenti proprietà:
- 1) Per un punto P di φ^5 passano 4 rette di esso. Queste rette stanno infatti nell' S_4 tangente in P alla V_4^3 , il quale incontra la φ^5 in una C^5 con punto doppio in P; esse sono l'intersezione ulteriore della V_4^3 col cono cubico che proietta da P questa C^5 (3·3 5 = 4).
- 2) Le ∞^2 rette del sistema Γ ricoprono una $M^{7\cdot3}$, per la quale φ^5 è superficie quadrupla; ossia una retta generica g di V_4^3 è incontrata da 7 fra esse. Invero le corde di φ^5 appoggiate a g formano una rigata avente g come direttrice semplice, e 5 generatrici in ogni S_4 passante per g (poichè φ^5 si proietta da g in una superficie dello stesso ordine con quintica doppia). Questa rigata è dunque di ordine 6; e le rette cercate ne costituiscono l'intersezione con V_4^3 , all'infuori di g e della C^{10} che si proietta nella detta quintica doppia (6·3 1 10 = 7).

Inoltre: Le ∞^4 quadriche passanti per una φ^5 contenuta in una V_4^3 incontrano quest'ultima in varietà M^6 formanti un sistema omaloidico ²³).

Siamo così condotti a rappresentare la V_4^3 sopra uno spazio S_4 , ai cui spazi S_3 , piani e rette corrispondono le M^6 suindicate; superficie F^7 a sezioni di genere 3, incontranti φ^5 secondo curve canoniche C_6^{10} ; e C^4 razionali incontranti φ^5 in 7 punti. Su φ^5 le F^7 di una stessa M^6 segnano un sistema lineare ∞^3 di curve C_6^{10} , di grado 7, perciò passanti per 13 punti fissi, doppi per la M^6 , ma variabili (su φ^5) con essa 24). Ai punti di φ^5 e alle rette del sistema Γ corrispondono in S_4 le ∞^2 rette di un sistema Δ , ricoprenti una varietà M^7 , e i punti di una superficie φ^9 25), doppia per M^7 , e della quale le rette di Δ sono quadrisecanti; alle intersezioni di V_4^3 con spazi S_4 e S_3 , varietà M^4 passanti per φ^9 e superficie φ^7 intersezioni residue di queste. Le φ^7 hanno sezioni di genere 4 (immagini

 $^{^{23}}$) Nello spazio S_4 formato dalle quadriche di S_5 passanti per una φ^5 la M^6 dei coni è una M^3 doppia, a sua volta con 10 punti doppi, costituiti dagli S_1 -coni che proiettano φ^5 dalle sue 10 rette (varietà cubica studiata in vecchi lavori di C. Segre, Atti R. Accad. di Torino, vol. 22, 1886—87; Mem. detta Accad. (2), vol. 39, 1888; e G. Castelnuovo, Atti R. Ist. Veneto (6), vol. 6 (1888). Invero le 5 reti di S_1 -coni quadrici aventi per basi le M^3 dei piani dei fasci di coniche di φ^5 costituiscono per la M^6 suddetta altrettanti piani doppi; dal che si trae facilmente che si tratta della varietà luogo della rette incidenti a questi piani, contata due volte. D'altra parte φ^5 è proiettata da ogni suo punto P in una φ^4 di S_4 , base di un fascio di quadriche; P è perciò vertice di un fascio di coni quadrici passanti per φ^5 , e che, avendo il vertice su φ^5 stessa, sono tutti elementi doppi della M^6 ; la quale ne è esaurita.

²⁴) Questi 13 punti impongono alle quadriche passanti per essi solo 12 condizioni distinte.

 $^{^{25}}$) Di ordine 9, poichè le F^7 considerate su V_4^3 sono rappresentate sui piani corrispondenti di S_4 da sistemi di quartiche per 9 punti.

di intersezioni di superficie di 3° e 2° ordine in S_3); e la φ^9 ha pertanto sezioni di genere 8. I 13 punti doppi delle M^6 intersezioni di V_4^3 colle quadriche per φ^5 si rispecchiano nelle 13 quadrisecanti delle curve C_8^9 sezioni di φ^9 ²⁶); le M^4 di S_4 passanti per φ^9 hanno su questa 25 punti doppi, immagini delle corde di φ^5 contenute nella sezione corrispondente di V_4^3 ²⁷).

Le ∞^5 superficie φ^5 contenute in V_4^3 si ripartiscono in ∞^4 fasci entro le singole M^6 considerate, tutti contenenti la φ^5 iniziale, e residui delle F^7 rispetto a quadriche. Ad esse corrispondono, negli spazi S_3 dell' S_4 rappresentativo, fasci di superficie del 7º ordine passanti doppiamente per la C_8^6 sezione di φ^9 , e contenenti di conseguenza le 13 quadrisecanti di questa (con che ne è esaurita la linea base). Al fascio appartiene sempre, in corrispondenza alla φ^5 iniziale, la sezione di M^7 con questo S_3 .

La superficie φ^9 contiene 5 rette, immagini delle rigate R^4 complementari della φ^5 iniziale, che si riconosce facilmente essere rette eccezionali. Essa è perciò superficie regolare di generi 1, di nuovo proiezione della F^{14} di S_5 a sezioni canoniche di genere 8, da uno spazio S_4 5-secante. I due sistemi ∞^2 delle corde di una R^4 e di una φ^5 contenuti, superficie e corde, in una V_4^3 sono entrambi riferibili a una superficie di questo tipo 28); contengono però entrambi, come enti ∞^2 , qualche ∞^1 eccezionale.

(Reçu le 4 mars 1942.)

²⁶) Queste M^6 risultano rappresentate sugli spazi S_3 corrispondenti mediante le superficie del 4° ordine passanti per la C_8^9 sezione di φ^9 . Contengono 3 rigate di ordini 22, 106, 52, corrispondenti rispett. alla curva C_8^9 , alla rigata delle sue trisecanti, e alla superficie luogo delle sue coniche 7-secanti.

 $^{^{27}}$) Questa corrispondenza fra una M^4 di S_4 con 25 punti doppi e una forma cubica generale di S_4 è stata già incontrata da me in una Nota del 1930 (Rend. R. Accad. Lincei (6), vol. 11, p. 329, n. 3, 4).

²⁸) La corrispondenza fra la superficie sezione della $M^{7\cdot3}$ luogo delle corde di φ^5 contenute in V_4^3 e la F^{14} suddetta fu anch'essa incontrata nella mia Nota cit. del 1930.