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Chimica (Principi di Ingegneria Chimica). — Viscoelastic pro-
perties of very dilute solutions of Polymeric Materials. Nota di
Grovannt Astarita @ e A. B. MEemzner ), presentata © dal
Corrisp. G. MALQUORI.

R1AssUNTO. — Tre tipi di esperimenti fluodinamici mettono in evidenza la presenza
di considerevoli effetti viscoelastici anche per liquidi di viscositd' costante, quali le soluzioni
molto diluite di alcuni polimeri: 1° il moto di bolle di gas entro tali liquidi; 2° il flusso tur-
bolento ben sviluppato entro condotti a sezione costante; 3° il flusso con improvvisa riduzione
di sezione.

Risultati sperimentali relativi ai casi 1° e 39 sono qui presentati e discussi insieme con
una analisi delle equazioni reologiche ipotizzate per fluidi viscoelastici, alcune delle quali
includono il modello di un fluido di viscositd costante e con un tempo naturale diverso da
Zero.

L’esperimento 3°, in particolare, lascia intravedere la possibilith di determinare quanti-
tativamente i parametri elastici laddove risultano insensibili le tecniche convenzionali.

INTRODUCTION.

Investigation of viscoelastic flow phenomena requires the consideration
of at least one rheological parameter having the dimensions of time [1, 2, 3],
herein termed the natural time of the fluid T. The value of this parameter
is difficult to measure directly in dilute solutions of polymeric materials, which,
under viscometric flow conditions, in many cases display an approximately
constant (Newtonian) viscosity. Similarly the deviatoric normal stresses
may be below the threshold of detectability. Nevertheless these solutions
do exhibit viscoelastic effects if properly significant flow fields are chosen for
study. «
A theoretical analysis is given, which shows that elastic effects may indeed
be important in constant-viscosity liquids, and may be unrelated to the shear
dependency of the viscosity in variable-viscosity liquids. For constant-visco-
sity liquids no value of T can be obtained from the u (I") = constant curve,
while elastic effects still need to be considered on the basis of some value of
the natural time. In the experimental portion of this paper a numer of criti-
cal experiments are described which reveal the presence of elastic effects in
such constant-viscosity liquids. k

(¥) Istituto di Chimica Industriale della Universitda di Napoli; University of Delaware
(Newark — Delaware).
(**) Nella seduta del 16 aprile 1966,
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THEORETICAL.
a) Dimensional Analysis.

When the constitutive equation for a viscoelastic liquid is made explicit
in the stress:

(1) S—=S8(Bi,B:, )

in which B, denotes a properly invariant definition of the (# — 1) time deri-
vative of the rate of deformation, dimensional invariance requires the existence
of as many dimensional rheological parameters as are required to make all
the B, tensors dimensionally equivalent to S. As shown by Truesdell (1), a
viscosity p, and natural time T are sufficient: in fact, new kinematic tensors
dimensionally equivalent to 8 may be defined as:

<2> B,t:y.oT”_an

For a purely viscous liquid, all the B,’s beyond By in Equation (1) disap-
pear by definition [4] or, in other words, the natural time T is zero @. Still,
a purely viscous liquid may display any viscosity function u (I") whatsoever [4],
so that a value of T could artificially be derived from the shear dependency-
of viscosity by any one of the suggested procedures [2]. Such a value would
of course have no relationship to the non-existent elastic properties of the liquid.

b) Linear Viscoelasticity.

If a linear theory of viscoelasticity such as discussed, for example, by
Fredrickson [8] is accepted as a suitable model for discussing elastic effects
in real liquids, the viscosity w turns out to be independent of the shear
rate I':

3) p= v

in which ¢ (#) denotes the ‘“influence function’, on a time—decaying elastic
modulus. In contrast with this, a natural time T may be defined as:

_ Pii— Py
(4) T = 7

(1) Ideally, a purely viscous liquid has no memory although real liquids which are
usually regarded as purely viscous may have relaxation times for structural rearrangements
of the order of 10— 13 sec. [5]. This is essentially zero for the velocity fields of .interest and
will be taken as such. One should note that a number of measurements on conventional
gases and liquids, though controversial, have yielded normal stresses equivalent to much
larger relaxation times, however [6, 7].
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in which Py and P denote the deviatoric normal stresses observed in visco-
metric flow. The value of T turns out to be:

[oe]

2/1,‘4:(1) dat
(s) T=—f—

/ww

0

and may thus be finite in a constant-viscosity liquid. Analogous conclusions
can be drawn from other linear theories of viscoelasticity [9, 10], with one
exception to be discussed below. Equations of the form of this one may also
accomodate the finite normal stresses in ordinary low molecular weight fluids
which are known to have constant viscosities, should the controversial results
referred to earlier prove to be valid.

c) Variable Viscosity Theories.

More general theories of viscoelasticity such as Coleman and Noll’s theory
of simple fluids [11], Ericksen’s theory of anisotropic fluids [12], the Rivlin-
Ericksen expansions [13], etc. predict behavior which, under viscometric
flow conditions, say under those conditions for which rheological data can be
obtained, are not distinguishable from each other: in each case, three totally
unrelated material functions are seen to be needed for the characterization of
a viscoelastic liquid. One of these functions is the u (I') curve, and no proper-
ties of the other two functions, which typify the elastic character of the liquid,
can be inferred from its knowledge.

More restricted theories which do predict a variable viscosity are, among
others, the White and Metzner model [14] and Oldroyd’s ‘“linear ” theory
of viscoelasticity [1g].

According to White and Metzner’s model of a generalized Maxwell fluid,
the shear-dependency of T is the same as that of w, when the single elastic
modulus of the liquid is taken as a constant, although the actual values of T
cannot be inferred from the u (I') curve. In its simplest form (two constant
coefficients) this model predicts the Weissenberg pattern of normal stresses
which is known not to be correct in detail. If a generalization is made to
accommodate finite values of the second normal stress difference even the
shear rate dependencies of p.’and T may turn out to be mutually independent.
Again, this model can accommodate a finite value of T together with a con-
stant viscosity @),

(2) If White and Metzner’s model is used with a constant value of y, it is equivalent
to a linear viscoelastic formulation.
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Oldroyd’s ““linear " theory of viscoelasticity assumes, for a second-order
fluid, the following constitutive equation:

) (1 +ap;)s =2u(1 + [ —T] ) By

where y, is'the zero-shear viscosity, and D/Dt are Jaumann time derivatives.
Such a fluid has two time-constants, « and T, both of which are relevant to
both the elastic properties and the viscosity curve. The w(I") function is
given by:

TI?
@® e

wo 1+ a2l2

while the two normal stress differences are given by:

©) Pu—Ppr = 2 (Pss — Poa) = 2 po T ﬁ

Comparison of Equations 8 and 9 shows that the viscosity may be cons-
tant (« = 0) and at the same time finite normal stress may exist in visco-
metric flow (T == 0). The converse is not true: when deviatoric normal stresses
are zero (T = 0), the viscosity is necessarily constant.

If p is not constant (x==0, T=0), and a value of T is to be inferred from
the p (') curve, this would be taken as the inverse of the I' value at which
w starts being appreciably different from ), say w/po = 1— 3, with § a suita-
bly defined number:

(10) S —=1—"= "=

Thus, a pseudo-natural time T, would be obtained:
T —3
(11) T, = ‘/“(“SL) :

Consideration of vKuation 10 shows that:
T
(12) T”g‘/aT>oz>T

say, the value of T, by far exceeds the value of T, which, according to Equa-
tion (9), is a natural yardstick for elastic effects. Similar conclusions may be
drawn from the analysis of higher-order fluids. ,

The same conclusion can be drawn also directly from Truesdell’s sug-
gestion [1] on the evaluation of T from normal stress data as ®:

o . V(P11 +4 Paa — 2 Pa3)? (P11 — Pag)?
(13) T= 2“(0) 1!,12}) I

(3) Ttuesdell [1] gives Equation (13) with T' instead of I'? in the denominator, which
is an obvious misprint.
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while T, is to be evaluated as:
(14) Tu =V ©@[w©)

Equation (9) shows that the T value in Equation (7) is indeed the natural
time as obtained from Equation (13); while the value of T, is given, according
to Equation (14), by:

(15) T, =}aT

which, apart from the numerical factor J1/§, coincides with Equation (12)
-above.

EXPERIMENTAL.

Aqueous solutions of certain high molecular weight substances, which
are known to be viscoelastic at high concentrations, are characterized by a
Newtonian . (I') curve at low concentrations. Due to experimental diffi-
culties, normal stresses in viscometric flows cannot be measured for the dilute
solutions, but neither can their finiteness be excluded. Indirect evidence of
elastic properties of these dilute constant-viscosity solutions can be obtained by
studying critical effects which may be shown to depend on the elastic proper-
ties of the liquid. Three different elastic flow phenomena which have been
observed in such fluids are discussed below.

a) Velocity of spherical gas bubbles at high Reynolds numbers.

The motion of a spherical gas bubble at high Reynolds numbers has
been discussed by Levich [16], Chao [17] and Moore [18] for Newtonian
liquids; by Astarita and Marrucci [19] for purely viscous power-law fluids;
and by Astarita [20] for viscoelastic liquids; the terminal velocity is given,
if the liquid has no elastic properties, by:

gR?

(16) vU = 5

where v is the kinematic viscosity, g is the grav1ty acceleration and R the bubble
radius. For viscoelastic liquids, the velocity is predicted [20] to be appreciably
lower than given by Equation (16).

Terminal velocities of spherical gas bubbles at Reynolds numbers larger
“than 5 are plotted in fig. 1. The straight line through the origin represents
Equation (16). It is clear that, while the data for the presumably purely vi-
-scous aqueous solution of sugar are reasonably well correlated by Equation (16)
the data relative to the two dilute polymer solutions are appreciably lower.
This can be considered a reasonably direct indication of elasticity in the two
polymer solutions having constant viscosities.
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Fig. 1. — Velocities of spherical gas bubbles in inelastic and in elastic
liquids. . Reynolds numbers larger than 5.

b) Drag reduction.

The phenomenon of drag reduction during turbulent flow of some polymer
solutions has been observed by a number of workers [21-30], and has rather
firmly been established as being due to viscoelastic effects [21, 23, 24, 25, 26].
This phenomenon has been observed also in very dilute solutions which dis-
play a constant viscosity [27-31].

c) Entrance pressure drop in laminar flow through pipes.

The problem is that of flow into a small tube from a large upstream reser-
voir, as indicated in fig. 2. Let us assume that:

(i) The upstream reservoir is so large in extent that the fluid velocities
and deformation rates at Section 1 are negligibly small. This implies that
both the kinetic energy and any elastic energy developed in the fluid as a
result of its deformation are negligibly small at this section.

(i) Section 2 is sufficiently far downstream from the entry for the flow
field (velocity profile and all stresses) to have become well-developed prior
to this position. ‘

An energy balance written over the system defined by Sections 1 and 2
and the intermediate walls of the vessel gives, for the case of no energy ex-
change with' the surroundings:

Mech. energy Mech. energy Rate of energy dissipation
flux at = flux at + in region bounded by Sections
Section 1. Section 2. I and 2 and walls of ducts.

41. — RENDICONTI 1966, Vol. XL, fasc. 4.
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or:
R R

(17) le/p=f(£:ﬁ)u~27crdr+f(—fu)u-2nrdr+
0 0
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Fig. 2. — Control surfaces for energy balance in tube inlet problems.

The symbols used in Equation (17) are defined as follows:

w : mass rate of flow,

p1 ¢ hydrostatic (isotropic) pressure at Section I,

¢ @ fluid density,

u . fluid velocity at radius 7, at Section 2,

R : radius of tube (Section 2), |

T3 @ axial component of total stress tensor, consisting of a hydro-

static pressure term and a deviatoric term arising from the
fluid elasticity at Section 2:

m=—p+ Py

E : stored elastic energy per unit volume of fluid,

Dy : dissipation rate per unit volume of fluid
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Equation (17) may be rearranged:

1

1
(18) pl—zv[m(%)xdx:zf%‘z(g—)xdx—i—
0 0
1
+ 2f(E——P11)(%)xdx +(£>vadV
0 v

in which x denotes the dimensionless radial position 7/R.

The term (E — Pu) may be shown to be positive for real fluids [32].
Thus the energy balance differs from that for purely-viscous materials (such
as Newtonian fluids) by the inclusion of this additional contribution, implying
that the measured pressure drop over the entry, p1 — p», will be greater for

50 ¢—
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(ETHYLENE GLYCOL)

® VISCOELASTIC FLUID
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Fig. 3. — Comparison of pressure-axial distance profiles for Newtonian and viscoelastic
fluids. Data of Feig [32].

The greater entrance pressure drop and shorter tube length required for development of a constant pressure gradient, as
observed here for the viscoelastic fluid, are effects which appear to be common for viscoelastic fluids rather generally,

viscoelastic fluids. This difference between the values of (p1 — p2) for purely
viscous and viscoelastic fluids will be denoted as AP, and may be obtained
from experimental measurements of the total pressure profile; AP, will contain
any additional dissipation terms in the viscoelastic case as well as the contri-
bution due to (E —Pn).

The data depicted in Figure 3 show that AP, is large and well-defined.
These results are for fairly viscous systems [32] for which the physical proper-
ties may readily be measured rheogoniometrically by means of any of several
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available techniques [33]. The same effects have, however, been noted in very
dilute solutions having essentially constant viscosity coefficients and in which
any stresses arising out of the fluid elasticity and manifested as normal stresses
under steady laminar shearing flow conditions appear to be too small to be
measured rheogoniometrically [34]: i.e. in solution which would be described
as Newtonian if standard Viscometric and rheogoniometric techniques were
employed to determirie their physical properties.

TABLE I.

Excess pressure drop (end effect) for flow of viscoelastic fluids into a tube.
Data of Pruitt and Crawford [31].

|
DESI?SJ;T?XON \ Vlz;(.)sny Shse:;—rlate Dyﬁe};ﬁ:’mz psi. AP ratio *
WSR-301 (¥%)
250 ppm conc. ...... 1.3 (5) 3 X 104 o o 1.00
3 1.3 (4) 4 X 104 2.5 X 105 3.6 3.1
\ 1.3 (0) I X 108 7.5 X 105 10.8 2.0
| 1.4(3) 0.3 X 104 o o 1.00
K-PAM (**¥) \ 1.4 (0) I. X 10% 2.5 X 104 0.36 4.2
250 ppm conc. ... ? 1.3(7) 3. X 10t 9.1 X 10% 1.31 2.3
| 1.3 (4) I. X 10° 3.3 X 10° 4.75 1.4
i
AP__, viscoelastic fluid

xs
AP, .,
‘(**)  Polyethyleneoxide having a molecular weight of approx. 4 million.

* AP ratio denotes the ratio: - -
® Newtonian fluid

(***) Polyacrylamide having a molecular weight of approx. 8.3 million.

Table I summarizes the results of measurements using two polymeric
solutions at a concentration level of only 250 p.p.m. (0.025 %). These solutions
were so nearly Newtonian that viscosity measurements over a hundred-fold
range of shear rates revealed only a 159, change in one case and 10%, in the
second, and a part of even these small changes is quite possibly due to viscous
heating effects at the high shear rate levels employed [35]. However, in spite
of this near-constancy of the viscosity one notes very large values of the term
AP, to as much as over four times the value for comparable Newtonian fluids.

‘The significance of these results in the interpretation of viscometric measu-
‘rements is of interest, as the “ end effect ” pressure loss is sufficiently greater
than that of Newtonian fluids to render conventional end effect corrections
for the latter useless. This can be illustrated by calculating the equiva-
lent length of a straight tube required to incur the same pressure loss, L,.
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TABLE II.

Equivalent length of tubes required to produce a pressure loss equivalent to AP, .

Shear Rate L,

FLUID sec—1 Diameters

3 X 10% o
WSR-301 .. . . . . . . ... ... .. 4 X 104 105
I X 105 125
I X 104 40

K-PAM . . . . . . . . ... ... ..
3 X 10t 50
I X 10° 55

|

%

g 0.3 X 10% )
l

l

As shown in Table II for fluid K-PAM the ‘“equivalent length ” of the
entry is 50 diameters at a shear rate of 3X ro? sec-!. This means that if a
tube having a length of 50 diameters were used in a viscosity determination
(and this length/diameter ratio is in excess of that frequently used), and if
the conventional Newtonian correction [36, 37] of 2,12 (p U2/2) had been
made to the measured pressure drop, the interpretation of the remaining pres-
sure drop over the system in terms of viscous (Poiseuille) effects would lead
to a value for the viscosity of just twice the true one. Similarly, at a shear
rate of 10% sec~1 for fluid WSR-301 the calculated viscosity would be in error
by a factor ofi (125 + 50)/50, or 3.5. Obviously the determination of the visco-
sity of these highly elastic dilute solutions requires either the use of very long
tubes (L. > 1,250 D, for 109, error or less, for fluid WSR-301) or, more prac-
tically, the use of several tube lengths to enable the experimental determina-
tion of the actual end effect, unless strain gages are used to monitor the pres-
sure gradient directly, thereby eliminating an overall pressure drop measure-
ment. In view of the widespread use of dilute solution viscosity measurements
to evaluate molecular properties of polymers these comments are seen to be
of broad significance unless care is exercised to restrict the measurements to
moderate or low shear rates, under which conditions these elastic effects appear
to be too small to be significant.

Ac,énowlédgement.fThis analysis is part of a study of the structure and
properties of 'dilute polymeric solutions, having application in water conser-
vation and treatment, and has been supported by the Water Resources Center
of the University of Delaware.
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