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Matematica. — On the contraetability criterion of Castelnuovo- 
Enriques. Nota di A lex a n d ru  Lascu, presentata”  dal Socio B. Segre.

RIASSUNTO. — Il classico criterio di cui al titolo, caratterizzante le curve irriducibili 
eccezionali di i a specie, viene qui esteso in geometria algebrica astratta e rispetto ad arbitrari 
morfismi birazionali.

i . The aim of this note is to extend to Abstract Algebraic Geometry the 
well known criterion of Castelnuovo-Enriques [1] which characterizes the 
exceptional irreducible curves of the first kind on an algebraic surface. Thus 
our criterion of [5] is extended to arbitrary birational morphisms and proofs 
are given here in full.

The problem has recently been considered by Momiie30H [6] for com
plex analytic varieties. Although the treatment here is quite independent of [6] 
and concerns abstract algebraic varieties, our result is similar to those of [6].

We shall consider abstract algebraic varieties over a universal domain Q, 
of arbitrary characteristic, in the sense of Weil [8].

D efinition—Let Y , X ' be algebraic varieties and Y' a sub-variety 
of X '. We shall say that Y' is regularly contractable to Y within  X ' if there 
exists a proper birational morphism X ' — X which satisfies the following 
conditions:

i° Y' is the closed subset of X ' formed by the points where /  is not 
biregular;

20 f  ( Y f  is a subvariety of X isomorphic with Y;
30 each point of / ( Y') is simple on X.

We shall then say that /  : X'->- X is a regular contraction of Y r to Y.
Note .— Identifying / ( Y') with Y we shall write YC X. Condition 30 

implies that dim Y' >  dim Y, by Z.M.T. (Zariski’s Main Theorem), since, 
in view of i 0, /  is not biregular at Y.

T h e o r e m .— Let Y, Y', X ' be nonsingular algebraic varieties such that Y r 
is a subvariety of Y.

Y r is regularly contractable to Y  within X r if, and only if, the following  
conditions are satisfied:

i ° there exists an algebraic vector bundle E of base Y  of rank r >  1 and an 
isomorphism Y ' — -> P (K), where P (E) is the projective bundle associated to E; 

2° codim i Y f =  1;
30 i f  I is the canonical line bundle of P(E), then h~l(l) is equivalent 

with the normal bundle of Y ' in  XL
Under these conditions, let f  \ X ,;-> X be a regular contraction of Y r to Y . 

The couple (Y , X) is then uniquely determined by (Y' , X'), up to an isomor- (*)

(*) Nella seduta del 22 giugno 1966.
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phism\ f  1 is a blowing up of X, of center Y; hence f  is uniquely determined 
up to an isomorphism over X; E is isomorphic with the normal bundle of
Y in X .

Note —  Condition i° characterizes Y', while conditions 2° and 30 char
acterize the embedding of Y' in X '. Condition 30 is an alternative form of 
Segre’s intersection formula for dilatations [7].

The last part of the theorem concerns the uniqueness of contractions.
The proof of the theorem is an easy consequence of the sequence of lem

mas below.
We shall use throughout the following notations: X , Y are non-sin

gular algebraic varieties and Y is a subvariety of codimension greater than 
1 of X, q : X X is such that q— 1 is the blowing up of X of center Y, defined 
by the Ideal # of Y in Ox , where Ox is the sheaf of local rings of X. It follows 
that Y = q~x ( Y ) = F  (E), where E is the normal bundle of Y in X and q / Y = p  
is the canonical projection of the projective bundle P (E) on Y. Note that 
q is characterized by the following universal property (similar to those con
sidered in [3]): for every birational morphism h : Z X such that h~x (Y) 
is a hypersurface T of Z, Z is normal and h[Z \ T  biregular, there exists 
a canonical birational morphism ^ : Z  -> X  such that h =  qk.

2. L em m a i.—Let Yf be a normal algebraic variety, U a hyper surf ace 
of V and f:  V-> X a birational morphism such that f  maps biregularly V \ U  
onto X \Y  and, additionally, f  (U) =  Y. There exists then a canonical birational 
morphism g  :V  ->X such that f ~ q g . I f f  is complete over an open nonempty 
set of Y, then g  (U) contains an open set of Y . I f  moreover f  is proper, then 

g  (U) =  Y,
Proof.— In view of the universal property of q there exists a birational 

morphism g  : V -> X such that f  =  qg. It follows g  (U) C Y. If /  is complete 
over an open nonempty set G of Y, then g  in complete over q~ l (G) and so 
q~l (G)C g  (V). A s/  maps biregularly V \  U onto X \ Y , g  maps biregularly 
V \ U  Onto X \  Y; hence q~x (G )C g  (U). I f / i s  proper, then we have G = Y , 
i.e,, q - '  (G) =  Y.

L em m a 2.— Let U be a simple subvariety of Y  and  /  : V -> X a bira
tional morphism which maps biregularly V \ U  onto X \ Y  and is such that 
f  (U) =  Y. I f  dim  U >  dim  Y, then codimi U = 1 .

Proof.—rSuppose r  =. codimy U >  1. As U is simple on V, there exists 
an open set G of V such that U n G 4= 0 and U n G  =  Hi - -Hr , where 
H ? are hypersurfaces of G (i<Cz’<  r). Owing to the local character of the 
problem we can replace V by G ,U  by U fi G and, consequently, X b y /(G )  and
Y by /  (U n  G). We can therefore suppose U =  Hi - •' Hr ; /  (H,-) =  K,. is 
a simple hypersurface of X, in view of the biregularity of /  in V \ U .  It 
follows: Y = f  (U) C K iD  • : • f ) K r . Hence there exists an irreducible compo
nent Z of K in  • • • n  Kr such that Y C Z .  But dim Z >  dim X — r  =  dimV — 
— r  — dim U  and dim U >  dim Y, This shows that Y =j= Z, which contradicts 
the hypothesis U —Hi ••• H r , since /  maps biregularly V \ U  onto X \  Y.
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COROLLARY.— Under the hypotheses of Lemma 2, i f  f  is proper and V 
normal there exists a canonical birational proper morphism g :  V X , s u c h  
that f  =  qg and g  (U) =  Y, which m a p s Y  \ U  onto X \  Y biregularly.

Lemma 3 .— Let f  : X7--> X be a regular contraction of Y ' to Y  and X ' non
singular. There exists then a canonical isomorphism g  : X '->  X such th a tf  — qg.

Proof.-—Taking in the corollary above U =  Y', V =  X', it remains only 
to show tha tg  is an isomorphism. By Z.M.  T., it is sufficient to prove that 
g ì Y' is injective.

Let us suppose y  E Y , p  (y) =  y  and r  — codimx Y. There exists then r 
hyper-surfaces Hi , • • •, Ur_x of X such that:

(a) Y is a simple subvariety of H z ( r < I  i < r —  1);
(b) if H; is the hypersurface of X corresponding by q to and

Fy —p~~x (y), then Hi • • • Hr-~i • =  {y  }. Replacing XT>y a suitable neighbor
hood ofy,  we can find 91 , • ••, 9r_i E Q (X) such that (9-) =  H,- (1 <  i < r — 1). 
Then, if 9• =  9,- o q , t y =  9,- 0/, we have (9•) == H- +  Y [4] and so (9-) =  H - +  Y', 
since the hypersurfaces of X ', X correspond by ^  biregularly. Consider 
now r  =  Hi • • • H;_i , F; =  f ~ l (y) X  =--g  (T'). As g  (Hj) =  H,-, we have 
r  — g  ( r ') .  Since F'y =  g ~ x (F ,̂), we can apply the projection formula and 
get g  (T'- Fj,) =  T- Fj,, i.e., y r '- F j , )  =  {y}.  There exists therefore a unique 
point y r E Y' such that T' • Fj, —’{y'  }• We can now prove tha t g - 1 ( j7) =  { y r}. 
Indeed, suppose contrariwise that there exists an y "  y f such that 
g ( y n) — y  and so, evidently, y ” E F f  Hence y ” <tV, because r ' * F J , = y .  
Therefore y "  E H ', with a suitable i (1 < / <  r — 1). As (9') == H' -f Y', we 
see that 9-€ O ( / ' ,  X '). Let ordy, (<J/) be the order of X') [4]
at y ”i i.e., the least integer a for which ^ G m a, where m  — m ( y " ,  X')  is 
the maximal ideal of O ( y " , X '). By the divisor’s formula (Theorem 3, [4]) 
we have ordy<< (9*•) — m (y",  H() m ( y n, Y ;), where m ( y n, H) , m ( y " , Y) 
are the multiplicities of y "  on H ', YC respectively. Hence ordy/ (9'-) =  1, 
since y n is simple on Y' and y "  E H -. Similarly ord^ (9,) =  m  ( j7 , Y) +  
~b m (y  , R f  =  2, i.e., 9̂  E n2 where n =  m  (y  , X). But, since g  (y")  =  y, 
Ó > X') dominates O (y  , X) by the canonical morphism g* : Q (X )—Y-£X(X'). 
This proves that^*(w ) C m  and so g* (n2) C m 2. Thus we get 9*-€ m 2, which 
contradicts the hypothesis ordy/ (9') =  1.

3. Lemma 3 proves the ” only i f ” part of the theorem. It proves also 
the uniqueness part of the theorem but for the fact that (Y, X) is u n i q u e l y  
determined by ( Y f, X '). We shall now prove this remaining assertion.

Lemma 4. — Let f : X ’- >X  , / i  : X'-> Xi be two regular contractions of 
Y ’ within X ’. The birational correspondence t : X -^  Xi defined by f  and f \
is then an isomorphism.

Proof, (by induction on dim  X ' . =  n).— For n — 1 lemma 4 is trivial. 
Let n j> 1 , / (Y') = Y ,  f i  ( Y f  == Yi and suppose that the lemma is true for 
the dimension n — 1.

If dim Yi =  o, then by Z.M.T. / is regular. In this case, if dim Y >  o, 
then (by Lemma 2) codimx Y ==■ 1 which contradicts the hypothesis that



A le x a n d ru  LASCU, On the contractability criterion of Castelnuovo-Enriques IOI 7

is a contraction. Hence dim Y =  o and so t~~x is biregular, again by Z.M.T. 
Thus we can suppose dim Y and dim Y i>  i. By Lemma 3 /  and /1 are 
monoidal transformations of centers Y , Yi respectively. Let y  E Y and H 
be a hypersurface of X transversal to Y at y  on X. Then, in view of the local 
character of the problem, we can suppose H • Y =  Z where Z is a subvariety 
of Y. S i n c e / i s  a monoidal transformation of X centered in Y , / -1 (H) =  H ' 
and / /H ' is a monoidal transformation of H, of center Z. It follows 
Z' = / ~ 1 ( Z ) C H / and H' - Y '  =  Z \  Since f \  is a monoidal transformation, 
this shows that f i[H '  is a monoidal transformation of /  (H ') =  Hi ; hence 
we have either Y3.CH1 and f \  (Zr) =  Yi or Yi cl: Hi and Yi-Hi  =  f± (Z'). 
By the hypothesis of induction t \H — tu induces an isomorphism H H i , 
hence tu (Z) — f i  (Z'). It follows that dim Y >  dim Yi and, by symmetry, 
dim Yi >  dim Y; hence dim Y =  dim Y, which shows that f \  (Z') =|= Yi i.e. 
Yi cl: H i . Thus we see that f ~ l (y) =  / f 1 (yi), where y\  =  tu (y '). Therefore 
the fibres of / /y ' and those of f i f y r coincide. This shows that t is bijective 
on Y and so, by Z.M .T., t is regular.

Lemma 5.— Let Y, Y', X ' be nonsingular algebraic varieties and suppose 
that Y 1 is a subvariety of X '. I f  the conditions ;i°—30 of the Theorem are satis
fied, then there exists a regular contraction f  : X ' -> X of Y f to Y.

Proof .—We shall construct X and f  piece-wise. Indeed, owing to Lem
ma 4, these “ pieces ” can be canonically pieced together to get the variety X. 
By definition we take X ' \  Y ' as an open set of X apd / /X ' \  Y ' =  1. Let 
y ' E  Y r. According to condition i° we can identify Y ' with P (E). L e t / :  Y '-^  Y 
be the canonical projection and y  =  p  (y Then p ~ 1 (y) — P (E /,  where 
is the fiber of E in y. Let r  be the rank of E and Pi , • • •, Pr C P ( E /  the 
hyperplanes corresponding to a system of coordinates in E ^. Taking a local 
system of coordinates of E in an open neighborhood U of y  6 Y in Y, we get 
such a system Pi (u) , • • - , Pr (u) in every point u E U. By 20 and 30 there 
exists ^ e O  ( y ,  X ') such that (<]/) =  Y' +  H'- in an open neighborhood 
U ' of y ' in and, additionally, for every w ' e U ' n Y ' , / 1 /  / / C U '  
and H / 1/ - 1 ( /  (u'J) =  Pz- (p (u’f). It follows that, in U ', we have H ln  • • ’
• • • O H '  fj Y [  =  0  because, for every u' E \ J '  and u —  p  (u'), we have
r ■’
n  P,- (u) =  0 . We can therefore reduce U ' to an open neighborhood of 
1

U 'n  Yv in X ' such that Hi n  • • • f lH'  =  0 in U' .  We can now evidently 
suppose /  (U 'fì Y') —U, and so restrict our construction to Uh Replacing 
X ' by  U ; , Y ’ b y ' Y ' n U '  and Y by U we get the following conditions:

(a) Ofó =  Y ’ Hi (i <  . <  r) ;
(b) H '• Y '  =  P (E /, where E , - ( i <  i < r )  are subbundles of E corre

sponding to a system of coordinates of E;

(6) n  h ; =  0 .
1

Similarly, by restriction to suitable chosen open sets, we can suppose, 
that there exists coi , • • •, oìs E tì (X') and ax , • • •, 6 l ì  (Y) such that
Q (coi ,'•••, co/ — O ( X /  are everywhere defined on X ' and null on Y', and
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that Q (ai , • • •, a,)- — Q (Y) and a i , • • •, a* are everywhere defined on Y. 
We m ay moreover suppose that there exists P i , • ••, ^  e O (X ') which are 
regular at every point of X ' and such that p,./Y' =  a,. (1 <  i  <  s)t where 
Q (Y) is identified with a subfield of £ì (Y') by the canonical injection 
p * : D (Y)-> O (Y') associated to p .

Consider now the locus X'- of (p , co , ^ , 9(‘)) in the affine space 
SN(N == t +  s +  2 r), where { 9(0 } =  {9(0 9(0} with 9<*’> =  (1 <  2 <  r).
X/ i s  isomorphic with the open set X ' \  H'- of X '. We shall identify X'- 
with this set. Let X be the locus of (P , co , <];) in SM (M =■ t +  +  r) and
f i  : X ;->  X the birational mapping defined by /,*.((p , co , ^ ,9^))) =  (P , co , ip). 
It is easily seen that (1 < i  <Lr) is everywhere regular on X/ and biregular

r  r
in X ' \  Y'-, where Y'- =  X Jn Y '. But X' = u X - ,  since n H i  — 0. Hence

1 I

f i  (1 <  i <L r) defines a birational morphism / : X ' - > X .  It is obvious that 
/ ( Y') =  Y, where Y  is identified with the locus of (a , o , o) in SM. Since /,- 
is biregular in X ' \  Y'-, /  is biregular in X ' \  Y'.

Let y  € Y. We shall show that y  is simple on X. In view of the hypoth-
r— 1 r —1

esis b) above, p ~ (y ) • n  Hj  — { y r } where y '  is a point. Hence I I  H)
j = i  j — i

has a unique irreducible component Z' at y'-a.nd Z' is transversal to Y' at y r 
on X'. Let Y" be the unique irreducible component of Z'. Y '  containing y r 
and H ;- =  / ( H}), (1 <Lj < r ) .  If Z =  / ( Z'), then Z is an irreducible com-

r — 1

ponent of multiplicity one of n Hy on X because f  maps X ' \  Y' onto
y=i ■

X \  Y biregularly. Consider now a generic point of S =  SM, (A , B , C), where 
(A) =  B =  (B;)i and C =  (Q)i<,-<,. Let D/0 = e ,/C , and -SiGS?
be the locus of (A , B , C , D$°). Then (A , B , C , (A , B , C) defines
a birational morphism F2- : S and, piecing together these maps, we get a
monoidal transformation F :  S '-> S  of S having the center T defined by 
Ci =  c r =  o. X ' is a subvariety of S' and F /X '= / .  Put T '= -F - i(T )  
and let 6 Q (S) be the coordinate function of Q (S) for which (^-) is the 
hyperplane L,- defined by Q  =  o (1 corresponds to a hyper-
surface L/ of S' and F~x (L2*) =  L; +  T '. Hence, if £'• = ^ q F g O  (S'), 
then (£*•) =  L) +  T '. induces on X the function Xi — 0 /•  This shows that
(&) =  , because ( ^  o /)= H ,- . It follows that H ,= L r  X, since (& )= (5,-)‘ X
by a well known formula [8]. Similarly F~1 (L?-)- X '=  (F -1 ((£,-)))• X '=(^-)- 
• X ' =  (^-) =  H'- +  Y'. The cycle Z '-(H )+  Y') is defined on X ' and equal 
to Z' • Y', since Hj • • • H )= o . But, as we have just seen, H )-f-Y '=  F _1 (Lr) • X '. 
This proves that Z' • F~1 (Lr) is defined on S' and that (Z' • F~1 (L,.))s' —(Z' • Y ')X' 
by the associativity intersection formula. Note that Y" is the unique 
irreducible component of Z '-F ~ 1 (Lr) which meets f ~ 1 (y)} hence also 
F~1 (jj), since Z 'C  Y' and F~1 (y ) f>Y' = / ~ 1 (y). It is evident that Lrf iZ  =  
-  Hfn Z  =  Y. On the other hand, Z =  F (Z'). This shows that we can 
apply the projection formula with respect to F : S '-*  S to Z'- F-1  (Lr). Thus 
we get i  (Y , L ^nZ  ; S) == 1, since i  (Y", F_1 (Lr) n Z ' ; S') = 1 .  As Z is
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the unique irreducible component of Hi - • Hr_i containing y t we can sup
pose Z =  (Hi - • -Hr_i)x . This shows that Z =  (Li - • -Lr_i -X)s , because 
H #- =  L - X  (i < i  < r — i). Therefore Lr -Z =  Li - • Lr X. We get thus 
finally i (Y , Li - • -Lr - X ; S) =  I, which proves that y  is simple on X by the 
well known multiplicity one criterion.

N o te —  It is now quite simple to see that E is isomorphic with the normal 
bundle N of Y in X. Indeed, since /  : X '->  X is a regular contraction of Y' 
to Y with X ', it follows that /  is a monoidal transformation of center Y of X. 
Then Y' =  P (N), and so the normal bundle XT of Y '  in X ' contracts regularly 
to N. But, in view of Condition 30, N ' -> /  and I is regularly contractable to 
E. Hence, by Lemma 4, N E.
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