ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Andrea Palenzona, Maria Luisa Fornasini

Sui composti di formula M_5X_3 formati dalle terre rare con il Pb

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **40** (1966), n.6, p. 1040–1044.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1966_8_40_6_1040_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Chimica.** — Sui composti di formula M_5X_3 formati dalle terre rare con il Pb^(*). Nota di Andrea Palenzona e Maria Luisa Fornasini, presentata^(**) dal Socio G. B. Bonino.

SUMMARY. — The existence of the Mn_5Si_3 structure type for the rare earth M_5Pb_3 intermetallic compounds has been found for all rare earths from La to Lu. Metallographic and X ray analyses confirmed this composition and this structure type. Eu and Yb metals do not form this phase but behave as bivalent elements. Lattice constants values decrease linearly with the rare earth trivalent ionic radius. Interatomic distances for the two series M_5Sn_3 and M_5Pb_3 are compared examining the case of Dy_5Sn_3 and Dy_5Pb_3 . The behaviour of rare earths, including Sc and Y, with the IV A group elements over the M_5X_3 composition is briefly examined.

In un precedente lavoro [1] è stata accertata la presenza delle fasi di composizione M_5Sn_3 (M = metallo delle terre rare) per tutte le terre rare eccetto Ce, Eu, Yb. Come nel caso dei composti dei lantanidi con lo Sn anche per quelli del Pb si hanno pochi dati a disposizione. Sono noti i diagrammi di stato La—Pb completo e Ce—Pb, Pr—Pb parziali [2]; tutti e tre mostrano la presenza delle sole fasi M_2Pb , MPb, MPb₃, quest'ultima con struttura AuCu₃. Recentemente sono stati studiati i composti Sc₅Pb₃, Y₅Pb₃, La₅Pb₃ e Ce₅Pb₃ [3] di struttura esagonale tipo Mn_5Si_3 ; si è quindi ritenuto interessante studiare il comportamento di tutte le altre terre rare in lega con il Pb sulla composizione 5:3.

I metalli delle terre rare impiegati erano prodotti della Michigan Corp., Nuclear Corp., Gallard Schlesinger, Lindsay, U.S.A.; di purezza superiore al 99,5%; il Pb era un metallo della Light, Inghilterra al 99,999%.

Tutti i composti sono stati preparati, come per quelli isomorfi dello Sn, per reazione diretta degli elementi (I gr di terra rara), scaldando i due metalli in contenitori di Tantalio chiusi, fino a fusione, in atmosfera di gas inerte (Argon). Le prime terre rare reagiscono piuttosto energicamente già al di sotto di 300°C, le altre a temperature superiori (400°C). Si sono ottenuti in tal modo dei lingottini di fusione compatti, fragili, ben cristallizzati, facilmente ossidabili all'aria specialmente quelli delle terre rare più leggere.

L'analisi micrografica effettuata su alcuni campioni (Pr, Nd, Sm, Tb, -Er, Tm, Lu) ha confermato l'esistenza di una fase unica su questa composizione, eccetto che per Eu e Yb i cui preparati apparivano nettamente eterogenei al microscopio.

(*) Lavoro eseguito nell'Istituto di Chimica fisica dell'Università di Genova, con l'aiuto finanziario del C.N.R. La ricerca qui riferita è stata in parte finanziata dall'Office Chief Research and Development, US Department of the Army, attraverso il suo Ufficio di Ricerche Europeo.

(**) Nella seduta del 22 giugno 1966.

1041

L'analisi mediante raggi X è stata eseguita con il metodo delle polveri su campioni finemente polverizzati, posti in capillari di vetro saldati sotto vuoto per evitarne l'alterazione, usando in tutti i casi la radiazione K_{α} del Fe. La disposizione del film era asimmetrica (metodo di Straumanis); i valori delle costanti reticolari, ricavati dalle riflessioni con indici più alti con il procedimento dei minimi quadrati, sono riportati nella Tabella I.

TABELLA I.

	<i>a</i> (Å)	c (Å)
La ₅ Pb ₃ [3]	9,528	6,993
Ce ₅ Pb ₃ [3]	.9,473	6,825
$\Pr_5 Pb_3$	9,337	6,814
Nd_5Pb_3	9,264	6,770
$\mathrm{Sm}_5\mathrm{Pb}_3$	9,163	6,687
$\mathrm{Eu}_5\mathrm{Pb}_3$		-
Gd₅Pb₃	9,077	6,637
$\mathrm{Tb}_5\mathrm{Pb}_3\ldots$	9,019	6,596
$\mathrm{Dy}_5\mathrm{Pb}_3$	8,957	6,546
Ho5Pb3	8,922	6,532
$\mathrm{Er}_5\mathrm{Pb}_8\ldots$	8,867	6,504
$\mathrm{Tm}_5\mathrm{Pb}_3$	8,832	6,487
Yb5Pb3		
Lu5Pb3	8,765	6,473

Costanti reticolari dei composti M₅Pb₃.

Tutte le terre rare dal La al Lu eccetto Eu e Yb, formano la fase esagonale tipo Mn₅Si₃ [4]. Il calcolo delle intensità effettuato su 110 riflessioni per il composto Dy₅Pb₃ mostra un buon accordo tra le intensità calcolate e osservate (vedi Tabella II), assumendo i seguenti valori dei parametri: $x_{Dy} = 0.244$; $x_{Pb} = 0.60_0$.

In fig. I sono stati riportati i valori delle costanti reticolari in funzione del raggio ionico trivalente delle terre rare. Analogamente a quanto già osservato per i composti M_5Sn_3 [I], anche in questo caso si ha una variazione lineare delle dimensioni della cella elementare.

TABELLA II.

h k l	Icalc	I _{oss}	hkl	Icalc	I _{oss}	h k l	Icalc	Ioss
100	2,2		4 I 2	5,8	dd	225	5,1	dd
ΙΙΟ	0,7		330	0,2	· · · · ·	504	23,3	m [—]
200	0,01		420	15,2	d^+	440	7,6	and
III	2,I	· •	331	17,3	md	3 1 5	17,3	mu
002	13,2	d	4 2 I	12,8		612	9,4	d
I O 2	5,4	dd	214	12,1	m ⁻	530	6,0	444
2 I O	16,9	d^+	502	41,8	f^{-}	700	Ι,7	aaa
2 I I	78,1	f^+	510	7,0		334	0,4	
I I 2	58,3	f	3 0 4	25,7		44 I	10,5	
300	31,7	m^+	3 2 3	7,8	m	4 3 3	9,9	md
202	10,9	d	5 1 1	6,7	·	4 2 4	41,9	i)
220	0,6		332	12,8	m	531	0,2	mf
2 I 2	0,4		4 1 3	0,04		006	6,0	
310	6,3	<i>d</i> ⁻	422	5,7	dd	106	2,9	1
2 2 I	7,8	d	224	0,6		523	14,0	d
3 I I	24,5	m	3 1 4	6,4	d^{-}	620	8,5	dd
302	Ι,2		600	0,04		62I	19,0	
I I 3	1,0		512	0, 6		514	23,9	
400	г,3	—	430	o,4		I I б	39,5	, JJ
222	17,5	md	II5	0,6	n an Arran Tarihi an Arran	442	0,9	
3 I 2	0,3		4 0 4	т,6	7	3 2 5	14,1	dd
320	0,02		43 I	7,2	ma	206	8,2)
2 1 3	41,3	f^{-}	520	9,5	d	532	67,2	fff
32 I	10,4	d	3 3 3	16,7	md	702	24,6	
410	8,5	d^{-}	521	9,3		613	0,9	
402	13,9	d	4 2 3	12,6	m	4 1 5	0,1	
4 I I	0,05	· · · · ·	3 2 4	0,05	· · · ·	710	15,1	d
004	17,8	md	602	15,2	d	2 1 6	0,5	
I O 4	0,6		2 I 5	31,4	т	622	0,4	
2 2 3	4,8	md	4 3 2	4,4		7 I I	21,2	m^+
322	11,3	{	610	17,6	md	604	0,2	· · · · ·
500	10,6	d^+	4 1 4	14,1	mad	434	2,5	ddd
I I 4	0,4		5 1 3	7,3	ma	306	1,9	www
3 1 3	15,8	md	611	0,5		4 4 3	25,8	m
204	0,01		522	2,8	dd			

Intensità calcolate e osservate per Dy5Pb3

Fig. 1. - Costanti reticolari in funzione dei raggi ionici delle terre rare trivalenti.

Fig. 2. – Composti 5 : 3 delle terre rare con gli elementi del IV gruppo A. M₈Si₃: [5, 6, 8, 11]; M₈Ge₃: [6, 7, 9, 10, 11]. M₈Sn₃: [1, 3]; M₈Pb₃: [3].

72. – RENDICONTI 1966, Vol. XL, fasc. 6.

Come si vede dalla fig. 2 le terre rare, con Sc e Y, formano con gli elementi del IV gruppo A del sistema periodico (escluso C) la composizione M_5X_3 di tipo Mn_5Si_3 ; fanno eccezione (La, Ce, Pr) $_5Si_3$ che sono tetragonali di tipo Cr_5B_3 e Nd_5Si_3 che può esistere in queste due modificazioni. Le terre rare bivalenti, Eu e Yb, a causa delle loro dimensioni, non sembrano in grado di formare tale struttura eccetto Yb₅Si₃ che dovrebbe contenere Yb nello stato trivalente. La variazione lineare già osservata per M_5Sn_3 e M_5Pb_3 delle costanti reticolari con il raggio ionico trivalente delle terre rare è ancora soddisfatta per i composti M_5Si_3 e M_5Ge_3 di tipo Mn_5Si_3 .

TABELLA III,

0

		Dy_5Sn_3	Dy ₅ Pb ₃
	a M		
$M in \begin{pmatrix} I & 2 & I \end{pmatrix}$	2 M	3,240	3,273
$\left(\frac{1}{3},\frac{1}{3},\frac{1}{2}\right)$	· 6 M	3,823	3,820
	6 X	3,142	3,184
(I)	IХ	3,156	3,189
$\operatorname{IM} \operatorname{in}\left(x \circ \frac{1}{4}\right)$	· 2 X	3,147	3,127
	2 M	3,664	3,785

Distanze 🖓	interatomiche	(A)	nei	composti	Dy ₅ Sn ₃	е	Dy_5Pb_3 .
------------	---------------	-----	-----	----------	---------------------------------	---	--------------

Nella Tabella III sono riportate le distanze tra gli atomi più vicini, calcolate in base ai valori dei parametri scelti per i composti Dy_5Sn_3 e Dy_5Pb_3 . Tutte le altre distanze sono maggiori della somma dei rispettivi raggi atomici; in particolare risulta che gli atomi X non sono mai a contatto fra loro.

Gli Autori desiderano ringraziare il prof. A. Iandelli per l'assistenza ed i suggerimenti forniti durante lo svolgimento del presente lavoro.

BIBLIOGRAFIA.

- [1] A. PALENZONA e F. MERLO, « Rend. Acc. Lincei », in corso di stampa.
- [2] K. A. GSCHNEIDNER Jr., Rare Earth Alloys, ediz. D. Van Nostrand (1961).
- [3] W. JEITSCHKO e E. PARTHÉ, «Acta Cryst. », 19, 275 (1965).
- [4] W. B. PEARSON, Handbook of lattice spacings, ediz. Pergamon Press (1958).
- [5] E. I. GLADISHEVSKIJ E P. I. KRIPJAKJEVITSCH, «Izv. Akad. Nauk SSSR, Neorgan. Materialy », *I* (5), 702 (1965).
- [6] J. ARBUCKLE e E. PARTHÉ, «Acta Cryst. », 15, 1205 (1962).
- [7] E. PARTHÉ, *Colloquio internaz. sui derivati semimetallici*. Parigi (Orsay) 1965 (in corso di stampa).
- [8] E. I. GLADISHEVSKIJ, «Izv. Akad. Nauk SSSR, Neorg. Materialy», I (6), 868 (1965).
- [9] J. L. MORIARTY, R. O. GORDON e J. E. HUMPHREYS, «Acta Cryst.», 19, 285 (1965).
- [10] E. I. GLADISHEVSKIJ, «Zhur. Struk. Khim.» 5, 919 (1964).
- [11] E. PARTHÉ, «Acta Cryst.», 13, 868 (1960).