ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Gerald D. Ludden, Masafumi Okumura, Kentaro Yano

Totally Real Stibmanifolds of Complex Manifolds

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **58** (1975), n.3, p. 346–353. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1975_8_58_3_346_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Geometria differenziale. — Totally Real Submanifolds of Complex Manifolds. Nota di GERALD D. LUDDEN^(*), MASAFUMI OKU-MURA E KENTARO YANO, presentata^(**) dal Socio B. SEGRE.

RIASSUNTO. — Si approfondisce lo studio di certe sottovarietà di una varietà complessa, com'é specificato nella seguente Introduzione.

§ I. INTRODUCTION

There have been many papers studying complex submanifolds of complex manifolds, especially of complex space forms (see [6] for a survey of results and references). Recently there have been a number of papers concerning arbitrary submanifolds of complex manifolds (see [1], [2], [4], [5], [7], [9]). In particular, Chen and Ogiue [2] have studied submanifolds M of **M** such that $T_x(M) \cap JT_x(M) = \{ o \}$ for each x in M. The purpose of this paper is to study these submanifolds further. In particular in § 2 we consider the basic properties of such submanifolds and in § 3 we examine the Laplacian of the square of the length of the second fundamental form and prove a pinching theorem. § 4 is devoted to the study of parallel isoperimetric normal sections on these submanifolds.

§ 2. FUNDAMENTAL PROPERTIES

Let **M** be a Hermitian manifold of complex dimension m and let **J** be the almost complex structure and g the Hermitian metric on **M**. Let M be an *n*-dimensional submanifold immersed in **M** satisfying $T_x(M) \cap JT_x(M) = \{0\}$ for each $x \in M$, where $T_x(M)$ is the tangent space to M at x. Here we have identified $T_x(M)$ with its image under the differential of the immersion. We call such a submanifold M *totally real* or *anti-invariant*. If X is a vector field on M, we see **J**X is a vector field in the normal bundle of M. If ξ is a vector field in the normal bundle put

$$\mathbf{J}\boldsymbol{\xi} = \mathrm{P}\boldsymbol{\xi} + \mathrm{Q}\boldsymbol{\xi}\,,$$

where $P\xi$ is the tangential part of $J\xi$ and $Q\xi$ the normal part. Then P is a tangent bundle valued 1-form on the normal bundle and Q is an endomorphism of the normal bundle. Applying J to (1) and JX and comparing and normal parts, we have

(2) $PQ\xi = o$, (3) $Q^2\xi = -\xi - JP\xi$,

(4) $P \mathbf{J} X = -X$, (5) $Q \mathbf{J} X = o$,

(*) Work done under partial support by NSF Grant No. 36684.

^(**) Nella seduta dell'8 marzo 1975.

where X is an arbitrary tangent vector field to M and ξ an arbitrary normal vector field. From (3) and (5) we see $Q^3 + Q = 0$ on the normal bundle (see [10]). We also see that $n \leq m$ since **J** is non-singular.

Let ∇ be the Riemannian connection of **g**. Then, the Gauss and Weingarten equations are

(6)
$$\nabla_{\mathbf{X}} \mathbf{Y} = \nabla_{\mathbf{X}} \mathbf{Y} + \sigma (\mathbf{X}, \mathbf{Y}), \quad (7) \quad \nabla_{\mathbf{X}} \boldsymbol{\xi} = -\mathbf{A}_{\boldsymbol{\xi}} \mathbf{X} + \nabla_{\mathbf{X}}^{\mathbf{I}} \boldsymbol{\xi}.$$

Here ∇ is the Riemannian connection of the metric g induced on M from g(i.e. g(X, Y) = g(X, Y)), σ is the second fundamental form of the immersion, ∇^1 is the connection on the normal bundle induced from ∇ and $g(A_{\xi}X, Y) = g(\sigma(X, Y), \xi)$. A vector field ξ in the normal bundle is *parallel* if $\nabla^1 \xi = 0$. M is *totally geodesic* if $\sigma \equiv 0$. M is *minimal* if $\sum_{i=1}^n \sigma(e_i, e_i) = 0$ for any local ortho-normal basis $\{e_1, \dots, e_n\}$ of tangent vectors to M.

Assume now that **M** is Kaehler (i.e. $\nabla J = 0$). Differentiating **J**X and (1) and comparing tangential and normal parts we have

(8)
$$-A_{\mathbf{J}_{\mathbf{Y}}} \mathbf{X} = \mathbf{P}\sigma(\mathbf{X}, \mathbf{Y}),$$
 (9) $\nabla_{\mathbf{X}}^{\mathbf{I}}(\mathbf{J}\mathbf{Y}) = \mathbf{J}\nabla_{\mathbf{X}}\mathbf{Y} + Q\sigma(\mathbf{X}, \mathbf{Y}),$
(10) $\mathbf{P}\nabla_{\mathbf{X}}^{\mathbf{I}} \boldsymbol{\xi} = \nabla_{\mathbf{X}}(\mathbf{P}\boldsymbol{\xi}) - A_{\mathbf{Q}\boldsymbol{\xi}}\mathbf{X},$ (11) $-\mathbf{J}A_{\boldsymbol{\xi}}\mathbf{X} + Q\nabla_{\mathbf{X}}^{\mathbf{I}} \boldsymbol{\xi} =$
 $= \sigma(\mathbf{X}, \mathbf{P}\boldsymbol{\xi}) + \nabla_{\mathbf{X}(\mathbf{Q}\boldsymbol{\xi})}^{\mathbf{I}}.$

From (8) we have

$$-g(\mathbf{A}_{\mathbf{J}\mathbf{Y}} \mathbf{X}, \mathbf{Z}) = g(\mathbf{P}\sigma(\mathbf{X}, \mathbf{Y}), \mathbf{Z}),$$

or

$$-g\left(\sigma\left(\mathbf{X},\mathbf{Z}\right),\,\mathbf{J}\mathbf{Y}\right)=g\left(\mathbf{P}\sigma\left(\mathbf{X},\,\mathbf{Y}\right),\mathbf{Z}\right).$$

If M is totally umbilical, that is $\sigma(X, Y) = g(X, Y) H$ for some normal vector field H, then -g(X, Z)g(H, JY) = g(X, Y)g(PH, Z). Letting X = Z and Y = PH we have $g(X, X)g(PH, PH) = g(X, PH)^2$. Now every real curve (n = 1) in **M** is totally real. If n > 1 we see that PH = 0. If n = m, then Q = 0 and J = P. Thus we have

PROPOSITION I. If n = m > I and M is totally umbilical, then M is totally geodesic.

Suppose now that \mathbf{M} is a complex space form of constant holomorphic curvature \mathbf{c} . Denote \mathbf{M} by $\mathbf{M}(\mathbf{c})$. Then the curvature operator \mathbf{R} of $\mathbf{M}(\mathbf{c})$ assumes the form,

$$\mathbf{R} (\mathbf{X}, \mathbf{Y}) \mathbf{Z} = \mathbf{c}/4 \{ \mathbf{g} (\mathbf{Y}, \mathbf{Z}) \mathbf{X} - \mathbf{g} (\mathbf{X}, \mathbf{Z}) \mathbf{Y} + (\mathbf{J}\mathbf{Y}, \mathbf{Z}) \mathbf{J}\mathbf{X} - \mathbf{g} (\mathbf{J}\mathbf{X}, \mathbf{Z}) \mathbf{J}\mathbf{Y} + 2 \mathbf{g} (\mathbf{X}, \mathbf{J}\mathbf{Y}) \mathbf{J}\mathbf{Z} \}.$$

If M is totally real then

(12)
$$\mathbf{R}(X, Y) Z = c/4 \{g(Y, Z) X - g(X, Z) Y\}$$

which is tangent to M. On the other hand, if $\mathbf{R}(X, Y)Z$ is tangent to M for all X, Y, Z and $\mathbf{c} \neq \mathbf{0}$ then we obtain $\mathbf{g}(\mathbf{J}X, Y) \mathbf{J}X$ is tangent to M for all X, Y. Thus we have

PROPOSITION 2. ([2]). If $\mathbf{R}(X, Y)Z$ is tangent to M for all X, Y and $\mathbf{c} \neq \mathbf{0}$, then M is a complex submanifold or is totally real.

If M is totally real, the equations of Gauss and Codazzi become

(13)
$$g(\mathbf{R} (\mathbf{X}, \mathbf{Y}) \mathbf{Z}, \mathbf{W}) = \mathbf{c}/4 \{g(\mathbf{X}, \mathbf{W})g(\mathbf{Y}, \mathbf{Z}) - g(\mathbf{X}, \mathbf{Z})g(\mathbf{Y}, \mathbf{W})\} + \mathbf{g} (\sigma(\mathbf{X}, \mathbf{W}), \sigma(\mathbf{Y}, \mathbf{Z})) - \mathbf{g} (\sigma(\mathbf{X}, \mathbf{Z}), \sigma(\mathbf{Y}, \mathbf{W}))$$

and

(14)
$$(\nabla_{\mathbf{X}} \, \sigma) \, (\mathbf{Y} \, , \mathbf{Z}) - (\nabla_{\mathbf{Y}} \, \sigma) \, (\mathbf{X} \, , \mathbf{Z}) = o \, ,$$

where

$$(\nabla_{\mathbf{X}} \, \sigma) \, (\mathbf{Y} \, , \, \mathbf{Z}) = \nabla^{\mathbf{L}}_{\mathbf{X}} \, (\sigma \, (\mathbf{Y} \, , \, \mathbf{Z})) - \sigma \, (\nabla_{\mathbf{X}} \, \mathbf{Y} \, , \, \mathbf{Z}) - \sigma \, (\mathbf{Y} \, , \, \nabla_{\mathbf{X}} \, \mathbf{Z}) \, .$$

PROPOSITION 3 ([2]). If M is a totally real, totally geodesic submanifold of a complex space form, $\mathbf{M}(\mathbf{c})$, then M is of constant curvature $\mathbf{c}|_4$.

COROLLARY 4. If n = m > 1 and M is totally real and totally umbillical in a complex space form $\mathbf{M}(\mathbf{c})$, then M is of constant curvature $\mathbf{c}|_4$.

From equation (13) we see that

(15)
$$S(X, Y) = (n - I) c/4g(X, Y) + \sum_{i} \{g(\sigma(e_i, e_i), \sigma(X, Y) - g(\sigma(e_i, X), \sigma(e_i, Y))\}\}$$

and

(16)
$$\rho = n (n - 1) \mathbf{c}/4 + \sum_{i,j} \left\{ \mathbf{g} \left(\sigma \left(e_i, e_i \right), \sigma \left(e_j, e_j \right) \right) - \mathbf{g} \left(\sigma \left(e_i, e_j \right), \sigma \left(e_i, e_j \right) \right) \right\},$$

where $\{e_1, \dots, e_n\}$ is a local orthonormal basis of tangent vectors to M. Here S is the Ricci tensor of M and ρ is the scalar curvature of M. If we let $\sigma(X, Y) = h^{\lambda}(X, Y) \xi_{\lambda}$, where $\{\xi_{\lambda}\}$ is a local ortho-normal basis of normal vectors to M, then (15) and (16) become

(15')

$$S (X, Y) = (n - 1) c/4g (X, Y) + \sum_{\lambda} \left\{ (tr h^{\lambda}) h^{\lambda}(X, Y) - \sum_{i} h^{\lambda}(e_{i}, X) h^{\lambda}(e_{i}, Y) \right\},$$
and

and

(16')
$$\rho = n (n-1) \mathbf{c}/4 + \sum_{\lambda} (tr h^{\lambda})^2 - \|\sigma\|^2,$$

respectively, where $tr h^{\lambda}$ is the trace of h^{λ} .

PROPOSITION 5 ([2]). If M is a minimal totally real submanifold of a complex space form, then

I) S - (n - I) c/4g is negative semi-definite,

2)
$$\rho \leq n (n-1) c/4$$
.

M is totally geodesic if and only if any of the following conditions are satisfied:

I)
$$\rho = n (n - I) c/4$$
,

or

2) S = (n - I) c/4g,

or

3)
$$g(\mathbf{R}(\mathbf{X},\mathbf{Y})\mathbf{Z},\mathbf{W}) = \mathbf{c}/4 \{g(\mathbf{X},\mathbf{W})g(\mathbf{Y},\mathbf{Z}) - g(\mathbf{X},\mathbf{Z})g(\mathbf{Y},\mathbf{W})\}$$

Ricci's equation is

$$(\mathbf{I7}) \qquad \boldsymbol{g}\left(\mathbf{R}\left(\mathbf{X},\mathbf{Y}\right)\boldsymbol{\xi},\boldsymbol{\zeta}\right) = \boldsymbol{g}\left(\mathbf{R}^{\mathbf{N}}\left(\mathbf{X},\mathbf{Y}\right)\boldsymbol{\xi},\boldsymbol{\zeta}\right) - \boldsymbol{g}\left(\left[\mathbf{A}_{\boldsymbol{\xi}},\mathbf{A}_{\boldsymbol{\zeta}}\right]\mathbf{X},\mathbf{Y}\right),$$

where $R^N(X, Y) = [\nabla^1_X \nabla^1_Y] - \nabla^1_{[X,Y]}$. Since **M** is a complex space form we see that

$$\boldsymbol{g}\left(\boldsymbol{\mathsf{R}}\left(\boldsymbol{\mathrm{X}}\;,\,\boldsymbol{\mathrm{Y}}\right)\boldsymbol{\xi}\;,\,\boldsymbol{\zeta}\right)=\boldsymbol{c}/4\left\{\boldsymbol{g}\left(\boldsymbol{\mathrm{Y}}\;,\,\boldsymbol{\mathrm{P}}\boldsymbol{\zeta}\right)\boldsymbol{g}\left(\boldsymbol{\mathrm{X}}\;,\,\boldsymbol{\mathrm{P}}\boldsymbol{\zeta}\right)-\boldsymbol{g}\left(\boldsymbol{\mathrm{X}}\;,\,\boldsymbol{\mathrm{P}}\boldsymbol{\xi}\right)\boldsymbol{g}\left(\boldsymbol{\mathrm{Y}}\;,\,\boldsymbol{\mathrm{P}}\boldsymbol{\zeta}\right)\right\}.$$

Thus (17) becomes

$$(\mathbf{I7'}) \qquad \mathbf{c/4} \left\{ g\left(\mathbf{Y}, \mathbf{P\xi}\right) g\left(\mathbf{X}, \mathbf{P\zeta}\right) - g\left(\mathbf{X}, \mathbf{P\xi}\right) g\left(\mathbf{Y}, \mathbf{P\zeta}\right) \right\} = \\ = \mathbf{g} \left(\mathbf{R}^{N} \left(\mathbf{X}, \mathbf{Y}\right) \xi, \zeta\right) - g\left(\left[\mathbf{A}_{\xi}, \mathbf{A}_{\zeta}\right] \mathbf{X}, \mathbf{Y}\right).$$

If n = m, then Q = o and P = J. Also if ξ is a normal vector to M then $\xi = JZ$ for some vector Z tangent to M. Thus, from (9) we see that

$$\nabla^{\mathbf{I}}_{\mathbf{X}}\,\xi = \nabla^{\mathbf{I}}_{\mathbf{X}}(\mathbf{J}Z) = \mathbf{J}\nabla_{\mathbf{X}}\,Z\,.$$

This implies that $R^{N}(X, Y)\xi = \mathbf{J}R(X, Y)Z$. In this case (17') becomes

(18)
$$g(\mathbf{R}(\mathbf{X},\mathbf{Y})\mathbf{Z},\mathbf{W}) =$$

$$= \boldsymbol{c}/4 \{ g(\mathbf{Y}, \mathbf{J}\boldsymbol{\xi}) g(\mathbf{X}, \mathbf{J}\boldsymbol{\zeta}) - g(\mathbf{X}, \mathbf{J}\boldsymbol{\xi}) g(\mathbf{X}, \mathbf{J}\boldsymbol{\zeta}) \} + g([\mathbf{A}_{\boldsymbol{\xi}}, \mathbf{A}_{\boldsymbol{\zeta}}] \mathbf{X}, \mathbf{Y}),$$

where $\xi = JZ$ and $\zeta = JW$. Thus we have the following.

THEOREM 6. Let M be a totally real submanifold of dimension n of a complex space form $\mathbf{M}(\mathbf{C})$ of a complex dimension n. If $[A_{\xi}, A_{\zeta}] = 0$ for any normal vectors ξ and ζ then M is of constant curvature $\mathbf{c}/4$. If in addition, M is minimal then M is totally geodesic.

Proof. The first statement follows from equation (18). For the second statement, comparing (18) and (13) we see

$$\boldsymbol{g}(\sigma(X, W), \sigma(Y, Z)) - \boldsymbol{g}(\sigma(X, Z), \sigma(Y, W)) = 0$$

for all tangent vectors X, Y, Z, W to M. Picking an orthonormal basis $\{e_j\}$ of the tangent vectors to M and letting $X = W = e_i$ and $Y = Z = e_j$ and summing over *i* we see $\sigma(e_i, e_j) = o$ for all *i* and *j*. Thus the proof is done.

THEOREM 7. If M is as in Theorem 6, then $R^N \equiv o$ if and only if $R \equiv o$.

§ 3. LAPLACIAN OF $\|\sigma\|^2$

The purpose of this section is to prove the following.

THEOREM 8. Let M be a compact totally real minimal submanifold of dimension n of a complex space form $\mathbf{M}(\mathbf{c})$ of complex dimension m and $\mathbf{c} > 0$. If

$$\|\sigma\|^2 \leq \frac{n}{2-\frac{1}{p}} c/4$$
,

where p = 2 m - n, then M is totally geodesic. A local theorem is obtained by replacing the condition that M is compact by M having constant scalar curvature.

Proof. Let $\{e_1, \dots, e_n\}$ be a local ortho-normal basis for the tangent vectors to M and $\{\xi_1 = \mathbf{J}e_1, \dots, \xi_n = \mathbf{J}e_n, \xi_{n+1}, \dots, \xi_p\}$ a local ortho-normal basis for the normal vectors to M. Then, from Proposition 3.5 of [2] we have

(19)
$$\frac{1}{2}\Delta \|\sigma\|^{2} = \|\nabla\sigma\|^{2} + \sum_{\lambda,\nu=1}^{p} tr \left(A_{\lambda}A_{\nu} - A_{\nu}A_{\lambda}\right)^{2} \\ - \sum_{\lambda,\nu=1}^{p} \left(tr A_{\lambda}A_{\nu}\right)^{2} + nc/4 \|\sigma\|^{2} + c/4 \sum_{\alpha=1}^{n} tr A_{\alpha}^{2},$$

where $A_{\lambda} = A_{\xi_{\lambda}}$ and Δ is the Laplacian operator.

We have the following lemma from [3].

LEMMA 9. Let A and B be symmetric $(n \times n)$ -matrices. Then

$$-tr (AB - BA)^2 \le 2 tr A^2 tr B^2.$$

Applying Lemma 9 to (19) and proceeding as in [9] we have

$$\frac{1}{2} \Delta \| \sigma \|^{2} \ge \| \nabla \sigma \|^{2} - 2 \sum_{\lambda \neq \nu} \operatorname{tr} A_{\lambda}^{2} \operatorname{tr} A_{\nu}^{2} - \Sigma (\operatorname{tr} A_{\lambda} A_{\nu})^{2} + n \boldsymbol{c}/4 \| \sigma \|^{2} + \boldsymbol{c}/4 \Sigma \operatorname{tr} A_{\alpha}^{2} =$$

$$= \| \nabla \sigma \|^{2} + c/4 \Sigma tr A_{\alpha}^{2} + nc/4 \| \sigma \|^{2} - 2 \sum_{\lambda < \nu} tr A_{\lambda}^{2} tr A_{\nu}^{2} - (\Sigma tr A_{\lambda}^{2})^{2}$$

$$= \| \nabla \sigma \|^{2} + c/4 \Sigma tr A_{\alpha}^{2} + nc/4 \| \sigma \|^{2} - p^{2} \sigma_{1}^{2} - p (p - 1) \sigma_{2}$$

$$= \| \nabla \sigma \|^{2} + c/4 \Sigma tr A_{\alpha}^{2} + nc/4 \| \sigma \|^{2} - (2 p^{2} - p) \sigma_{1}^{2} + p (p - 1) (\sigma_{1}^{2} - \sigma_{2})$$

$$= \| \nabla \sigma \|^{2} + c/4 \Sigma tr A_{\alpha}^{2} + nc/4 \| \sigma \|^{2} + p (p - 1) (\sigma_{1}^{2} - \sigma_{2}) - (2 - \frac{1}{p}) \| \sigma \|^{4}$$

$$\ge \left[nc/4 - \left(2 - \frac{1}{p} \right) \| \sigma \|^{2} \right] \| \sigma \|^{2},$$

where $p\sigma_1 = \Sigma \operatorname{tr} A_{\lambda}^2$ and $p(p-1) \sigma_2 = 2 \sum_{\lambda < \nu} \operatorname{tr} A_{\lambda}^2 \operatorname{tr} A_{\nu}^2$. This holds since we can assume $\operatorname{tr} (A_{\lambda} A_{\nu}) = 0$ if $\lambda \neq \nu$ and $p^2(p-1) (\sigma_1^2 - \sigma_2) = \sum_{\lambda < \nu} (\operatorname{tr} A_{\lambda}^2 - \operatorname{tr} A_{\nu}^2)^2 \ge 0$. If $\operatorname{nc}/4 - \left(2 - \frac{1}{p}\right) \|\sigma\|^2 \ge 0$ then we see that $\Delta \|\sigma\|^2 \ge 0$. If M is compact, the well known lemma of E. Hopf says that $\Delta \|\sigma\|^2 = 0$. Also, note that if the scalar curvature ρ of M is constant then (16') shows that $\|\sigma\|^2$ is constant and hence $\Delta \|\sigma\|^2 = 0$. From the above equations, we that $\Delta \|\sigma\|^2 = 0$ implies that $\nabla \sigma = 0$, $\Sigma \operatorname{tr} A_{\alpha}^2 = 0$ and $\sum_{\lambda < \nu} (\operatorname{tr} A_{\lambda}^2 - \operatorname{tr} A_{\nu}^2)^2 = 0$. Thus $A_{\lambda} = 0$ for all **c** and hence M is totally geodesic.

COROLLARY 10 ([2]). Let M be a compact, minimal, totally real submanifold of dimension n of a complex space form $\mathbf{M}(\mathbf{c})$, $\mathbf{c} > 0$, of complex dimension n. If

$$\|\sigma\|^2 < \frac{n(n+1)}{(2n-1)} c/4$$

then M is totally geodesic.

Proof. In this case $\sum tr A_{\alpha}^2 = ||\sigma||^2$ and p = n so that the inequality in the above proof becomes

$$\frac{1}{2}\Delta \|\sigma\|^{2} \geq \|\nabla\sigma\|^{2} + (n+1)\boldsymbol{c}/4\|\sigma\|^{2} + p(p-1)(\sigma_{1}^{2}-\sigma_{2}) - \left(2-\frac{1}{n}\right)\|\sigma\|^{4} \geq \left[(n+1)\boldsymbol{c}/4 - \left(2-\frac{1}{n}\right)\|\sigma\|^{2}\right]\|\sigma\|^{2}.$$

Again we see by Hopf's lemma $\Delta \|\sigma\|^2 = 0$ so $\|\sigma\| = 0$.

Remark. In Corollary 10 the condition is a strict inequality. The authors will consider equality in a forthcoming paper.

§ 4. PARALLEL ISOPERIMETRIC SECTIONS

A section ξ of the normal bundle is called *isoperimetric* if tr A_{ξ} is constant.

Let M be a totally real submanifold of a complex space form M(c).

24. — RENDICONTI 1975, Vol. LVIII, fasc. 3.

Now we can write equation (14) as

$$(\mathbf{I4'}) \qquad \Sigma \{ (\nabla_{\mathbf{X}} h^{\lambda}) (\mathbf{Y}, \mathbf{Z}) - (\nabla_{\mathbf{Y}} h^{\lambda}) (\mathbf{X}, \mathbf{Z}) \} \xi_{\lambda} + \\ + \Sigma \{ h^{\lambda} (\mathbf{Y}, \mathbf{Z}) \nabla_{\mathbf{X}}^{\mathbf{I}} \xi_{\lambda} - h^{\lambda} (\mathbf{X}, \mathbf{Z}) \nabla_{\mathbf{Y}}^{\mathbf{I}} \xi_{\lambda} \} = \mathbf{0}$$

or, if we let $\nabla^{I}_{X} \xi_{\lambda} = \Sigma L_{\lambda \nu} (X) \xi_{\nu}$, as

$$(I4'') \quad (\nabla_X A_{\lambda}) Y - (\nabla_Y A_{\lambda}) X - \Sigma \{ L_{\lambda\nu} (X) A_{\nu} Y - L_{\lambda\nu} (Y) A_{\nu} X \} = o.$$

If ξ is a parallel normal section then we can assume ξ is a unit vector field since its length is constant. Denote a unit parallel normal section by ξ_1 and use it as the first vector in an local ortho-normal basis of normal vectors. Then $L_{1\nu}$ are all zero and so (14'') gives $(\nabla_X A_1) Y = (\nabla_Y A_1) X$. From equation (17') we see that

(20)
$$[A_1, A_{\lambda}] X = c/4 \{g(X, P\xi_1) P\xi_{\lambda} - g(X, P\xi_{\lambda}) P\xi_1 \}.$$

Let $f_1 = ||A_1||^2$. After a long calculation similar to that in [8], we find

(21)
$$\frac{1}{2} \Delta f_1 = \| \nabla A_1 \|^2 + c/4 \{ n \ tr \ A_1^2 - (tr \ A_1)^2 \} + \sum \{ tr \ A_\lambda \ tr \ (A_1^2 \ A_\lambda) - (tr \ A_1 \ A_\lambda)^2 \}.$$

The following lemma appears in [8].

LEMMA II. Let A_1, \dots, A_p be a symmetric linear transformations of an n-dimensional inner product space V. Assume that $[A_1, A_{\lambda}] = 0$ for $\lambda = 1, \dots, p$. If $\{e_1, \dots, e_n\}$ is an orthonormal basis of V for which $A_1 e_i = \lambda_i e_i$ for $i = 1, \dots, n$ then

$$\begin{split} \Sigma \left\{ tr \, \mathbf{A}_{\lambda} \, tr \, (\mathbf{A}_{1}^{2} \, \mathbf{A}_{\lambda}) - (tr \, \mathbf{A}_{1} \, \mathbf{A}_{\lambda})^{2} \right\} &+ \textit{nc} \, tr \, \mathbf{A}_{1}^{2} - c \, (tr \, \mathbf{A}_{1})^{2} = \\ &= \sum_{i < j} \left\{ c \, + \, \sum_{\lambda} \, \left[a_{ii}^{\lambda} \, a_{jj}^{\lambda} - (a_{ij}^{\lambda})^{2} \right] \right\} (\lambda_{i} - \lambda_{j})^{2}, \end{split}$$

where (a_{ij}^{λ}) is the matrix of A_{λ} .

We shall use these facts to prove the following.

THEOREM 12. Let M be a compact totally real submanifold of a complex space form $\mathbf{M}(\mathbf{c})$. If M has non-negative sectional curvature and admits a parallel, isoperimetric normal section ξ such that $P\xi = 0$ and $A\xi$ has n distinct eigenvalues everywhere on M, then M is flat.

Proof. From (20) we see that $P\xi_1 = 0$ implies $[A_1, A_{\lambda}] = 0$ for all λ . Thus we can apply Lemma 11 to (21) and obtain

$$\frac{1}{2}\Delta f_1 = \|\nabla \mathbf{A}_1\|^2 + \sum_{i < j} \mathbf{K}_{ij} (\lambda_i - \lambda_j)^2,$$

352

where K_{ij} is the sectional curvature of the section spanned by $\{e_i, e_j\}$ and λ_i are the eigenvalues of A_1 . Since the K_{ij} are non-negative we have that $\Delta f_1 \ge 0$ so that Hopf's lemma says $\Delta f_1 = 0$. Thus since $\lambda_i - \lambda_j \neq 0$ for $i \neq j$ we have $K_{ij} = 0$ and the proof is done.

COROLLARY 13. Let M be a compact totally real surface immersed in a complex space form $\mathbf{M}(\mathbf{c})$ of complex dimension > 2. If the Gaussian curvature of M is non-negative and M admits a parallel, isoperimetric, umbillic-free normal section then M is flat.

Remark. A generalization of Corollary 13 appears in [2].

THEOREM 14. Let M be a compact, minimal, totally real submanifold of a complex space form $\mathbf{M}(\mathbf{c})$. Suppose

the real dimension n of M is less than the complex dimension m of M,
 R^N = 0 on M.

Then there exist 2m - 2n parallel isoperimetric, sections on M and if one of these sections has n distinct eigenvalues everywhere on M and the sectional curvature of M is non-negative then M is flat.

Proof. This follows from known facts and Theorem 13.

References

- K. ABE (1973) Applications of a Riccati type differential equation to Riemannian manifolds with totally geodesic distributions, «Tohoku Math. Journ.», 25, 425-444.
- [2] B. Y. CHEN and K. OGIUE (1974) On totally real submanifolds, «Trans. of AMS », 193, 257–266.
- [3] S. S. CHERN, M. P. DO CARMO and S. KOBAYOSHI Minimal submanifolds of a sphere whith second fundamental form of constant length, Functional analysis and Related Fields. (Proc. Conf. for M. Stont, Univ. Chicago, Chicago, 1L 1968), Springer, New York, 1970, 59-75.
- [4] C. S. HOUH (1973) Some totally real minimal hypersurfaces in CP² « Proc. of AMS », 40, 240-244.
- [5] H. B. LAWSON JR. (1969) Rigidity Theorems in rank I symmetric spaces, «J. off Diff. Geom. », 3, 367-377.
- [6] K. OGIUE Differential geometry of Kaehler submanifolds, Notes from Michigan State University, to appear in «Advances in Mathematics».
- [7] M. OKUMURA Submanifolds of real codimension p of a complex projective space, to appear.
- [8] B. SMYTH (1973) Submanifolds of constant mean curvature, «Math. Ann.», 205, 265-280.
- [9] J. A. WOLFE (1963) Elliptic spaces in Grassman manifolds, «Illinois J. of Math.», 7, 447-462.
- [IO] K. YANO (1963) On a structure defined by a tensor field f of type (I, I) satisfying $f^3 + f = 0$, «Tensor N. S.», I4, 99–109.