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Geometria differenziale. — 7vtally Real Submanifolds of Com-
plex Manifolds. Nota di GErRaLD D. Luppen ), Masarumi Oku-
MURA e KENTARO YANO, presentata ™ dal Socio B. SEGRE.

RIASSUNTO. — Si approfondisce lo studio di certe sottovarietd di una varietd com-
plessa, com’é specificato nella seguente Introduzione.

§ 1. INTRODUCTION

There have been many papers studying complex submanifolds of complex manifolds,
especially of complex space forms (see [6] for a survey of results and references). Recently
there have been a number of papers concerning arbitrary submanifolds of complex mani-
folds (see [1], [2], [4], [5], [7], [9]).- In particular, Chen and Ogiue [2] have studied sub-
manifolds M of M such that T, (M)NJT, (M) = {0} for each x in M. The purpose of this
paper is to study these submanifolds further. In particular in § 2 we consider the basic pro-
perties of such submanifolds and in § 3 we examine the Laplacian of the square of the length
of the second fundamental form and prove a pinching theorem. § 4 is devoted to the study
of parallel isoperimetric normal sections on these submanifolds.

§ 2. FUNDAMENTAL PROPERTIES

Let M be a Hermitian manifold of complex dimension 7 and let J be
the almost complex structure and g the Hermitian metric on M. Let M be
an z-dimensional submanifold immersed in M satisfying T,(M) N JT,(M) = {o}
for each x €M, where T,(M) is the tangent space to M at x. Here we
have identified T, (M) with its image under the differential of the immersion.
We icall such a submanifold M totally real or anti-invariant. 1f X is a
vector field on M, we see JX is a vector field in the normal bundle of M.
If £ is a vector field in the normal bundle put

() JE=PL +QF,

where PZ is the tangential part of J& and Q% the normal part. Then P is
a téngent bundle valued 1-form on the normal bundle and Q is an endo-
morphism of the normal bundle. Applying J to (1) and JX and comparing
and normal parts, we have

2) PQE =o, (3) QL =—E2— JPE,
@ PJX = —X, ) QJX =o,

(*) Work done under partial support by NSF Grant No. 36684.
(**) Nella seduta dell’8 marzo 1975.
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where X is an arbitrary tangent vector field to M and & an arbitrary normal
vector field. From (3) and (5) we see Q° +Q = o on the normal bundle
(see [10]). We also see that # < since J is non-singular.

Let V be the Riemannian connection of g. Then, the Gauss and
Weingarten equations are

() Vx Y =VxY +o(X,Y), () Vxé=—A: X + V5.

Here V is the Riemannian connection of the metric g induced on M from g
(ie. g(X,Y)=g(X,Y)), o is the second fundamental form of the immer-
sion, V' is the connection on the normal bundle induced from V and
gA:X,Y)=g(©6(X,Y),E). A vector field £ in the normal bundle is
parallel if V'E=o0. M is totally geodesic if ¢ =o0. M is minimal if

6 (¢;,¢;) =0 for any local ortho-normal basis {e ,---,e,} of tangent
=1

?
vectors to M.

Assume now that M is Kaehler (i.e. VJ=o0). Differentiating JX and (1)
and comparing tangential and normal parts we have

8) —ARX=Ps(X,Y), © ViJY)=JV. Y+ Qs(X,Y),
(10)  PVRE =V (PE)—AgX, (11) —JA;X +QViEi=
= o(X, PE) + V(.
From (8) we have
—g<AJYX’Z) :g(PG(X,Y)’Z),
or

—&(@(X,2),JY)=¢(Pa(X,Y),7).

If M is totally umbilical, that is ¢ (X ,Y)=g¢(X,Y)H for some normal
vector field H, then —g (X ,Z)g(H, JY)=¢(X,Y)g(PH,Z). Letting
X =27 and Y =PH we have g(X,X)g (PH, PH) = ¢ (X, PH?. Now
every real curve (z=1) in M is totally real. If > 1 we see that PH = o.
If w=m, then Q =0 and J = P. Thus we have

PROPOSITION 1. If n=m>1 and M is totally wmbilical, then M is
totally geodesic. '

Suppose now that M is a complex space form of constant holomorphic
curvature ¢. Denote M by M (¢). Then the curvature operator R of M (c)
assumes the form,

R(X,VZ=cl4{g(Y. )X —g(X DY+
HAY. D) JX—g(JX,DJY +2g(X,JV) ]2} .
If M is totally real then |
(12) R(X,V)Z =cl4{¢(V,2)X —¢(X,2) Y}
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which is tangent to M. On the other hand, if R(X,Y)Z is tangent to M
for all X,Y,Z and c==o0 then we obtain g(JX Y) JX is tangent to M
for all X,Y. Thus we have

ProrosITION 2. ([2]). If R(X,Y)Z is tangent to M for all X,Y
and c=F= o0, then M is a complex submanifold or is totally real.

If M is totally real, the equations of Gauss and Codazzi become

(1) sREX,VNZ,W)=cl4{gX , W)Y ,Z)—¢g(X,2)g(Y, W)} +
+g0X,W),0(Y,2)—g((X,2),s(Y, W)
and
(14) Vo) (Y ,Z)—(Vy0)(X,Z) =0,
where
(V) (Y,2) =Vy (6 (Y,Z2)—0c(VyY,Z)—0o Y,V Z).

PROPOSITION 3 ([2]). If M is a totally real, totally geodesic submanifold

of a complex space form, M (c), then M is of constant curvature cl4.

COROLLARY 4. If n=m > 1 and M is totally real and totally umbillical
in a complex space form M (c), then M is of constant curvature cl4.

From equation (13) we see that

(13) SX,YV)=m—1)c/l4g(X,Y) +
—{—ZZ{g(G(ei,e@),G(X,Y)—-g(c(éi,X),G(Q,Y))}

and
(16) o= n(n—1)cl4+
+ E {g(c(ei ), 0(e;,¢))—g(o(es,e),0(e,e))},
2V
where {¢,---,¢,} is a local orthonormal basis of tangent vectors to M.

Here S is the Ricci tensor of M and p is the scalar curvature of M. If we
let ¢ (X ,Y):-—/zx(X ,Y)E,, where {£€,} is a local ortho-normal basis of
normal vectors to M, then (15) and (16) become

(15) S(X,Y)=(—1)clag (X,Y) +

@YX, YY) — Y R ey, X) K e, Y)
A i
and

(16" p=n(n—1)cl4 + ; & i —|alf,

respectively, where # 4" is the trace of /.
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ProPOSITION 5 ([2]). If M is a minimal totally real submanifold of
a complex space form, then

1) S—(n—1)cl4g is negative semi-definite,
2) p<n(n—1)c/4.
M 2s totally geodesic if and only if any of the following conditions are satisfied:
D p=nr—1cl4,
or
2) S—(1—1)clag,

or

3) eREXY)Z, W) =cl4{g(X , W)g(Y,2)—g(X,Z)g(Y,W).
Ricci’s equation is
(7)) gREX,V)E,D=g®RYX,VNE, O —g(Az,A]X,Y),

where RY(X,Y) = [V; V;] —V%X,Y] . Since M is a complex space form
we see that

gRX,V)E, O =cla{g (Y, PHgX,P)—g (X, PEg (Y, PY}.
Thus (17) becomes

(179 c/4{g (Y, PE)g (X, PO —g(X,Phg(Y, P} =
=g RY(X,V)E, 0—g (A, A] X, V).

If #=m, then Q =0 and P = J. Also if £ is a normal vector to M
then § = JZ for some vector Z tangent to M. Thus, from (9) we see that

VLE=VE(Z) = IV Z.
This implies that RN (X, Y)E=JR(X,Y)Z. In this case (17") becomes
(18) gREX,YV)Z, W) =
=el4lg(V, JOeX, JO—¢ (X, e (X, JOI +2 (A, A X, Y),
where £ = JZ and { = JW. Thus we have the following.
THEOREM 6. Let M be a totally real submanifold of dimension n of a
complex space form M (C) of a complex dimension n. If [Ag¢,A] = o for

any normal vectors & and § then M is of constant curvature cl4. If in addition,
M is minimal then M is totally geodesic.
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Proof. The first statement follows from equation (18). For the second
statement, comparing (18) and (13) we see

g(G<X:W)!G(Y’Z»_g(G(X’Z))G(Y’W»:O

for all tangent vectors X ,Y,Z, W to M. Picking an orthonormal basis {¢;}
of the tangent vectors to M and letting X = W =¢; and Y =Z = ¢; and
summing over 7 we see 6 (¢;, ¢;) = o for all 7 and j. Thus the proof is done.

THEOREM 7. If M s as in Theorem 6, then R = o if and only if
R =o.

§ 3. LAPLACIAN OF || o |f

The purpose of this section is to prove the following.

THEOREM 8. Let M be a compact totally real minimal submanifold of
dimension n of a complex space form M (c) of complex dimension m and ¢ > o.

v

2 ”n
el <

cl4,

1

?

2 —

where p = 2m—n, then M is totally geodesic. A local theorem is obtained
by replacing the condition that M is compact by M having constant scalar
curvature.

Proof. Let {e;,---,¢,} be a local ortho-normal basis for the tangent
vectors to M and {& = Je;,- -+, &, = Je,, &y, -+, ) a local ortho-normal
basis for the normal vectors to M. Then, from Proposition 3.5 of [2] we
have

?
(19) PALGIF = Vol + X o (A A — A, A
,v=1
? n
— X O MAS ela| ol +ela X AL
,v=1 =1

where A, = Ag and A is the Laplacian operator.

We have the following lemma from [3].
LEMMA 9. Let A and B be symmetric (n X n)-matrices. Then
—tr (AB—BAY < 24 A’# B
Applying Lemma 9 t;) (19) and proceeding as in [9] we have

Al6|P = || Vs | — zg‘ tr AStr A3 — 3 (tr Ay AV

+nelg|l | + /4 Dtr AL =
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=196 +elaZor A%+ nela || ol —2 X, or A r A3 — (2 A}

— Vel + el Sor AL 4 el o ff — 5 ot — p(p— 1)

=IVslf +elaZer Ay + melal|olf— (2 p' —p) ot + 2 (p— 1) (5} — o)
=11Vol +ela Zer As + el ol + p(p—1) (o — o) — (2 — 5 ) I o

Vs
= [rela— (2 —5) I IF]Ualr,

where po; = Z#7 Al and p(p—1) 6, =2 3, # A} # A2. This holds since we can
ALV
assume # (Ay A,) =oif a==v and p°(p — 1) (6t — o5,) =XE (tr AS—tr A2?*>o.
<v

If nclq — (2 — %) [ o|*> o then we see that A c|?>0. IfM is compact,

the well known lemma of E. Hopf says that A|¢|*= 0. Also, note that

if the scalar curvature p of M is constant then (16) shows that ||c|? is

constant and hence Al s|f=o0. From the above equations, wee that

Allo|? = o implies that Vo =o0,Z# A% =0 and ;‘, (tr A5 —tr A2? = o.
<v

Thus A = o for all ¢ and hence M is totally geodesic.

COROLLARY 10 ([2]). LetM be a compact, minimal, totally real submanifold
of dimension n of a complex space form M (c) , ¢ > 0, of complex dimension n.
If
n(n+1)

2
lolf < 22£D

cl4

then M is totally geodesic.

Proof. 1In this case Z#7 A} = || c|? and p = # so that the inequality
in the above proof becomes

VAL oI = Vol + (o -+ 1) efall o|f + 2(p— 1) (oF — o3) —
—(2 =) lel= e + Dela— (2 —2) o] I oI,

”n

Again we see by Hopf’s lemma A|s|? = o so ol =o.

Remark. In Corollary 10 the condition is a strict inequality. The
authors will consider equality in a forthcoming paper.
§ 4. PARALLEL ISOPERIMETRIC SECTIONS

A section & of the normal bundle is called Zsoperimetric if tr Az is
constant. ‘

Let M be a totally real submanifold of a complex space form M (c).

24, — RENDICONTTI 1975, Vol. LVIII, fasc. 3.
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Now we can write equation (14) as

(14) S{(Vx A (Y, Z)— (Vy /) (X, Z)} B +
+ 2 (Y, )V — A (X, ) V) =o,

or, if we let V& £, = ZL,, X)E,, as
(14" (VxA) Y — (Vv A X —2Z{Liy XA Y—L, (YA, X} =o0.

If £ is a parallel normal section then we can assume £ is a unit vector
field since its length is constant. Denote a unit parallel normal section by &,
and use it as the first vector in an local ortho-normal basis of normal
vectors. Then L,, are all zero and so (14') gives (Vx A, Y = (Vy A) X.
From equation (17') we see that

(20) [Al ’ Al] X = C/4 {g (X ) Pgl) PE.J\ —g (X ) P‘El) P€1 .
Let £, = || A, |’. After a long calculation similar to that in [8], we find

(21) FAA = VAP +cla {ntr AL — (r AT} +
+ X {l‘?‘ Ay tr (Ai A;L) —_ (&‘7" Al A;\>2} .

The following lemma appears in [8].

LEMMA 11. Let Ay, -+, A, be a symmetric linear transformations of
an n-dimensional inner product space V. Assume that [A;,A] = o0 for
A=1,,p.  If {e,---, e} is an orthonormal basis of NV for which
Aje;=n;e; for i =1, -+, n then

S{tr Antr (ATA) — (tr A, A} +netr Al —c (r A)? =
= { + 20 [ai @y — (@)1 | (i — 2%,
i<i )
where (aﬁ‘j) is the matrix of A,.

We shall use these facts to prove the following.

THEOREM 12. Let M be a compact totally real submanifold of a complex
space form M (c). If M has non-negative sectional curvature and admits a
parallel, isoperimetric normal section & such that P& = o and A% has n distinct
eigenvalues everywhere on M, then M is flat.

Proof. From (20) we see that P§ = o implies [A;, Ay] = o for all A,
Thus we can apply Lemma 11 to (21) and obtain

FAA = VAP + ; Ky (i — 0,
1<)
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where Kj; is the sectional curvature of the section spanned by {¢;, ¢;} and 2,
are the eigenvalues of A;. Since the K;; are non-negative we have that Af>o0
so that Hopf’s lemma says Af; = o. Thus since A;— A;j==o0 for ==, we
have K;; = o and the proof is done.

COROLLARY 13. Let M be a compact totally real surface immersed in a
complex space form M (c) of complex dimension > 2. If the Gaussian curvature
of M is non-negative and M admits a parallel, isoperimetric, umbillic-free
normal section then M is flat.

Remark. A generalization of Corollary 13 appears in [2].

THEOREM 14. Let M be a compact, minimal, totally real submanifold of
a complex space form M (c). Suppose

1) the real dimension n of M is less than the complex dimension m of M,
2) RN=o0 oz M.

Then there exist 2m — 2n parallel isoperimetric, sections on M and if one
of these sections has n distinct eigenvalues everywhere on M and the sectional
curvature of M is non-negative then M is flat.

Proof. This follows from known facts and Theorem 13.
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